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Abstract— In this paper, we study two robust control prob-
lems for possibly infinite dimensional (i.e., systems with an
infinite number of states) linear time-varying (LTV) systems
using a framework based on a version of the commutant lifting
theorem developed for nest algebras. The approach is purely
operator theoretic and does not use any state space representa-
tion. The two problems studied include the optimal disturbance
attenuation and the optimal mixed sensitivity problems for
LTV systems. The proposed solutions are given in terms of
projections of time-varying multiplication operators. The latter
are computed explicitly.

DEFINITIONS AND NOTATION

• B(E, F ) denotes the space of bounded linear operators

from a Banach space E to a Banach space F , endowed

with the operator norm

‖A‖ := sup
x∈E, ‖x‖≤1

‖Ax‖, A ∈ B(E, F )

• ℓ2 denotes the usual Hilbert space of square summable

sequences with the standard norm

‖x‖2
2 :=

∞
∑

j=0

|xj |
2, x :=

(

x0, x1, x2, · · ·
)

∈ ℓ2

• Pk the usual truncation operator for some integer k,

which sets all outputs after time k to zero.

• An operator A ∈ B(E, F ) is said to be causal if it

satisfies the operator equation:

PkAPk = PkA, ∀k positive integers

• tr(·) denotes the trace of its argument.

The subscript “c” denotes the restriction of a subspace of

operators to its intersection with causal operators (see [29],

[7] for the definition). “⊕” denotes for the direct sum of two

spaces. “⋆” stands for the adjoint of an operator or the dual

space of a Banach space depending on the context [5].

I. INTRODUCTION

Linear Time varying (LTV) systems are becoming of

more and more interest not only because they model time

varying practical processes, but also they provide good

approximations for time invariant nonlinear systems [1].

Indeed, There have been numerous papers on controlling

time-varying systems (for e.g. [13], [14], [7], [10], [31],

[33], [15], [11], [16], [26], [27] and references therein).

In [13], [14] and more recently [7] the authors studied

the optimal weighted sensitivity minimization problem, the
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two-block problem, and the model-matching problem for

LTV systems using inner-outer factorization for positive

operators. They obtained abstract solutions involving the

computation of norms of certain operators. In [10], [15],

[16] the authors use state space models for LTV systems

and algorithms are given in terms of infinite dimensional

Riccati equations or inequalities.

In [31], [34] a geometric framework for robust stabilization

of infinite-dimensional time-varying systems was developed.

The uncertainty was described in terms of its graph and

measured in the gap metric. Several results on the gap

metric and the gap topology were established

For linear time invariant (LTI) systems the commutant

lifting theorem has played an important role in solving

several robust control problems. In [22], [23] the theorem

has been used in solving classical interpolation problems

related to H∞ control problems. In [6] the commutant

lifting theorem was used to solve a MIMO two block H∞

problem. In [30], [28] the commutant lifting theorem was

used in conjunction of a particular two block H∞ that

is related to computing the gap metric for LTI systems.

The latter was introduced to study stability robustness of

feedback systems and induces the weakest topology in

which feedback stability and performance is robust [2], [30],

[28], [32]. In [7], some of the results obtained in [30] were

generalized, in particular, the gap metric for time-varying

systems was generalized to a two-block time varying

optimization analogous to the two-block H∞-optimization

proposed in [30]. This was achieved by introducing a metric

which is the supremum of the sequence of gaps between the

plants measured at every instant of time. The latter reduces

to the standard gap metric for LTI systems. In [8], [7], [12]

using the time-varying gap metric it is shown that the ball of

uncertainty in the time-varying gap metric of a given radius

is equal to the ball of uncertainty of the same radius defined

by perturbations of a normalized right coprime fraction,

provided the radius is smaller than a certain quantity. In

[27], the authors showed that the TV directed gap reduces

to the computation of an operator with a TV Hankel plus

Toeplitz structure. Computation of the norm of such an

operator can be carried out using an iterative scheme. The

minimization in the TV directed gap formula was shown to

be a minimum using duality theory.

