
Transformations of Markov Processes in

Fault Tolerant Interconnected Systems
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Abstract— Safety-critical control systems use fault tol-

erant interconnections of components to minimize the

effect of randomly triggered faults. The system availabil-

ity process indicates whether or not the interconnection

is operating correctly at each time instant. It is a 2-

state process that results from the transformation of

the stochastic processes characterizing the availability

processes of the interconnected components. To analyze

closed-loop systems controlled by these fault tolerant in-

terconnected components, it is important to determine the

characteristics of the system availability process. When

the availability processes of the interconnected compo-

nents are independent homogeneous Markov chains, the

statistical nature of the system availability process is

characterized. In particular, it is shown that the system

availability process is not necessarily Markov, but has a

well-defined one-step transition probability matrix that

approaches a constant stochastic matrix at steady-state.

Since it is simpler to analyze switched closed-loop systems

when the switching process is Markov, conditions for the

system availability process to be a Markov chain for all

initial distributions are determined. A sufficient stability

condition is given when the system availability process is

a non-homogeneous Markov chain for a class of initial

distributions.

I. INTRODUCTION

In fault tolerant systems such as those found in

flight control systems, the system availability process

indicates whether or not an interconnection of digital

logic devices can perform its intended operation at a

given time [1]–[3]. When these devices are operating

in a harsh environment, the system availability process

is induced by the stochastic upsets affecting each
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device. The devices can be redundant flight control

computers (FCC’s) or a lower level interconnection of

components. The paper focuses on fault tolerant inter-

connections of FCC’s, but the results apply to an arbi-

trary interconnection of devices. In general, the system

availability process depends on the correct operation of

a sufficient number of interconnected devices. Consider

a particular operation performed by the fault tolerant

interconnection of N ≥ 2 devices and assume that the

devices are affected by N independent and identically

distributed (i.i.d.) upset processes. Let the state of

operation at time k ∈ Z
+ , {0, 1, . . . } of the m-th

device be denoted by zm(k), m ∈ IN , {1, . . . ,N}

such that zm(k) = 0 (zm(k) = 1) denotes that the m-th

device is working (not working). Boldfaced characters

will denote a random variable or process. The process

zm(k) represents the state of the device with state space

I , {0, 1} and input given by an i.i.d. upset process.

When the transition to the next state, zm(k + 1), from

the current state and input is representable by a state

transition table, it is known that the state processes

of these devices are independent, homogeneous, first-

order Markov chains [4]. The ambient probability space

over which these processes are defined is given by

(Ω,F ,Pr). In this paper, all Markov chains (MC)

satisfy the first-order Markov property, that is, if z(k)

is a MC then

Pr
(
z(k + 1) = ζ(k + 1) | z(k) = ζ(k), . . . ,

z(0) = ζ(0)
)

= Pr
(
z(k+1) = ζ(k+1) | z(k) = ζ(k)

)

where Pr(z(k) = ζ(k), . . . ,z(0) = ζ(0)) > 0.

The system availability process, y(k), is given by a

memoryless transformation of these N Markov chains

zm(k). This paper analyzes some of the characteristics

of y(k) which need to be known in order to ana-

lyze a closed-loop system controlled by such intercon-

nected devices. Such a system appears, for example,
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in [5]. In particular, for a general system availability

transformation, the state probabilities (i.e., Pr(y(k) =

y), y ∈ I) and the one-step transition probabilities

(i.e., Pr(y(k + 1) = j|y(k) = i), i, j ∈ I) are

derived. Steady-state values of these probabilities are

also given. Clearly, if y(k) is not a MC, these transition

probabilities and initial distribution do not characterize

the state probabilities at each time instant. But y(k)

has a well-defined time-dependent transition probability

matrix Πy(k) satisfying lim
k→∞

Πy(k) = Π. This steady-

state characterization is used to analyze the long term

characteristics of a closed-loop system switched by this

process under an additional assumption. To simplify the

analysis of switched closed-loop systems, it is useful to

determine conditions for the system availability process

to be a homogeneous Markov chain (HMC). Based on

the extensive literature for lumped Markov processes,

two results are presented. First, necessary and sufficient

conditions for the system availability process to be an

HMC are provided [6], [7]. Second, a result from [8] is

given which shows that the system availability process

can be a non-homogeneous Markov chain (NHMC)

only for a class of initial distributions. For this special

set of system availability processes, a sufficient con-

dition for exponential second moment stability exists.

