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Abstract— The practical application of stochastic approxi-
mation methods requires a reliable means to stop the iterative
process when the estimate is close to the optimizer or when
further improvement in the estimate is doubtful. Conventional
ideas on stopping stochastic approximation algorithms employ
criteria based on a proxy distribution — usually the asymptotic
distribution. Yet difficulties may arise when applying such
distributions to small (finite) samples. We propose an approach
that uses the distribution of a statistically similar process called
a surrogate for the proxy distribution rather than the asymp-
totic distribution. Under certain conditions, surrogate-based
probability calculations are close to the actual probabilities.
The question of how surrogate processes may be developed is
also addressed. Two example applications are given.

I. MOTIVATION

Consider the problem of searching for the optimum of a

function whose form is unknown. Stochastic approximation

is an iterative procedure suitable for these types of problems,

using noisy observations to estimate the root of an unknown

function, and, when so structured, enabling the identifica-

tion of optima. For applications we want to terminate the

sequence of estimates when requisite accuracy has been

obtained. Therein lies the problem: it is a non-trivial issue

to know how accurate the approximation is at any stage.

The asymptotic performance of stochastic approximation

has been well-studied, but few general results are known for

small-sample situations. The need for a stopping rule for

stochastic approximation was recognized in 1952 by Kiefer

and Wolfowitz [10]. Chow and Robbins [2] developed a

method to sequentially determine bounds on the mean of

a continuous random variable with unknown variance.

Since this initial work much of the effort in stopping

stochastic approximation has been on estimating the param-

eters of the asymptotic distribution in order to apply the

Chow-Robbins criterion. We consider an aternative method

based on an approximate finite-sample distribution.

II. STOCHASTIC APPROXIMATION

A. Problem Statement

Consider a general function L : Rp → R defined for θ ∈
Θ ⊆ Rp, p > 0. Our interest is the minimization problem:

arg min
θ ∈ Θ

L(θ). (1)

We assume L(θ) is bounded from below. The exact form of

L(θ) is not known, and whatever observations we have of the
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function are obscured by noise. We assume the existence of

the gradient of L, g : Rp → R
p, and that L(θ) has a unique

minimizer denoted by θ∗.

Let θ̂k be an estimate for θ∗ at iteration k, ak a step size

at time k, and Gk(θ̂k) ∈ Rp some information related to the

gradient of the process, also at time k. We choose an initial

estimate θ̂0 and update the estimates following the scheme

θ̂k+1 = θ̂k − akGk(θ̂k), k = 0, 1, 2, · · · . (2)

We denote noisy observations of the gradient by Y (θ), and

model these observations by

Y (θ) = g(θ) + e(θ), (3)

where e is a random vector. If we can assume errors with

mean zero, then E[Y (θ)] = g(θ). Robbins and Monro [13]

studied the problem of finding the roots of an unknown

function g(θ) based on noisy observations of g(θ̂k). If g is

the gradient of L, the loss function in (1), then we can solve

the minimization problem. After setting Gk(θ̂k) = Yk(θ̂k)
the iteration formula for stochastic root-finding is

θ̂k+1 = θ̂k − akYk(θ̂k). (4)

The convergence of a stochastic approximation algorithm

requires that conditions be placed on the objective function,

the step size sequence, and the bias and variance of the

observed or estimated gradient. See, for example, Spall [18,

p. 105–107]. With these conditions established, and with θ̂k

generated according to (2), one can prove that θ̂k
a.s.
−−→ θ∗

as k → ∞ (see Nevel’son and Has’minskiĭ [12]). A general

discussion of the stochastic approximation method may be

found in Spall [18, Chap. 4].

To obtain a limiting distribution that is not degenerate we

scale the error θ̂k − θ∗. If the step size function takes the

form ak = a/(k + 1)β for 1

2
< β ≤ 1 (and satisfies certain

regularity conditions), one can show that the distribution of

the scaled error is asymptotically normal:

kβ/2(θ̂k − θ∗)
d
−→ Np(0,Σ∗),

where Σ∗ is a covariance matrix determined by the sequence

ak and by the Hessian of L(θ), the underlying function

(see [12, Thm. 5.1 p. 140] and [18, section 4.4, p. 112 ff]).