In this paper we adapt a specific generalization of the

commutant lifting theorem to nest algebras [4] (Chapter

20), in our context, the algebra of lower triangular operators
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representing causal LTV systems, to solve two important

robust control problems: The optimal TV sensitivity and

optimal mixed sensitivity problems. These problems were

studied in terms of Banach space duality theory in [26],

but several assumptions related to the plant and weights

were made. The approach taken here is completely different

in that it relies solely on the commutant lifting theorem,

and does not require any computation of dual spaces and

annihilators (see [26]). Moreover, unlike duality theory, the

commutant lifting approach can be extended to continuous

time-varying systems by working in the so-called Macaev

ideal (see [4] for the definition). We point out that the

results obtained for the mixed sensitivity apply to computing

the TV gap metric as well without resorting to duality theory.

Our approach is purely input-output and does not use

any state space realization, therefore the results derived here

apply to infinite dimensional LTV systems, i.e., TV systems

with an infinite number of state variables [31]. Although

the theory is developed for causal stable system, it can be

extended in a straightforward fashion to the unstable case

using coprime factorization techniques for LTV systems

developed in [33], [14], [7].

The rest of the paper is organized as follows. In section II the

commutant lifting theorem for nest algebras is introduced. In

section III the solution of the optimal disturbance rejection

problem for LTV plants is derived. Section IV discusses the

mixed sensitivity problem for LTV systems and its solution

using commutant lifting. Section V contains a summary of

the paper contributions.

II. MATHEMATICAL BACKGROUND

In this section we introduce the mathematical framework

needed in the sequel. For more details refer to [4] Chapter

20. Let H and H′ be two Hilbert spaces, and let T and

T ′ be contractions on H and H′, respectively. The Sz. Nagy

dilation Theorem asserts that T and T ′ have unitary dilations

U and U ′, respectively, on Hilbert spaces H ⊂ K and H′ ⊂
K′, such that [4]

T n = PHUn |H, n = 1, 2, · · · (1)

T ′n = PH′U ′n |H′ , n = 1, 2, · · · (2)

where PH is the orthogonal projection of K onto H, likewise

for PH′ is the orthogonal projection of K′ onto H′.

In addition, H and H′ can be expressed as orthogonal

differences of subspaces H1, H2 of K, and subspaces H′
1

and H′
2 of K′ as follows

H = H1 ⊖H2, H′ = H′
1 ⊖H′

2 (3)

where H1 and H2 are invariant under U , i.e., UH1 ⊂ H1

and UH2 ⊂ H2. Similarly for H′
1 and H′

2.

Now Suppose that N is a nest of subspaces of a Hilbert

space K, i.e., N is a collection of closed subspaces of K
ordered under inclusion.

Let T (N ) be the algebra of all bounded linear operators of

a Hilbert space L which leave invariant every subspace N

in N , i.e., A ∈ T (N ), AN ⊂ N .

By a representation of T (N ) we mean an algebra

homomorphism h from T (N ) into the algebra B(H, H)
of bounded linear operators on a Hilbert space H. Such

a representation is contractive if ‖h(A)‖ ≤ ‖A‖ for all

A ∈ T (N ). The representation h is weak⋆ continuous

if h(Aα) converges to zero in the weak⋆ topology of

B(H, H) whenever the net {Aα} converges to zero in the

weak⋆ topology of B(L,L), and that it is unital if it maps

the identity operator on L to the identity operator on H.

The Sz. Nagy dilation theorem asserts that there is a larger

Hilbert space K containing H and a positive representation

h′ of B(L,L) such that [4]

PHh′(A)f = h(A)f, ∀f ∈ H, ∀A ∈ T (N ) (4)

The following result is the analogue of the commutant lifting

theorem for representations of nest algebras.

Theorem 1: (Theorem 20.22 and Remark 20.24 in [4])

Let H and H′ be two Hilbert spaces, and h : T (N ) 7−→
B(H,H) and h′ : T (N ) 7−→ B(H′,H′) be two unital,

weak⋆, contractive representations with B(L,L)-dilations

H : B(L,L) 7−→ B(K,K) and H ′ : B(L,L) 7−→
B(K′,K′), respectively, and assume that Ξ is a linear op-

erator from H into H′ with ‖Ξ‖ ≤ 1, which intertwines h

and h′, i.e., Ξh(A) = h′(A)Ξ, ∀A ∈ T (N ). Then there is

an operator Υ : K 7−→ K′ such that

1. Υ is a contraction.