The switched system can also be analyzed with the

joint process (z(k),y(k)), which is known to be a

HMC [9]. The analysis presented here is motivated

by the desirability of lower dimensional computations,

resulting from directly working with a 2-state process

instead of tests based on a higher dimensional joint

process.

The rest of the paper is organized as follows. Section

II characterizes the statistical nature of the system

availability process. In Section III, two lumpability

results and an example are given. The stability analysis

of a switched closed-loop system for a special class of

system availability processes is done in Section IV, and

the conclusions are summarized in Section V.

II. A GENERAL SYSTEM

AVAILABILITY TRANSFORMATION

For each k, the system availability process y(k)

is a transformation, φ, of the random vector z(k) ,

(z1(k), . . . ,zN (k)) into I , where φ : IN → I ,

IN , I × · · · × I
︸ ︷︷ ︸

N times

. It is assumed that φ is an onto

map. It is known that the joint process z(k) is an

HMC, since the component Markov processes zm(k),

m ∈ IN , are independent and homogeneous [10]. The

transition probability matrix of z(k) is also known

to be Πz = Πz1
⊗ · · · ⊗ ΠzN

, where Πzm
is the

transition probability matrix for each zm(k) and ⊗

denotes the Kronecker product. The system availability

transformation φ partitions the state space of z(k) as

follows: IN = Iφ ∪ Iφ, where Iφ = φ−1(0) = {ζ ∈

IN : φ(ζ) = 0}.

The statistical nature characterization of y(k) =

φ(z(k)) is given in this section. It is known that, in

general, y(k) will not be a MC for all initial distri-

bution of z(k) [8]. First, the state probability vector

and steady-state probability vector are characterized in

Lemma 1 and Theorem 1, respectively. Second, the

transition probabilities and their steady-state values are

characterized in Lemma 2 and Theorem 2, respectively.

Lemma 1: Let each zm(k), m ∈ IN , be an in-

dependent HMC with initial distribution πzm
(0) such

that the joint process z(k) = (z1(k), . . . ,zN (k)) is an

HMC on IN with transition probability matrix Πz =

Πz1
⊗ · · · ⊗ ΠzN

and initial distribution vector πz(0).

Let y(k) = φ(z(k)) be the system availability process.

Then the state probability vector of y(k), πy(k) ,[

Pr(y(k) = 0) Pr(y(k) = 1)
]

, is characterized by

Pr(y(k) = 0) =
∑

ζ∈Iφ

N∏

m=1

πzm
(0)Πk

zm

[

1{ζm=0}

1{ζm=1}

]

(1)

and Pr(y(k) = 1) = 1 − Pr(y(k) = 0), where 1{·}
is the indicator function of {·}, and ζm is the m-th

component of ζ .

Proof: Since φ is a measurable mapping, it follows

that

Pr(y(k) = 0) =
∑

ζ∈Iφ

Pr(z(k) = ζ).

From the assumption that the processes zm(k) are

independent HMC’s, the following equalities hold

Pr(y(k) = 0) =
∑

ζ∈Iφ

N∏

m=1

Pr(zm(k) = ζm)

=
∑

ζ∈Iφ

N∏

m=1

πzm
(k)

[

1{ζm=0}

1{ζm=1}

]

,
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where πzm
(k) ,

[
Pr(zm(k) = 0) Pr(zm(k) = 1)

]

is the state probability vector of zm(k). Since zm(k),

m ∈ IN is an HMC, it follows that

Pr(y(k) = 0) =
∑

ζ∈Iφ

N∏

m=1

πzm
(0)Πk

zm

[

1{ζm=0}

1{ζm=1}

]

.

The probability Pr(y(k) = 1) can be similarly shown

and it satisfies Pr(y(k) = 1) = 1 − Pr(y(k) = 0).