One informal but natural interpretation of this fact is that

θ̂k is approximately multivariate normal with mean θ∗ and

covariance Σ∗/kβ . We denote this distribution by F̂k, that

is, F̂k ≡ Np(θ
∗,Σ∗/kβ).
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III. THE STOPPING PROBLEM

Direct calculation of stopping times requires knowledge of

the joint probability distribution functions of the stochastic

approximation process, Fk. This is rarely possible in practice

because the true distribution functions (or even their forms)

are generally not known.

One solution is to use F̂k in lieu of Fk. Since the form of

the distribution F̂k is known, this is a well-defined problem.

We refer to this method as the asymptotic method or the

asymptotic proxy, the latter term reflecting the way it uses

(known-form) F̂k as a “proxy” for Fk.

Our approach to the estimation of the Fk is different.

Though non-traditional, it seems better in the context of

“stopping” to develop a proxy distribution that attempts to

approximate Fk directly, rather than one that approximates

the limiting distribution F̂k. The desired result is a proxy

that gives acceptable performance even when the sample

size is small. This is the idea behind the use of “surrogate

processes” to find a proxy for Fk, and the main focus of this

section is a discussion of these processes.

A. Surrogate Processes

The concept of surrogate processes is to develop a simple

parameterized version of the original process whose behavior

is statistically indistinguishable from that of the original for

some positive value of the parameter, but is statistically

determined when the parameter is zero.

The applicability of this method has been shown for pa-

rameter estimation in maximum likelihood estimation prob-

lems, among others (see Spall [17]). Spall’s formulation

sought an estimate θ̂ of an input vector θ from a set

of data whose distribution depended on θ and a known

scalar η. When the sample is small, it is difficult to say

much about the probabilities of θ̂ because the form of the

distribution is unknown. An indirect approach is to construct

a parameterized sequence producing statistically similar data

and resulting in an estimate θ̃, the probabilities of which

are calculable, and then to look for conditions where the

probabilities of θ̃ are close to those of θ̂ irrespective of the

sample size. We apply the same principle to the sequence of

estimates from a stochastic approximation process.

Let Vk = {e0, e1, . . . , ek} denote the noise arising in the

measurements of the gradient through time k. Let θ be a point

in Rp, and let T (θ, ek, k) be a transformation function de-

scribing a single step of the stochastic approximation process

at time k. We assume that T is continuously differentiable

with respect to θ.1 The estimate from the algorithm at time

k is denoted by θ̂k. The next estimate expressed in terms on

the transformation T is then

θ̂k+1 = T (θ̂k, ek, k)

= T (· · ·T (T (θ̂0, e0, 0), e1, 1) · · · , ek, k)

≡ Tk(θ̂0, Vk). (5a)

1This is true for the usual Robbins-Monro formulation as in (4) if the
gradient g(θ) is continuously differentiable, a common assumption.

The notation Tk is used to represent the generating formula

for the general stochastic approximation process. When

the stochastic sequence is that given by equation (4), for

example, then the transformation T is a nonlinear operator

with T (θ, ek, k) = θ − akg(θ) − akek, and Tk is the k-fold

composition of T with itself.

We parameterize the transformation in (5a) with η ∈ R:

θ̂k+1 = Tk(θ̂0, Vk; η). (5b)

We select parameter η such that η = 0 produces a sequence

of estimates that behave in a manner “statistically similar”

to estimates of the original process, though whose properties

are known, or knowable with tolerable effort, for each k.

We denote the surrogate process by {θ̃k, k ≥ 1} where

the estimate θ̃k is generated by θ̃k+1 = Tk(θ̂0, Vk; 0).
The distribution function of θ̂k is denoted by Fk, and the

distribution function of θ̃k is given by F̃k.

The sequence of θ̃k need not converge to θ∗. This poses

no problem for a stopping proxy based on the shape of the

distribution, since location is not a factor in the computation

(stopping occurs when the dispersion of the proxy is small).

Let h = [h1 h2 . . . hp]
T be a vector of scalar

perturbations, 0 < hj < ∞, for j = 1, . . . , p, and let

θ = [t1 t2 . . . tp]
T be any parameter vector in Rp. The

set Sh(θ) = [t1 − h1, t1 + h1] × · · · × [tp − hp, tp + hp] is

a symmetric hyper-rectangular region centered at θ.

