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Abstract— The control of biological genetic networks is an
important problem. If the system is abstracted into a graph,
then the affect of drugs, pharmaceuticals, and gene therapy
can be abstracted as changing the topology of the graph. We
consider the control objective of removing the stable oscillations
of the genetic network. This control is done using several
theorems relating the topology of the network to the dynamics
of the system. These theorems suggest that the controller should
remove all the negative feedback in the networks. We prove that
the problem of minimizing the edges and vertices to remove,
in order to remove negative feedback, is NP-hard. In light of
this result, a heuristic algorithm to solve this graph problem is
presented. The algorithm is applied to several genetic networks,
and it is shown that the heuristic gives reasonable results.
Additionally, we consider the p53 network and show that the
algorithm gives biologically relevant results.

I. INTRODUCTION

The problem of control of biological genetic networks is

an important one. The chief applications of such control are

medical in nature. For instance, the problem of deciding

which components (e.g. protein or mRNA) of a network to

target pharmaceuticals in order to treat a condition is such

an application.

Unfortunately, biological genetic networks contain fea-

tures that make it difficult to do traditional control. Mea-

suring the states of a system for the purposes of feedback

control can be prohibitively difficult or even not feasible with

current technologies. Moreover, such genetic networks do not

typically have inputs that can be changed to do control. In

light of these difficulties, we proposed a new framework in

[1] for doing the topological control for such networks. A

related line of research that has been developed concurrently

is [2].

In our framework, we abstract the affect of drugs, phar-

maceuticals, and gene therapy to having a graph theoretic

interpretation. It is common for biologists to abstract genetic

networks, which are dynamical systems, to a signed, directed

graph which qualitatively describes the influence of a state on

another state. This graph is often referred to as a promotion-

inhibition network. Using a quasi-steady-state approxima-

tion, we were able to show that drugs and pharmaceuticals

can be interpreted as modifying the signed, directed graph

by removing vertices or edges of the graph [1].
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A. Topological Control

If we interpret pharmaceuticals as modifying a graph,

then we can try to do control by intelligently modifying

the topology of the genetic networks. The topology of a

network will remain modified only in the presence of the

pharmaceutical: As soon as the pharmaceutical degrades,

the topology of the network will return to an unmodified

nature, and the system will go back to being uncontrolled.

The control that we choose also depends on having correct

knowledge of the genetic network.

We can do the topological control by using theorems that

relate the topology of the network to the dynamical behavior

of the network. A big class of results concerns monotone

systems [3], [4], [5], systems with no undirected, negative

cycles within the graph of the network. These systems do

not have any stable oscillations, and all trajectories converge

to equilibrium points. A related class of results concerns

systems with no directed, negative cycles within the graph

of the network. If the graph is also strongly connected, then

all trajectories of the system converge to equilibrium points

and there are no stable oscillations [6]. Similar results are

found in [7], [8], [9], [10]. These results can be extended to

prove that all systems with no directed, negative cycles have

the same behavior. The particular case of piecewise-affine

hybrid systems with no self-inhibition was proved in [11],

[12], and the more general case of arbitrary smooth vector

fields was proved in [4].

Directed, negative cycles correspond to our intuitive no-

tion of negative feedback in a system. Undirected, negative

cycles, which are a superset of directed, negative cycles, do

not always match the intuitive notion of negative feedback.

We do the control by removing the negative feedback of

the system, which removes the oscillations of the system.

This is the goal of the current paper: How can we remove

the negative feedback of the system, so that the system

trajectories do not have stable oscillations and converge to

equilibrium points? The goal is: What should we design

pharmaceuticals to target, so that the concentrations in the

genetic network converge to equilibria?

This is a crude level of control, but we will provide a

biological example of the p53 pathway – which is implicated

in cancer – that shows that it can generate useful controllers.