The probability lim
k→∞

Pr(y(k) = 0) is called the

availability of the system. It is computed in Theorem 1

and shown to be constant under the additional assump-

tions that the independent HMC’s zm(k) are aperiodic

and irreducible. Notice that under these conditions the

joint process z(k) is also aperiodic and irreducible [10].

Theorem 1: Let zm(k), m ∈ IN be aperiodic and

irreducible HMC’s with stationary probability vectors

πzm
. Then the availability of the system is

lim
k→∞

Pr(y(k) = 0) =
∑

ζ∈Iφ

N∏

m=1

πzm

[

1{ζm=0}

1{ζm=1}

]

. (2)

Proof: Under the given assumptions, the limit

exists and (2) follows directly from (1).

Since φ reduces the 2N states of the HMC z(k)

down to two, it is a type of general lumping Markov

transformation that has been extensively studied since

the 1950’s (cf. [6]–[8], [11], [12]). Thus, necessary

and sufficient conditions are well known for: y(k) to

be a MC, an HMC, and a NHMC. To simplify the

presentation, the 2N possible states of z(k), labeled

in their natural last-lexical order [12], are assigned

values in L = {1, 2, . . . , 2N}. Let ξ : IN → L

denote the bijective function that maps a state to an

integer label in L, such as, ξ((0, 0, . . . , 0)) = 1 and

ξ((1, 1, . . . , 1)) = 2N . Thus, φ induces through ξ the

partition L = Lφ ∪ Lφ, where Lφ = {l ∈ L : l =

ξ(ζ),∀ ζ ∈ Iφ} . The following 2N × 2 lumping

matrix [7] characterizes this partition and is useful in

the analysis of the lumping operation: Mφ = [mij ],

where mij = 1 whenever φ(ξ−1(i)) = 1; otherwise,

mij = 0, for i ∈ L and j ∈ {1, 2}. The columns of

Mφ will be denoted by Mj , j ∈ {1, 2}.

The following lemma gives the transition probabili-

ties of the process y(k).

Lemma 2: Let zm(k), m ∈ IN be aperiodic and

irreducible HMC’s, and let the transition probability

matrix of z(k) = (z1(k), . . . ,zN (k)) be Πz =
[

pz
ij

]

,

i, j ∈ L. Then the diagonal entries of Πy(k), the

transition probability matrix of y(k), are

p
y
11(k) =

1

πz(0)Πk
zM1

∑

i,j∈Lφ

pz
ijπz(0)Π

k
zei (3)

and

p
y
22(k) =

1

πz(0)Πk
zM2

∑

i,j∈Lφ

pz
ijπz(0)Π

k
zei , (4)

where p
y
11 = Pr(y(k + 1) = 0|y(k) = 0), p

y
22 =

Pr(y(k +1) = 1|y(k) = 1) and ei ∈ R
2N

is the vector

of zeros with a single 1 in the i-th position.

Proof: The proof is given for p
y

11(k) since the

other case is similar.

Pr(y(k + 1) = 0 | y(k) = 0)

= Pr
(
z(k + 1) ∈ ∪j∈Lφ

{ξ−1(j)} |

z(k) ∈ ∪i∈Lφ
{ξ−1(i)}

)

=

(
∑

i,j∈Lφ

Pr
(
z(k + 1) = ξ−1(j) |

z(k) = ξ−1(i)
)
Pr
(
z(k) = ξ−1(i)

)

)/

∑

i∈Lφ

Pr
(
z(k) = ξ−1(i)

)

=

∑

i,j∈Lφ

pz
ij Pr(z(k) = ξ−1(i))

∑

i∈Lφ

Pr(z(k) = ξ−1(i))

=

∑

i,j∈Lφ

pz
ijπz(k)ei

πz(k)M1

=

∑

i,j∈Lφ

pz
ijπz(0)Π

k
zei

πz(0)Πk
zM1

.

Observe that the scalars πz(0)Π
k
zMj , j = 1, 2 are

positive because each column of Mφ has at least one 0

and one 1 from the onto assumption concerning φ, and

Πz has positive entries since each 2-state HMC zm(k)

is aperiodic and irreducible.

As a consequence of Lemma 2 the following steady-

state result is obtained.