2. Υ intertwines the B(L)-dilations H and H ′ of h and

h′

3. Υ dilates Ξ.

This Theorem will be used to solve two robust control prob-

lems for LTV systems. We start with the optimal disturbance

rejection problem for LTV systems which corresponds to the

optimal H∞ problem for LTI systems.

III. OPTIMAL LTV DISTURBANCE REJECTION

In this section we consider the problem of optimizing

performance for causal linear time varying systems. Let P

denote a causal stable linear time varying plant, and K

denotes a time varying controller. The closed-loop transmis-

sion from external disturbances w to controlled output z is

denoted by Tzw. Using the standard Youla parametrization

of all stabilizing controllers the closed loop operator Tzw can

be written as [7],

Tzw = T1 − T2QT3

where T1, T2 and T3 are stable causal time-varying operators,

that is, T1, T2 and T3 ∈ Bc(ℓ
2, ℓ2). In this paper we

assume without loss of generality that P is stable, the Youla

parameter Q := K(I+PK)−1 is then an operator belonging

to Bc(ℓ
2, ℓ2), and is related univoquely to the controller

K [29]. Note that Q is allowed to be time-varying. If

P is unstable it suffices to use the coprime factorization
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techniques in [33], [7] which lead to similar results. The

magnitude of the signals w and z is measured in the ℓ2-

norm. Two problems are considered here optimal disturbance

rejection which corresponds to the optimal standard H∞

problem in the LTI case, and the mixed sensitivity problem

for LTV systems which includes a robustness problem in

the gap metric studied in [7], [31]. Note that for the latter

problem P is assumed to be unstable and we have to use

coprime factorizations. The performance index can be written

in the following form

µ := inf {‖Tzw‖ : K being stabilizing

linear time − varying controller}

= inf
Q∈Bc(ℓ2,ℓ2)

‖T1 − T2QT3‖ (5)

define a nest N as a family of closed subspaces of the

Hilbert space ℓ2 containing {0} and ℓ2 which is closed under

intersection and closed span. Let Qn := I − Pn, for n =
−1, 0, 1, · · · , where P−1 := 0 and P∞ := I . Then Qn is

a projection, and we can associate to it the following nest

N := {Qnℓ2, n = −1, 0, 1, · · · }. The triangular or nest

algebra T (N ) is the set of all operators T such that TN ⊆ N

for every element N in N . That is

T (N ) = {A ∈ B(ℓ2, ℓ2) : (I − Qn)AQn = 0, ∀ n}

Note that the Banach space Bc(ℓ
2, ℓ2) is identical to the

nest algebra T (N ). For N belonging to the nest N , N has

the form Qnℓ2 for some n.

An operator A ∈ T (N ) is outer if A commutes with each

Qn and AQnℓ2 is dense in Qnℓ2 ∩ Aℓ2. U ∈ Bc(ℓ
2, ℓ2) is

inner if U is a partial isometry and U⋆U commutes with

every Qn [4]. Applying these notions to the time-varying

operator T2 ∈ Bc(ℓ
2, ℓ2), we get T2 = T2iT2o, where T2i

and T2o are inner outer operators in Bc(ℓ
2, ℓ2), respectively

[4]. Similarly, co-inner-co-outer factorization can be defined

and the operator T3 can be factored as T3 = T3coT3ci

where T3ci ∈ Bc(ℓ
2, ℓ2) is co-inner that is T ⋆

3ci is inner,

T3co ∈ Bc(ℓ
2, ℓ2) is co-outer, that is, T ⋆

3co is outer. The

performance index µ in (5) can then be written as

µ = inf
Q∈Bc(ℓ2,ℓ2)

‖T1 − T2iT2oQT3coT3ci‖ (6)

Following the classical H∞ control theory [19], [6], [35],we

assume (A1) that T2o and T3co are invertible both in

Bc(ℓ
2, ℓ2). This assumption guarantees that the map Q −→

T2oBc(ℓ
2, ℓ2)T3co is one-one onto. In the time-invariant case

this assumption means essentially that the outer factor of

the plant P is invertible [19], [21]. Under this assumption

we have T ⋆
2iT2i = I and T3ciT

⋆
3ci = I . By ”absorbing” the

operators T2o and T3co into the ”free” operator Q, expression

(6) is then equivalent to

µ = inf
Q∈Bc(ℓ2,ℓ2)