This type of control is related to the work in [13], [14];

however, the difference is that removing undirected, negative

cycles is a more restrictive condition, because negative

feedback is a subset of undirected, negative cycles.
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B. Abstract Problem Statement

An influence graph (promotion-inhibition network) is a

signed, directed graph G = (V, E, S). V = {v1, . . . , vn}
is the set of vertices, E ⊆ {(u, v) : u, v ∈ V } is the set

of directed edges, and S : E → {−1, +1} is a function

that gives the sign of an edge. For an edge e = (u, v): u

is the direct predecessor of v, and v is the direct successor

of u. Edges labeled −1 are called inhibition edges, while

edges labeled maps to 1 are called promotion edges. A simple

directed cycle l = (e1, e2, · · · en) with all ei ∈ E is called

a negative feedback loop if and only if it contains an odd

number of inhibitory edges; in other words:
∏

e∈l

γ(e) = −1.

We consider the problem of modifying an influence graph

to eliminate such cycles: Given an influence graph G and

a weighting function ω : E ∪ V 7→ R, find the minimum

weight subsets (possibly empty) E′ ⊂ E and V ′ ⊂ V such

that removal of both of these subsets from the influence

graph causes the graph to have no negative feedback. As

mentioned before, this problem, while similar to the problem

of balancing signed directed graphs discussed in [13], [14],

is different in that we consider directed, as opposed to

undirected, feedback cycles. This problem is also similar

to that in [15], but there are differences in: the weights

used in the problem, the application of the problem, and

the algorithm used to solve the problem.

The weights ω can be interpreted as the cost of removing

an edge or vertex, and there are many biological interpre-

tations of the weight. For instance, if an existing drug can

remove an edge, then the weight of that edge can be set low,

because there is a lower cost to removing that edge.

C. Overview

We first prove that the decision version of the negative

feedback edge-vertex deletion problem is in NP by demon-

strating a polynomial time algorithm to check whether a

given influence graph has negative feedback or not. Then,

using results from [16], we prove that the node deletion

problem – and thus the node/vertex deletion problem – for

negative feedback is NP-hard. We then propose an integer

linear program (ILP) for eliminating negative feedback in an

arbitrary graph. One can use trivial modifications of efficient

approximation algorithms for the directed multicut problem

[17], [18] to solve this ILP. Lastly, we use our approach on

a few biological examples and focus on the p53 pathway, a

pathway involved in human cancers.

II. NEGATIVE FEEDBACK EDGE/VERTEX REMOVAL IS

NP-HARD

A. Decision Version of Negative Feedback Edge/Vertex Re-

moval is in NP

To show that the decision version of the negative feedback

problem lies in NP we demonstrate a polynomial time algo-

rithm to determine if a given influence graph has negative

feedback cycles. Though this fact was stated without proof in
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Fig. 1: Influence graph G and γ(G)

[15], it is useful to formally prove this, because the proof will

provide the intuition behind our algorithm. To do this, we

first define the operation δ : G → G′ that maps an influence

graph G = (V, E, S) to a directed graph G′ = (V ′, E′).
We will define the operation δ(G) = (η(V ), τ(E, S)) =
(V ′, E′) by defining the two functions η(·) and τ(·).

Specifically, we define a bijection η : V → P that makes

a clone of every vertex. Here, P = {η(v) : v ∈ V } is a

clone of every vertex V . We define the vertices of the graph

G as V ′ = V ∪ P .

Next, we define a function that doubles every edge. If

the edge is an promotion edge, we make two edges: one of

which stays within V and one of which stays within P . If,

the edge is an inhibition edge, we make an edge that crosses

from V to P and an edge that crosses from P to V (see Fig.

1). We do this using a one-to-two correspondence τ which

maps each edge in E to two edges in δ(G). In particular,

τ((u, v)) =

{

{(u, v), (η(u), η(v))} if γ((u, v)) = 1

{(u, η(v)), (η(u), v)} if γ((u, v)) = −1

E′ =
⋃

e∈E

τ(e).