Theorem 2: Let zm(k), m ∈ IN be aperiodic and

irreducible HMC’s, and let the transition probability

matrix of z(k) = (z1(k), . . . ,zN (k)) be Πz =
[

pz
ij

]

,
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i, j ∈ L with stationary probability vector given by πz.

Then lim
k→∞

Πy(k) = Π, where Π is a stochastic matrix

with diagonal entries

p11 = lim
k→∞

p
y
11(k) =

1

πzM1

∑

i,j∈Lφ

pz
ijπzei

and

p22 = lim
k→∞

p
y
22(k) =

1

πzM2

∑

i,j∈Lφ

pz
ijπzei .

Proof: Because of the hypothesis, the stationary

probability vector πz has positive components. Then

the claim follows directly by taking limits in equations

(3) and (4), respectively.

Since the analysis of a closed-loop system switched

by y(k) is simplified when y(k) is an HMC, the next

section gives conditions under which y(k) is an HMC.

III. HMC CONDITIONS

Lemma 3 gives necessary and sufficient conditions

under which the process y(k) = φ(z(k)) will be an

HMC for all initial distributions. It is a special case of

theorems in the literature (cf. [6], [7]) where y(k) is a

2-state process.

Lemma 3: Let z(k) be an HMC with transition

probability matrix Πz . Then the process y(k) =

φ(z(k)) is an HMC for every initial distribution πz(0)

if and only if there exists constants µ1 and µ2 in [0, 1]

satisfying

ΠiM1 = µ1 ∀ i ∈ Lφ

and

ΠiM1 = µ2 ∀ i ∈ Lφ,

where Πi is the i-th row of Πz . Furthermore, the

transition probability matrix of y(k) is Πy ,

[

p
y
ij

]

=
[

µ1 1−µ1

µ2 1−µ2

]
, i, j ∈ {1, 2}.

Proof: The proof follows from [6].

The next result shows that y(k) can be an NHMC

only for some but not all initial distributions [8].

Lemma 4: Let z(k) be an HMC. If the process

y(k) = φ(z(k)) is a MC for all initial distributions

πz(0) then it is an HMC.

Proof: This lemma is stated as a question and then

answered in [8].

In the reliability literature, the map φ is called a

structure function [2]. A general class of interconnected

devices is referred to as κ-out-of-N when the intercon-

nection is operating correctly if at least κ of the devices

are working with κ ∈ IN . Note that there are N κ-

out-of-N structure functions uniquely determined by

κ. When κ = 1, the structure function corresponds to

a parallel interconnection as in the following example

that illustrates the results described in this paper.

TABLE I

TRANSFORMATION TABLE IN EXAMPLE 1

z1(k) z2(k) z(k) ξ(z(k)) y(k) = φ(z(k))

0 0 (0, 0) 1 0

0 1 (0, 1) 2 0

1 0 (1, 0) 3 0

1 1 (1, 1) 4 1

Example 1: Consider an interconnection of N = 2

devices with upset processes given by an HMC with

transition probability matrices

Πzi
,

[

pi
11 pi

12

pi
21 pi

22

]

, i = 1, 2

and initial distributions πzi
(0), i = 1, 2. If the system

availability process is given by the transformation φ

defined in Table I, then the state space is partitioned as

I2 = Iφ

⋃
Iφ, where Iφ = {(0, 0), (0, 1), (1, 0)} and

Iφ = {(1, 1)}. By Lemma 1, the probability

Pr(y(k) = 0) =πz1
(0)Πk

z1

[

1

0

]

πz2
(0)Πk

z2

[

1

1

]

+

πz1
(0)Πk

z1

[

0

1

]

πz2
(0)Πk

z2

[

1

0

]

.

The stationary probability of y(k) exists whenever

z1(k) and z2(k) have stationary probabilities πz1
and

πz2
, respectively, as given in Theorem 1. In particular

lim
k→∞

Pr(y(k) = 0)

= πz1

[

1

0

]

πz2

[

1

1

]

+ πz1

[

0

1

]

πz2

[

1

0

]

.

Lemma 3 is used to determine the conditions for

y(k) = φ(z(k)) to be an HMC. Observe that φ

partitions the set of labels as L = Lφ

⋃
Lφ, where

Lφ = {1, 2, 3} and Lφ = {4}. Thus, the matrix

MT
φ =

[

1 1 1 0

0 0 0 1

]

,
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where the superscript ‘T ’ denotes matrix transposition.