‖T ⋆
2iT1T

⋆
3ci − Q‖ (7)

Let C2 denote the class of compact operators on ℓ2 called

the Hilbert-Schmidt or Schatten 2-class [17], [4] under the

norm,

‖A‖2 :=
(

tr(A⋆A)
)

1

2

(8)

Note that C2 is a Hilbert space with inner product

< A, B >:= tr(B⋆A) (9)

Define the space A2 := C2∩Bc(ℓ
2, ℓ2), then A2 is the space

of causal Hilbert-Schmidt operators.

Define the orthogonal projection P of C2 onto A2. P is the

lower triangular truncation. Following [24] an operator X in

B(ℓ2, ℓ2) determines a TV Hankel operator HX on A2 if

HX : A2 7−→ A⊥
2

HXA = (I − P)XA, for A ∈ A2 (10)

where A⊥
2 is the orthogonal complement of A2 in C2.

We have then the following Theorem which relates

the optimal performance µ to the induced norm of the

Hankel operator HT ⋆

2i
T1T ⋆

3ci
. We use the commutant lifting

theorem to prove it.

Theorem 2: Under assumptions (A1) the following

holds:

µ = ‖HT ⋆

2i
T1T ⋆

3ci
‖ (11)

= ‖(I − P)T ⋆
2iT1T

⋆
3ci‖ (12)

Proof. To apply Theorem 1 to our setting let H = A2

and H′ = A⊥
2 , and define the representations h and h′ of

T (N ) = Bc(ℓ
2, ℓ2) by

h : Bc(ℓ
2, ℓ2) 7−→ B(A2,A2) (13)

h(A) := RA, A ∈ Bc(ℓ
2, ℓ2)

and

h′ : Bc(ℓ
2, ℓ2) 7−→ B(A⊥

2 ,A⊥
2 ) (14)

h′(A) := PH′RA, A ∈ Bc(ℓ
2, ℓ2) (15)

where RA denotes the right multiplication associated to the

operator A defined on the specified Hilbert space. By the Sz.

Nagy dilation Theorem there exist dilations H (respectively

H ′) for h (respectively h′), H = H ′ given by

H(A) = RA on C2, for A ∈ B(C2, C2) (16)

The spaces A2 and A⊥
2 can be written as orthogonal differ-

ences of subspaces invariant under H and H ′, respectively,

as

H = A2 ⊖ 0, H′ = C2 ⊖A2 (17)

and we see that h and h′ are representations of T (N ).
Now we define the operator Γ := PA⊥

2

LT ⋆

2i
T1T ⋆

3ci
acting

from H into H′, where LT ⋆

2i
T1T ⋆

3ci
is the left multiplica-

tion operator associated to T ⋆
2iT1T

⋆
3ci, i.e., LT ⋆

2i
T1T ⋆

3ci
f =

T ⋆
2iT1T

⋆
3cif, f ∈ H. Now we have to show that the operator
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Γ intertwines h and h′, that is, h′(A)Γ = Γh(A) for all

A ∈ Bc(ℓ
2, ℓ2), and for all f ∈ H,

h′(A)Γf = PH′RAPH′LT ⋆

2i
T1T ⋆

3ci
f (18)

= PH′PH′T ⋆
2iT1T

⋆
3cifA (19)

= PH′RALT ⋆

2i
T1T ⋆

3ci
f (20)

= PH′RALT ⋆

2i
T1T ⋆

3ci
f (21)

= PH′LT ⋆

2i
T1T ⋆

3ci
RAf (22)

= PH′LT ⋆

2i
T1T ⋆

3ci
PHRAf (23)

= Γh(A) (24)