Let t̂kj be the components of θ̂k and t∗j the components

of θ∗. The probability P (θ̂k ∈ Sh(θ∗)) should be interpreted

P (θ̂k ∈ Sh(θ∗)) = P (t∗j − hj ≤ t̂kj ≤ t∗j + hj , ∀j).

We note that the original stochastic approximation process,

θ̂k = Tk(θ̂0, Vk; η), and the surrogate, θ̃k = Tk(θ̂0, Vk; 0),
both involve the same noise sequence, and therefore θ̃k is

defined on the same filtered probability space as θ̂k.

B. Theoretical Constructs

There are several conditions that must be imposed to

justify the use of surrogate processes — additional to those

required for convergence of the stochastic approximation.

We require the distribution of the noise terms in Vk to

be continuous in a neighborhood of Sh(θ∗). As the noise is

frequently observable, this condition may be verifiable based

on the data.

We also require that the transformation Tk(θ̂0, Vk; η) be

differentiable in η This allows the formation of the Taylor

expansion of the components of θ̂k. We use a linear approx-

imation of t̂kj near η = 0 to simplify an expression relating

the components of θ̂k and θ̌k.

Additionally, conditions on the region Sh(θ∗) are required

to ensure that certain probabilities will exist near the bound-

ary of the hyper-rectangle enclosing the minimizer θ∗.

Finally, we impose a “fidelity” condition. Clearly, the

question of how well a parameterized process represents the

original process is central to whether or not its distribution

can be used as a proxy for the distribution of the original

process. We require a measure of how good a particular

parameterization is likely to be. This is accomplished with
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conditions that relate the distributions of θ̂k and θ̌k. The

condition is used to bound complicated probabilities that

arise in the proof by much simpler ones. This is a technical

condition that is difficult to check a priori, but it could be

tested empirically during algorithm execution.

For a more detailed discussion of the these conditions,

see [7, Sec. 3.3].

The following theorem is only for the special case of a

hyper-rectangle Sh(θ∗). The result extends to general regions

using an integrability theorem.

Theorem 1. Let N be a strictly positive integer, and let

{θ̂k, k ≥ 1} be a stochastic approximation process defined by

(5b) satisfying the conditions for convergence. Let {θ̃k, k ≥
1} be a surrogate process defined by (5b) with η = 0. Let

Fk be the distribution of θ̂k and F̃k be the distribution of θ̃k.

Finally, let Sh(θ∗) be a symmetric hyper-rectangular region

centered at θ∗. Then for all k ≤ N ,
∣

∣

∣
P (θ̂k ∈ Sh(θ∗)) − P (θ̃k ∈ Sh(θ∗))

∣

∣

∣
= O(η). (6)

A general outline of the proof is given here; for a complete

proof of the theorem see [7, Sec. 3.3]. For clarity, we

use Ê and Ẽ to denote the events {θ̂k ∈ Sh(θ∗)} and

{θ̌k ∈ Sh(θ∗)}, respectively. We form the absolute difference

between the probabilities of these events and express the

difference as a sum of probabilities using the set identities

Ê = (Ê ∩ Ẽc)∪ (Ê ∩ Ẽ) and Ẽ = (Ẽ ∩ Êc)∪ (Ê ∩ Ẽ). We

then relate and bound terms in the sum of probabilities using

the fidelity property. The component-wise Taylor expansion

of θ̂k(η) in terms of the parameter η is used to further bound

the sums of probabilities to an order depending on η. Using

a result of Spall [17, Lemma 2], the probability equation

is simplified. The probabilities are shown to be O(η) by

computing the probability density functions and bounding

the integrals of the densities with the mean value theorem.

IV. DEVELOPING A SURROGATE

We consider a common case in which the noise is in-

dependent and identically distributed. If the conditions for

convergence are satisfied and if the noise distribution is

from a family that is closed under addition and scalar

multiplication, then one possible approach to determining a

suitable surrogate process is through linearization.

Consider the sequence given by (4). The generating

transformation for the k + 1st estimate of the stochastic

approximation is

θ̂k+1 = Tk(θ̂0, Vk) = θ̂k − akg(θ̂k) − akek. (7)

The Jacobian of g(θ) is assumed to exist. Let ϕk ∈ R
p.