Note that τ−1 is a function. Note that our construction,

illustrated in Fig. 1, superficially resembles the embedding

construction in [4]. A closer examination reveals that these

two constructions are quite different in terms of operations,

and they serve different purposes.

When we discuss a path in δ(G), we may talk about its

preimage in G. We obtain the preimage of a path by mapping

τ−1 onto each edge in the path. Additionally, for every path

p in G, we can construct a corresponding path in δ(G) by

choosing an appropriate edge from τ(e) – for each edge e

in p – for the new path.

We contend that the existence of a path in G′ from any

vertex x to its duplicate η(x) implies the existence of a

negative feedback loop in the original influence graph G,

and that any negative feedback loop in G that contains x

implies the existence of a path from x to η(x) in G′.

The first lemma shows that paths that cross an odd number

of inhibitory edges are equivalent to paths in δ(G) that cross

from V to P .

Lemma 1: A path in δ(G) that begins in V and ends in P
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has a preimage in G that crosses an odd number of negative

edges, and the converse is also true.

Proof:

1) By definition of τ , any edge that crosses between V and

P must be the image of an inhibitory edge in G - and

any inhibitory edge in G must map to two edges that cross

between V and P .

2) As V and P form a set cover for δ(G) and are disjoint

sets, any path that crosses between V and P must cross

between V and P an odd number of times.

3) Following from 1 and 2, a path in δ(G) crosses between

V and P if and only if the preimage of the path in the G

cross an odd number of inhibitory edges.

Our second Lemma considers the parity of paths with

specific start and end vertices.

Lemma 2: The existence of a path in δ(G) that begins at

v ∈ V and ends at p ∈ P implies the existence of a path in

G from v to η−1(p) that crosses an odd number of negative

edges, and the converse is also true.

Proof:

1) By Lemma 1, if we have a path in δ(G) from v ∈ V to

p ∈ P , the preimage of that path – which goes from v to

η−1(p) – must cross an odd number of inhibitory edges.

2) Furthermore, if we have a path in G from v to η−1(p)
that crosses an odd number of inhibitory edges, we can

construct a path starting at v in δ(G) – for each edge e

in the path, we choose the edge in τ(e) such that the path is

consistent. Because the original path crossed an odd number

of inhibitory edges, by Lemma 1 our new path must end at

p ∈ P .

Using the prior two Lemmas, we consider the question of

odd cycles in G and paths in δ(G).
Theorem 1: The existence of a negative feedback cycle in

G at vertex v implies the existence of a path in δ(G) from v

to η(v), and the existence of a path in δ(G) from v to η(v)
implies the existence of a negative feedback cycle in G.

Proof: By definition, a negative feedback cycle in G is

a path that crosses an odd number of inhibitory edges. Thus

the proof follows directly from Lemma 2.

Using these ideas, we can rephrase the question of whether

or not G has negative feedback cycles as a question about

connectivity in δ(G). This allows us to check for the exis-

tence of negative feedback cycles by checking if there exists

a path between any v ∈ V and η(v) ∈ P in δ(G). One easy

way to do this is by performing n = |V | depth first searches

in δ(G) - a polynomial time operation.

B. Negative Feedback Edge/Vertex Removal is NP-Hard

Using the results of [16], we can show that the node-

deletion problem for negative feedback is NP-hard. [16]

proves that for any graph property Π, which is “nontrivial”

and “hereditary,” the node-deletion problem is NP-hard.

Nontrivial properties are true for infinitely many graphs and

false for infinitely many graphs, while a hereditary property

is true on all vertex-induced subgraphs of a satisfying graph.

For our purposes, we take our Π(G) to mean that G has no

negative feedback cycles.
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Fig. 2: Vertex before and after splitting

Theorem 2: Π = “no negative feedback”, is a nontrivial

property.

Proof: It is easy to see that Π is nontrivial. Consider

the directed cycle graphs Cn (Cn is an n-vertex graph that

consists of a single, directed cycle) with each edge inhibitory;

when n is odd, Cn is clearly a negative feedback loop, and

when n is even, Cn must have no negative feedback. Both

of these sets are infinite, so Π must be nontrivial.