Applying Theorem 1 implies that Γ has a dilation Γ′ that

intertwines H and H ′, i.e., Γ′H(A) = H ′(A)Γ′, ∀A ∈
B(ℓ2, ℓ2). By a result in [25] Γ′ is a left multiplication

operator acting from A2 into B(ℓ2, ℓ2). That is, Γ′ = LF

for some F ∈ Bc(A2, C2 ⊕ C2), with ‖F‖ = ‖Γ′‖ =
‖Γ‖. Now Γ = PH′LT ⋆

2i
T1T ⋆

3ci
= PH′LF , which implies

PH′LT ⋆

2i
T1T ⋆

3ci
−F = 0. Hence, (T ⋆

2iT1T
⋆
3ci − F )f ∈ A2 for

all f ∈ A2. That is,

(T ⋆
2iT1T

⋆
3ci − F )f = g, ∃g ∈ A2 (25)

In particular,

(T ⋆
2iT1T

⋆
3ci − F )f ∈ T (N ) (26)

for all f ∈ T (N ) of finite rank. By Theorem 3.10 [4] there

is a sequence Fn of finite rank contractions in Bc(ℓ
2, ℓ2)

which converges to the identity operator in the strong

*-topology. By an approximation argument it follows that

(T ⋆
2iT1T

⋆
3ci − F ) ∈ Bc(ℓ

2, ℓ2). Letting Q := T ⋆
2iT1T

⋆
3ci − F

we have g = Qf . We conclude that T ⋆
2iT1T

⋆
3ci − F = Q,

that is, T ⋆
2iT1T

⋆
3ci − Q = F , with ‖F‖ = ‖Γ‖ as required.

As a consequence there exists an optimal Qo ∈ Bc(ℓ
2, ℓ2)

such that the infimum in (5) is achieved. By Theorem

2.1. [24] a Hankel operator HB is a compact operator

if and only if B belongs to the space Bc(ℓ
2, ℓ2) + C,

where C is the space of compact operators from ℓ2 into ℓ2,

that is, B is the sum of a causal bounded linear operator

and a compact operator both defined on ℓ2. It follows in

our case that HT ⋆

2i
T1T ⋆

3ci
is a compact operator on A2 iff

T ⋆
2iT1T

⋆
3ci ∈ Bc(ℓ

2, ℓ2) + C. In this case there exists an

A ∈ A2, ‖A‖2 = 1 such that

‖HT ⋆

2i
T1T ⋆

3ci
‖ = ‖HT ⋆

2i
T1T ⋆

3ci
A‖2

that is, a A achieves the norm of HT ⋆

2i
T1T ⋆

3ci
, and we

necessarily have

QoA = T ⋆
2iT1T

⋆
3ciA − HT ⋆

2i
T1T ⋆

3ci
A (27)

which gives the optimal Qo as the solution of the operator

identity (27).

IV. THE OPTIMAL TV MIXED SENSITIVITY PROBLEM

The mixed sensitivity problem for stable plants [21],

[35] involves the sensitivity operator T1 :=

(

W

0

)

, the

complementary sensitivity operator T2 =

(

W

V

)

P and

T3 := I which are all assumed to belong to Bc(ℓ
2, ℓ2 × ℓ2),

and is given by the optimization

µo = inf
Q∈Bc(ℓ2,ℓ2)

∥

∥

∥

∥

(

W

0

)

−

(

W

V

)

PQ

∥

∥

∥

∥

(28)

where ‖ · ‖ stands for the operator norm in B(ℓ2, ℓ2 × ℓ2).
Assume that W ⋆W + V ⋆V > 0, i.e., W ⋆W + V ⋆V > 0
is a positive operator. Then there exists an outer spectral

factorization Λ1 ∈ Bc(ℓ
2, ℓ2), invertible in Bc(ℓ

2, ℓ2) such

that Λ⋆
1Λ1 = W ⋆W + V ⋆V [3], [7]. Therefore Λ1Po as a

bounded linear operator in Bc(ℓ
2, ℓ2) has a polar decompo-

sition U1G, where U1 is a partial isometry and G a positive

operator both defined on ℓ2 [7]. Next we assume (A2) U1 is

unitary, the operator G and its inverse G−1 ∈ Bc(ℓ
2, ℓ2).