Using Rk ≡ R(ϕk, hk) for notational convenience, the first

order Taylor expansion of the gradient about the point ϕk is

g(θ) = g(ϕk) + H(ϕk)(θ − ϕk) + Rk (8)

where Rk is a remainder term. The notation H(ϕk) is

shorthand for ∇g(θ)
∣

∣

θ = ϕk

, the Jacobian of g evaluated

at ϕk. Since g is the gradient of L, the Jacobian of g is

the Hessian of L, and we use the symbol H to denote this

Hessian/Jacobian matrix.

Substituting (8) into (7) gives:

Tk(θ̂0, Vk) = θ̂k − akg(ϕk)

− akH(ϕk)(θ̂k − ϕk) − akek − akRk. (9)

A natural parameterization of (9), then, is to place a factor

η on the remainder term akRk:

Tk(θ̂k, Vk; η) = θ̂k − akg(ϕk)

− akH(ϕk)(θ̂k − ϕk) − akek − akηRk (10)

When η = 1, the remainder term is included in the

generating transformation, and (10) is the same as (9). When

η = 0 we have a simplified process that omits the remainder

term. This is our surrogate process which we denote by θ̃k:

θ̃k+1 ≡ Tk(θ̂0, Vk; 0)

= θ̃k − akg(ϕk) − akH(ϕk)(θ̃k − ϕk) − akek (11)

Of course, the parameterization in (10) must be checked

against the conditions of Theorem 1 to confirm that the

resulting distribution will be that of a valid proxy.

With θ̃k computed according to (11), if the ek are dis-

tributed multivariate normal, then all of the θ̃k are multivari-

ate normal, so the surrogate is a normal process.

V. APPLICATIONS

To illustrate the method we choose two examples: an

optimization that seeks the minimum of a simple function,

and a more practical simulation optimization problem.

A. The Experimental Approach

We use stochastic approximation to generate a fixed-length

sequence of estimates. The sequence is then passed through

a stopping algorithm to compute when stopping should

have occurred. This constitutes one trial. Multiple trials are

conducted and the Monte Carlo nature of the experiment

enables us to estimate the distribution of the stopping times

and the distance from the final estimate to the true minimum.

B. Application 1: A Function with Known θ∗

The test function we chose was the two dimensional

instance of function 25 from the Moré et al. suite of

optimization problems [11, Sect. 3] — the so-called variably-

dimensioned function.

Let θ = [t1 t2]
T ∈ R2 and L : R2 → R; then this function

is defined as

L(θ) = (t1 − 1)2 + (t2 − 1)2

+ (t1 + 2t2 − 3)2(1 + (t1 + 2t2 − 3)2).

By inspection, this function has a unique global minimizer at

θ∗ = [1 1]T with L(θ∗) = 0. Moré uses θ̂0 = [ 1
2

0]T for his

testing, and we use the same initial point for our analysis.

It is obvious from this form that H is positive semi-

definite, and therefore L is strictly convex.
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For this example, we suppose the loss function L and

gradient g are not known, but that we are able to provide

inputs θ and observe noisy gradient values. We assume the

components of the noise ek are i.i.d. N(0, 102), resulting in

a high level of noise in observations near θ∗ (compared to

the function values the noise obscures). This situation corre-

sponds to one where measurement errors are independent of

the gradient observations.

For a sequence of inputs {θ̂k} we have a sequence of ob-

servations {Yk} artificially returned by Yk(θ̂k) = g(θ̂k)+ ek

where the random errors are generated by a pseudo-random

number generator on a computer.

The distribution function Fk is unknown, and all but im-

possible to calculate. However, it can be approximated using

a Monte Carlo experiment. A single trial consists of using

the Robbins-Monro stochastic approximation algorithm (4)

to approximate the minimum of the variably-dimensioned

function in two dimensions given noisy observations of the

gradient. The sample path thus generated represents the trial.

The process is stopped deterministically after 5,000 steps.

The purpose is to generate a vector of estimates that are

tested sequentially with a stopping rule to determine whether

the stochastic approximation would have stopped before k =
5, 000 or not. The complete Monte Carlo experiment consists

of 10,000 such sample paths.