Theorem 3: Π = “no negative feedback”, is a hereditary

property.

Proof: Proof by contradiction. Assume Π(G). If Π is

not hereditary, then for some G, there is some vertex-induced

subgraph S of G that contains a negative feedback loop. If

S is a subgraph of G, any feedback loop in S is also in G,

thus G has a negative feedback loop. Contradiction.

Thus we can appeal to Theorem 7 of [16] and conclude

that the node deletion problem for negative feedback is NP-

hard. By appropriate choice of the weighting function ω, the

edge-node deletion problem for negative feedback can also

be shown to be NP-hard.

III. HEURISTIC ALGORITHM

The operation δ(G) provides an interesting way to pose the

problem of negative feedback removal: By Theorem 1, we

can consider the equivalent objective of disconnecting each

pair v, η(v) in δ(G). This would ensure no negative feedback

in the original influence graph. This rephrased problem is

very nearly an instance of the directed multicut problem

discussed in [23].

The directed multicut problem takes a directed graph and a

list of source/sink pairs ([(s1, t1)...(sk, tk)]) to be separated.

An optimal solution to multicut finds the minimum weight

subset of edges that must be cut in order to separate each

source from its corresponding sink. The directed multicut

problem is NP-hard. We provide a short description of the

multicut integer linear program (ILP).

Each edge is assigned a variable xe that is either zero or

one. If xe is high in the solution, we cut e. In formulating the

constraints, we interpret these variables as lengths on each

edge. Intuitively, the constraints specify that the minimum

distance between a source and its corresponding sink be at

least one. This ensures that they cannot be connected once

we make the cut.

To achieve this, each vertex is assigned k variables dv,i,

with i ∈ [1, k]. The optimization variable dv,i is the distance
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(a) Normal p53 Pathway (b) Abnormal p53 Pathway (c) Abnormal p53 Pathway with Controller

Fig. 3: When a subsegment of the normal p53 pathway [19], [20], [21], [22] becomes abnormal, such as loss of p19 ARF

function [20], the system behaves unfavorably by underexpressing p53. Using a controller, the grayed edge can be removed

to make the system behavior more favorably.

between the i-th source and the vertex v. We then require that

each distance is consistent with the edge lengths. Specifically,

if vertex u is connected by an edge with zero length to vertex

v, each dv,i is at most du,i. If they are connected by an edge

with length one, each dv,i is at most du,i + 1. Formally, we

have:

Directed Multicut ILP

min
∑

e∈E

ω(e) · xe

s.t. for all i ∈ [1, k]

dti,i − dsi,i ≥ 1

dv,i ≤ du,i + xe for all e = (u, v) ∈ E

xe ∈ {0, 1} for all e = (u, v) ∈ E

Unfortunately, there are two problems with simply running

multicut on δ(G) with each v, η(v) pair as a source/sink pair.

The first problem is that the multicut problem deals exclu-

sively with cutting edges. Therefore, we must reduce the

edge/node deletion problem into the edge deletion problem

in order to take advantage of known approximations of multi-

terminal cuts [17], [18]. The reduction is fairly intuitive and

can be applied to the unmodified influence graph G (with

some modification to the sign function) or to the altered

digraph δ(G). To do the reduction, we split each vertex in

two to create an in-terminal and an out-terminal for the node.

All incoming edges to the vertex are connected to the in-

terminal, and all outgoing edges are connected to the out-

terminal. We then connect the two terminals with an edge

that is equivalent to the original vertex (see Fig. 2). More

formally, we transform δ(G) = (V, E) into G′ = (V ′, E′)
where

V ′ = {vin, vout : v ∈ V }

E′ = {(uout, vin) : (u, v) ∈ E} ∪ {(vin, vout) : v ∈ V }.

We then reassign the weights for the vertices to the

new edges that connect each in/out vertex pair. The new

edges can be considered equivalent to the original vertices.