(A2) is satisfied when, for e.g., the outer factor of the

plant is invertible. Let R = T2Λ
−1
1 U1, assumption (A2)

implies that the operator R⋆R ∈ B(ℓ2, ℓ2) has a bounded

inverse. According to Arveson (Corollary 2, [3]), the self-

adjoint operator R⋆R has a spectral factorization of the

form: R⋆R = Λ⋆Λ, where Λ, Λ−1 ∈ Bc(ℓ
2, ℓ2). Define

R2 = RΛ−1, then R⋆
2R2 = I . After ”absorbing” Λ into

the free parameter Q, the optimization problem (28) is then

equivalent to:

µo = inf
Q∈Bc(ℓ2,ℓ2)

‖T1 − R2Q‖ (29)

Let Π be the orthogonal projection on the subspace

(A2 ⊕A2)⊖R2A2 the orthogonal complement of R2A2 in

the operator Hilbert space A2 ⊕A2 under the inner product

(A, B) := tr(B⋆A), A, B ∈ A2 ⊕A2

In the following Lemma the orthogonal projection Π1 is

computed explicitly.

Lemma 1:

Π = I − R2PR⋆
2 (30)

Proof. For Z ∈ A2 ⊕A2, let us compute

(I − R2PR⋆
2)

2Z = (I − R2PR⋆
2)(I − R2PR⋆

2)Z

= (I − R2PR⋆
2 − R2PR⋆

2 + R2PR⋆
2PR⋆

2)Z

= (I − 2R2PR⋆
2 + R2PR⋆

2)Z

since R⋆
2R2 = I and P2 = P

= (I − R2PR⋆
2)Z (31)

so (I − R2PR⋆
2) is indeed a projection.

Clearly the adjoint (I −R2PR⋆
2)

⋆ of (I −R2PR⋆
2) is equal

to (I−R2PR⋆
2) itself, so that (I−R2PR⋆

2) is an orthogonal

projection. Next we show that the null space of (I−R2PR⋆
2),

Ker(I − R2PR⋆
2) = R2A2.

Let Z ∈ Ker(I − R2PR⋆
2) then

(I − R2PR⋆
2)Z = 0 =⇒ Z = R2PR⋆

2Z
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since R⋆
2Z ∈ C2, then PR⋆

2Z ∈ A2 and therefore Z ∈ R2A2.

Hence Ker(I −R2PR⋆
2) ⊂ R2A2. Conversely, let Z ∈ A2,

then

(I − R2PR⋆
2)R2Z = R2Z − R2PZ = KZ − KZ = 0

Thus R2Z ∈ Ker(I − R2PR⋆
2), so R2A2 ⊂

Ker(I − R2PR⋆
2), and therefore (I − R2PR⋆

2) = R2A2,

and the Lemma is proved.

Call S := (A2 ⊕A2) ⊖ R2A2, and define the operator

Φ : A2 7−→ S

Φ := Π T1 (32)

then Φ is a well defined bounded linear operator.

Theorem 3: Under assumption (A2) there exists at least

one optimal TV operator Qo ∈ Bc(ℓ
2, ℓ2) such that

µo = ‖T1 − R2Qo‖ = ‖Φ‖ (33)

Proof. To prove the Theorem we need a representation

of Bc(ℓ
2, ℓ2), that is, an algebra homomorphism, say,

h(·) (respectively h′(·)), from Bc(ℓ
2, ℓ2), into the algebra

B(A2,A2) (respectively Bc(S, S)), of bounded linear oper-

ators from A2 into A2

(

respectively from S into S
)

. Define

the representations h and h′ by

h : Bc(ℓ
2, ℓ2) 7−→ B(A2,A2) (34)

h(A) := RA, A ∈ Bc(ℓ
2, ℓ2) (35)

and

h′ : Bc(ℓ
2, ℓ2)

)

7−→ Bc(S, S) (36)

h′(A) := ΠRA, A ∈ Bc(ℓ
2, ℓ2)

)

where RA denotes the right multiplication associated to the

operator A defined on the specified Hilbert space. By the Sz.