The stopping time κ(δ, α) is based on an accuracy toler-

ance δ and level of significance α. Suppose C(α) is a 1−α
confidence region. The stopping time κ(δ, α) is found by

choosing the first k such that diam(C(α)) ≤ δ. If CEM is an

empirical confidence region, we can compute an empirical

stopping time κEM(δ, α).

The example uses the step size sequence determined by

the relation ak = a/(k + 1)0.501. The empirical distribution

becomes more peaked with increasing k, and while the

dispersion is relatively large initially, there is rapid con-

centration of the distribution once the mean moves into the

vicinity of the minimum. The empirical stopping time found

by the first passage rule is κEM(0.25, 0.10) = 3359.

A histogram of stopping times based on a surrogate

distribution is shown in Figure 1a. The mean stopping

time is κ̄(0.25, 0.10) = 2160, which is smaller than but

comparable to the predicted value of 3359. Figure 1b shows

the distribution of the error in the stopped process. The

average error is 0.1276.

The step size sequence satisfies the conditions for con-

vergence, and the use of an asymptotic proxy is valid. The

average stopping time obtained when using the asymptotic

proxy was 22.45. The median stopping time was 21. The

average error was 0.1785. Refer to Figure 2.

Based on these results, we claim for each trial that there is

a 0.90 probability that the final estimate θ̂κ is within 0.25 of

the optimal value θ∗. Since the true minimum is known, we

calculated the actual errors to find that our claim of accuracy

was correct in 9,163 of 10,000 cases, so the empirically-

determined probability is actually greater than predicted. The

stopping algorithm is conservative in this case.
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(a) Empirical distribution of the stopping times for the spectral stopping
criterion using a linearized gradient surrogate process (10,000 observa-
tions).
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(b) Distribution of the error ‖θ̂κ − θ∗‖, where κ is the stopping time
determined as in Figure 1a (10,000 observations).

Fig. 1: Stopping with the proxy from a surrogate distribution.

More importantly, it seems evident that, at least in this

example, the asymptotic distribution is not a good proxy for

the distribution of θ̂k.

C. Application 2: Simulation Optimization

Long-term trends in air travel have added increasing

numbers of travelers and flights to an already congested

air travel system. The result has been an inevitable rise in

air traffic delay. The costs and causes of air traffic delay

have been documented in previous studies [3], along with

strategies to reduce the cost of controllable delays [5].

Prominent delay control measures are gate holding poli-

cies, metering aircraft through a control point, vectoring,

and others. These strategies reflect control decisions that are

typically made at the individual flight level, often just hours

(sometimes minutes) in advance of execution, and are based

on projected flows [4]. Deciding on the control measures

to apply to a set of flights for any given day is a difficult

nonlinear optimization problem that can be tackled using

simulation optimization.
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(a) Empirical distribution of the stopping times for the spectral stopping
criterion using estimates of the asymptotic distribution (10,000 observa-
tions).
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(b) Distribution of the error ‖θ̂κ − θ∗‖, where κ is the stopping time
determined as in Figure 2a (10,000 observations).

Fig. 2: Stopping with the asymptotic distribution proxy.

Simulation optimization is a category of search methods

where the “measurements” are outputs from a simulation

model (see Spall [18, Chap. 14–15] or Gosavi [6, Chap. 5]

for more details on simulation optimization).

Earlier studies showed that reductions in the cost of delay

can be obtained by using a simulation optimization procedure

to process delay cost measurements. For details see [8], [9].

1) Problem Formulation: For our study we used the

SIMMOD simulation [1] to model the flow of 84 flights

(departures and arrivals) on a network of four airports.

We structure the air flow to create considerable delay in

the system. The intent is to determine the effectiveness of

gate holds in reducing delay and costs. Gate holds occur

when a flight is delayed departing its gate. The decision

parameters in our formulation are actual (versus scheduled)

aircraft departure times, and we formulate the problem to

optimize these continuous-valued decision parameters.

Suppose θ ∈ Θ ⊂ R
p (p = 84, the number of flights) is

a vector of controllable system parameters (in our case the

departure times for each flight). Let L(θ) be a loss function,

which is the sum of all delays in the system (gate, ground,

TABLE I: System delays (minutes) averaged across all trials.