Coincidentally, this manipulation can be used to show that

the edge-deletion problem is also NP-hard. From here on, we

will consider only the edge-deletion variant of the problem

- as we have shown the node/edge deletion problem is

equivalent.

Our second problem with directed multicut stems from the

fact that τ relates each edge in G to two edges in δ(G). So,

we separately cut the two edges. To get around this problem,

we modify the directed multicut ILP slightly, by having each

edge variable correspond to two edges instead of one, to

obtain our final formulation of the edge deletion negative

feedback problem:

Negative Feedback ILP

min
∑

e∈E

ω(e) · xe

s.t. for all i ∈ [1, |V |]

dvi,i − dη(vi),i ≥ 1

dvi,i ≤ dui,i + xe for all excitatory edges,

dη(vi),i ≤ dη(ui),i e = (u, v) ∈ E

dvi,i ≤ dη(ui),i + xe for all inhibitory edges,

dη(vi),i ≤ dui,i + xe e = (u, v) ∈ E

xe ∈ {0, 1} for all e ∈ E

One can use the approximation algorithms for directed

multicut given in [17], [18] to solve the negative feedback

ILP. As a substep, these algorithms require the solution

of the linear program (LP) formed by relaxing the integer

constraints in the directed multicut ILP. We can trivially

modify these approximation algorithms to solve our negative

feedback ILP by relaxing its integer constraints to form a LP.
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TABLE I: Number of edge deletions for monotonicity and number of edge deletions required to eliminate negative feedback

Network Vertices Edges Monotone No Negative Time (min.)

Feedback

EGFR 330 885 210 45 6.5

Yeast 690 1082 41 1 6

Mac rophage 678 1582 374 74 12.5

If one makes this change to the approximation algorithms in

[17], [18], then one has a heuristic algorithm to solve the

negative feedback ILP. We conjecture that is an approxima-

tion algorithm for the negative feedback ILP, but we have

not made the necessary calculations.

IV. RESULTS

We implemented our algorithm in Python, using the PuLP

library to interface with the COIN LP solver [24]. We ran

all tests on a 2.4 GHz Intel Core 2 Duo MacBook Pro with

2 GB of RAM. We evaluated the edge-deletion variant of

our algorithm on the three regulatory networks used in [13]:

Macrophage, EGFR, and Yeast. We include the size of each

network, the number of edges that need to be deleted in

order to make the system monotone, and the results of the LP

relaxation of the negative feedback ILP. The results are seen

in Table I. For the EFGR and Yeast networks, the optimal

LP solutions were integer, but for the Macrophage network

the solution was fractional. Rounding up increased the value

of the objective function from 66 to 74.

It is interesting if we compare our results of removing

negative feedback versus the results of removing monotone

feedback. Since negative feedback is a subset of monotone

feedback, we would expect that we have to remove less edges

than the approach of [13]. This is what we see in Table I.

The number of edges required to remove negative feedback

is significantly less than the number of edges required to

remove monotone feedback. This is also interesting, because

our approach is a heuristic approach that is not guaranteed

to give the true minimum number of edges to remove; [13]

uses an algorithm that computes the optimal solution.

A. p53 Pathway

The p53 protein is an important tumor suppressor, which

reacts to stress signals and induces an appropriate cellular

response [19], [25], [26], [27]. These stress signals include

DNA damage, heat shock, cold shock, and spindle damage.

These stress signals lead to a post-translational modification

of p53, causing the p53 to trigger downstream pathways

involved with cell cycle arrest, cell senescence, or apoptosis

[19]. The inactivation of p53 can lead to tumor development

[26].

A promotion-inhibition network for a subsegment of the

p53 pathway is shown in Fig. 3a. In roughly 10% of human

tumors, p53 is inactivated through overexpression of MDM2

[25]. MDM2 can be overexpressed through an inactivation

of p19 [20], and this is shown in Fig. 3b. MDM2 works to

reduce expression of p53 [19], [25], [26], [27] by increasing

the degradation rate of p53 and facilitating the nuclear export

of p53 [26], [27]. Thus, inhibition of MDM2 has been

considered as a possible strategy for cancer treatment [27],

[25].