So the process y(k) = φ(z(k)) will be an HMC if and

only if the following equalities are satisfied:

Π1M1 = µ1 = 1 − p1
12 × p2

12

Π2M1 = µ1 = 1 − p1
12 × p2

22

Π3M1 = µ1 = 1 − p1
22 × p2

12.

Lemma 3 gives a fourth equation, Π4M1 = µ2, that

is not needed, since it is dependent on the first three

equations. These relations imply that

p1
12 × p2

12 = p1
12 × p2

22 = p1
22 × p2

12.

If these equalities do not hold, then y(k) will not be

an HMC for all initial distributions πz(0). By Lemma

4, however, y(k) could be a NHMC for some but

not all initial distributions. Whenever the stationary

probability vector for z(k) exists then as k → ∞ y(k)

is characterized by a constant transition probability

matrix as shown in Theorem 2. If the 2-states HMC’s

z1(k) and z2(k) are aperiodic and irreducible then the

entries of Πz1
and Πz2

are positive. Thus, the necessary

and sufficient conditions for y(k) to be an HMC are

p1
12 = p1

22 and p2
12 = p2

22.

In this case, Πz1
and Πz2

have the form

Πz1
,

[

a 1 − a

a 1 − a

]

, Πz2
,

[

b 1 − b

b 1 − b

]

, (5)

where a = 1−p1
12 and b = 1−p2

12 with a, b ∈ (0, 1). If

the initial distribution vectors are πz1
(0) =

[

a 1 − a
]

and πz2
(0) =

[

b 1 − b
]

, then processes z1(k) and

z2(k) with transition probability matrices in (5) are

i.i.d. processes. In addition, Πy has equal rows, since

it follows that µ1 = µ2 and πy(0) = πz(0)Mφ give

πy(0) =
[

1 − µ1 µ1

]

. Thus, y(k) is not, in general,

an i.i.d process but it approximates an i.i.d. process in

the limit.

IV. DYNAMICAL SYSTEMS

In this section, exponential second moment stability

of a dynamical system switched by y(k) is considered.

Let y(k) = φ(z(k)) be a NHMC for πy(0) = π0 ∈

Φ (Φ is a subset of the set of all initial distributions)

taking values in I with transition probability matrix

Πy(k). Now consider the following Markov jump linear

system

x(k + 1) = Ay(k)x(k), x(0) = x0, (6)

where x(k) ∈ R
n, Ai ∈ R

n×n for i ∈ I; and x0

is a random vector with finite second moment that is

independent of y(k) for k ≥ 0. Exponential second

moment stability is defined next [13].

Definition 1: The equilibrium point at 0 of system

(6) (or simply, system (6)) is called exponentially sec-

ond moment stable if for every value of the initial con-

dition x0 and every initial distribution π0 ∈ Φ of y(k)

there exists α and β, both positive and independent of

x0 and π0 such that E{‖x(k)‖2} ≤ α‖x0‖e
−βk ∀ k ≥

0.

An exponentially second moment stability test for

(6) follows.

Theorem 3: Let y(k) = φ(z(k)) be a NHMC for

π0 ∈ Φ. If lim
k→∞

Πy(k) = Π, where Π is a stochastic

matrix, then system (6) is exponential second moment

stable if the spectral radius of A is less than one, where

A , (ΠT ⊗ In2) diag(A0 ⊗ A0, A1 ⊗ A1).

Proof: When y(k) is a NHMC, Theorem 2 gives

conditions that lead to a constant matrix approximation

of the transition probability matrix Πy(k). In this case,

the result follows from [13].

V. CONCLUSIONS

A characterization of the system availability process

has been done for a general transformation y(k) of

Markov upset processes affecting the interconnected

fault tolerant devices. Since y(k) models the jump

process in many jump linear systems, it is necessary

to develop analysis tools for this class of processes.

An initial result in that direction is Theorem 3 that

gives a sufficient condition for exponential second

moment stability when y(k) is a NHMC for some

initial distributions.
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