Type Delay Initial Values Final Values Change Percent

Gate 0 1114.3 +1114.3 NA
Ground 8.2 10.0 +1.8 +21.9%

Air 1925.1 1313.7 -611.4 -31.8%

Weighted 6083.3 5272.7 -810.6 -13.3%

and air), weighted by their relative costs [3].2 We observe

output y(θ) from the simulation, where E[y(θ)] = L(θ). Our

objective is to minimize L(θ) subject to relevant constraints:

min
θ ∈ Θ

L(θ) = min
θ ∈ Θ

E[y(θ)]. (12)

We kept all inputs fixed except for aircraft departure times.

This ensured that each simulation run began with the same

starting circumstances except for intentional changes to the

departure times.

SIMMOD is a terminating simulation: there is an event

that terminates the run, and it always runs to completion.

We ignored all outputs except the minutes of delay. Delay

factors in the loss function specify the cost of ground and air

delays relative to gate delays were taken from Geisinger [3].

The loss function, then, is the total weighted delay time,

computed as follows:

L(θ) = gate delay(θ) + ground delay(θ) × 2.34

+ air delay(θ) × 3.15 (13)

Only the noisy loss function is observable and there are a

variety of stochastic approximation methods based on these

measurements. In this setting we use the particularly efficient

method of simultaneous perturbation stochastic approxima-

tion (SPSA) developed by Spall [14], [15]. The reader is

referred to Spall [16], [18, Chap. 7] for a general discussion

of SPSA, and to Hutchison [8], [9] for details in applying

SPSA to the constrained aircraft delay problem.

2) Results: We ran a number of Monte Carlo trials, each

trial consisting of one million iterations (i.e., each trial was

a sample path of one million points). The large number of

iterations was needed to compensate for the high dimension

and the magnitude of noise in the simulation.

The relevant outputs from the simulation were collected

and saved as a data stream, as in the known function example.

Initial and final delay figures (averaged across all trials)

are given in Table I. The average weighted delay before

optimization was 6083. The average stopping time based on

the spectral stopping criterion was κ = 660, 012, resulting

in a (smaller) average weighted delay of 5273. In particular,

expensive air delay was reduced from 1925 minutes to 1314

minutes, a reduction of 31.8%.

2One normally thinks of delays as resulting from random components
of the air traffic system: weather, head or tail winds, aircraft load, or any
number of other random effects. In our congested system, delays are also
the result of inefficient scheduling. The objective is to decrease the overall
cost of these scheduling delays in the face of noise introduced by other
random effects by increasing inexpensive delays (gate hold times) in the
hope of reducing the more expensive delays (ground or air delays).
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Fig. 3: Plot of the loss function (weighted delay time) at

each iteration of the process.
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Fig. 4: Distance between the estimates θ̂k and θ̂k−1 for one

trial of the simulation optimization.

While ground delays have increased significantly (21.9%),

the additional 1.8 minutes of average ground delay represents

only 0.08% of overall system costs. The initial and final

numbers for ground delays are very small compared to other

delays in the system, and time lost on the ground has a minor

impact on system-wide costs resulting from delay.

Flights were delayed at the gate an average of about 15.6

minutes, though in individual trials some flights were delayed

the maximum time of one hour. No flight was consistently

held that long, but on average six flights departed 55 minutes

or more after their scheduled time. Additionally, 28 flights

(on average) delayed their departure five minutes or less.

The progress of the simulation optimization can be ob-

served in a plot of the average weighted aircraft delay by

iteration for all one million iterations (Figure 3). The plot

shows only every tenth point and is averaged over all trials.

The true error ‖θ∗− θ̂k‖ is unobtainable. However, we can

measure the distance ‖θ̂k − θ̂k−1‖ as θ̂k moves away from

θ̂0. Figure 4 shows a graph of this distance for one trial. We

expect ‖θ̂k − θ̂k−1‖ to get small. When the estimate is in the

vicinity of θ∗ (or if the process is running out of steam), we

anticipate that the iteration-to-iteration change in the estimate

should be small. When we see such behavior, it is not proof

that θ̂k is near θ∗ (it could be on a functional plateau or near

a local minimum, for example), but it is necessary behavior

for it to be near the minimum.
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