After using our heuristic algorithm on the mutated p53

pathway 3b, our algorithm tells us to cut the grayed edge

shown in Fig. 3c. The results are simple, but they are

interesting. This is because the edge that we are told to

cut is an edge that biologists have studied in detail and

devised chemicals to cut [27], [25]. It is also interesting to

compare the results of this algorithm to the control of the

same system in [1], because the two controllers superficially

look the same but have different behaviors and modalities.

In the present paper, our control removes an edge; whereas

in [1], the control removes a vertex. The behaviors of the

controlled system are also different, and this can been seen

by comparing Fig. 4 to Fig. 3 in [1].

The effect of the control of cutting the grayed edge shown

in Fig. 3c can be seen in Fig. 4. Time course concentrations

of p53, cyclin A, and MDM2 are shown in Fig. 4a for the

normal p53 pathway, Fig. 4b for the abnormal p53 pathway,

and Fig. 4c for the abnormal p53 pathway with controller.

These simulations come from an ODE model of the network,

and in the simulations we remove the edge between MDM2

and p53, but we do not remove the edge between MDM2 and

cyclin A. In the normal p53 pathway, concentrations of p53

and cyclin A are high, and concentrations of MDM2 are low.

In the abnormal p53 pathway, p53 and cyclin concentrations

are low, whereas MDM2 is in high concentration. In the

abnormal p53 pathway with controller, the controller is used

at times t = 200, t = 250, and t = 300. The controller causes

p53 concentrations to increase to higher levels, and reduces

MDM2 concentrations. The cyclin A concentration stays at a

reduced level. The controller must be used at multiple times,

because the controlling drug is modeled to decay. So, the

effect of the controller wains as time goes on. If the controller

is not applied again, the system returns to an abnormal state.

V. CONCLUSION

We have devised a heuristic algorithm to remove the neg-

ative feedback from a promotion-inhibition network. This is

an important problem, because we can abstract the question

of which drugs to design to remove stable oscillations from

a biological genetic network to a graph-theoretic problem of

edge and vertex deletions. Such a method of control is crude,

that is it cannot perform specific control actions. However,

as seen in the p53 example, the results of the algorithm can

be interesting and biologically relevant.

We first showed that the original problem of edge and ver-

tex removal to remove negative feedback from a promotion-
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(c) Abnormal p53 Pathway with Controller

Fig. 4: The time course plots for the different pathways

displays the effect of the abnormality and the controller. Note

that p53 is solid, cyclin A is dashed, and MDM2 is dash-

dotted.

inhibition network is NP-hard. Consequently, we focused on

developing a heuristic to solve the problem in a reasonable

amount of time. By recognizing that our problem was similar

to the directed multicut problem (which is also NP-hard),

we were able to modify existing approximation algorithms

[17], [18] – for solving the directed multicut problem – to

solve our problem. We conjecture that our heuristic is an ap-

proximation algorithm, because it is based on approximation

algorithms for a similar problem. We then applied our new

heuristic algorithm to several biological networks, including

the p53 pathway.

Future works include two aspects. First of all, we would

like to formally prove whether this algorithm is an ap-

proximation algorithm. It will likely be a straight-forward

extension of the results of [17], [18]. Second of all, we would

like to use this algorithm to study other interesting biological

networks.
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[10] C. Soulé, “Graphic requirements for multistationarity,” Complexus,

vol. 1, pp. 123–133, 2003.
[11] A. Aswani and C. Tomlin, “Reachability algorithm for biological

piecewise-affine hybrid systems,” in HSCC, 2007, pp. 633–636.
[12] A. Aswani, “Reachability algorithm for a class of biologically inspired

piecewise-affine hybrid systems,” Master’s thesis, University of Cali-
fornia at Berkeley, 2007.
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