Nagy dilation Theorem there exist dilations H (respectively

H ′) for h (respectively h′) given by

H(A) = RA on A2 for A ∈ Bc(ℓ
2, ℓ2)

H ′(A) = RA on A2 ⊕A2 for A ∈ Bc(ℓ
2, ℓ2)

The spaces A2 and S can be written as orthogonal differ-

ences of subspaces invariant under H and H ′, respectively,

as

A2 = A2 ⊖ {0}, S = A2 ⊕A2 ⊖

(

M

N

)

A2 (37)

Now we have to show that the operator Φ intertwines h and

h′, that is, h′(A)Φ = Φh(A) for all A ∈ Bc(ℓ
2, ℓ2),

h′(A)Φ = ΠRAΠT1 |A2
= ΠRAΠ1T1 |A2

= ΠRAT1 |A2
= ΠT1RA |A2

= Ξh(A)

Applying Theorem 1 implies that Φ has a dilation Φ′

that intertwines H and H ′, i.e., Φ′H(A) = H ′(A)Φ′,

∀A ∈ B(ℓ2, ℓ2). By Lemma 4.4. in [25] Φ′ is a left

multiplication operator acting from A2 into A2 ⊕ A2, and

causal. That is, Φ′ = LK for some K ∈ Bc(A2, A2 ⊕A2),
with ‖K‖ = ‖Φ′‖ = ‖Φ‖. Then Φ = ΠT1 = ΠK , which

implies Π(T1 − K) = 0. Hence, (T1 − K)f ∈ R2A2,

for all f ∈ A2. That is, (T1 − K)f = R2g, ∃g ∈ A2,

which can be written as R⋆
2(T1 − K)f = g ∈ A2. In

particular, R⋆
2(T1−K)f ∈ Bc(ℓ

2, ℓ2), for all f ∈ Bc(ℓ
2, ℓ2)

of finite rank. By Theorem 3.10 [4] there is a sequence

Fn of finite rank contractions in Bc(ℓ
2, ℓ2) which

converges to the identity operator in the strong *-

topology. By an approximation argument it follows that

M̃⋆(Ũ − K) ∈ Bc(ℓ
2, ℓ2). Letting Q := R⋆

2(T1 − K) we

have g = Qf . We conclude that Ũ − K = M̃Q, that is,

T1 − R2Q = K , with ‖K‖ = ‖Φ‖ as required.

A consequence of the commutant lifting Theorem is

that there exists an optimal Qo ∈ Bc(ℓ
2, ℓ2) such that the

infimum in (29) is achieved. Moreover, Lemma 1 implies

that the operator Φ is given by the following analytic

expression

Φ = T1 − R2PR⋆
2 (38)

and the subspace S is given by

S =
(

A2 ⊕A2

)

−R2PR⋆
2

(

A2 ⊕A2

)

(39)

If there exists a maximal vector for Φ, that is, A ∈ A2 of

norm ‖A‖2 = 1 such that ‖ΦA‖2 = ‖Φ‖, then a similar

identity as (27) can be obtained for Qo as well from

ΦA = T1A − R2QoA (40)

and Qo can be computed from the operator identity

QoA = R⋆
2T1A − R⋆

2ΦA (41)

Remark. The results obtained here apply to computing the

directed TV gap metric between two LTV plants G1 and G2

defined in [8], [12] as follows.

First, G1 and G2 have normalized right coprime factoriza-

tions

(

M1

N1

)

and

(

M2

N2

)

, respectively. That is, M⋆
i Mi+

N⋆
i Ni = I, i = 1, 2. The directed time varying gap between

G1 and G2, denoted −→α (G1, G2), can be computed as [8],

[12], [7]

−→α (G1, G2) = inf
Q∈Bc(ℓ2,ℓ2)

∥

∥

∥

∥

(

M1

N1

)

−

(

M2

N2

)

Q

∥

∥

∥

∥

(42)

which by Theorem 3 is given by

−→α (G1, G2) =
∥

∥

∥
Π

(

M1

N1

)

∥

∥

∥
(43)

where Π in this case is given by Π = I −
(

M2

N2

)

P(M⋆
2 , N⋆

2 ), and an optimal Q that achieves the

infimum in (42) exists.
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V. CONCLUSION

In this paper we considered two fundamental robust con-

trol problems, the optimal disturbance attenuation and the

optimal mixed sensitivity problems for LTV plants. The

commutant lifting theorem for nest algebras was applied

to solve these two problems in term of two operators. A

generalization to computing the directed TV gap metric for

LTV plants is pointed out. Although the results we derived

for discrete time-varying systems, the proposed framework

can be extended to continuous systems by working instead

in the Macaev ideal.
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