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Abstract— This paper addresses the problem of robust stabil-
ity of piecewise affine (PWA) uncertain systems with unknown
time-varying delay in the state. It is assumed that the uncer-
tainty is norm-bounded and that upper bounds on the state
delay and its rate of change are available. A set of linear matrix
inequalities (LMI) is derived providing sufficient conditions for
the stability of the system. These conditions depend on the
upper bound of the delay. The main contributions of the paper
are as follows. First, new delay-dependent LMI conditions are
derived for the stability of PWA time-delay systems. Second,
the stability conditions are extended to the case of uncertain
PWA time-delay systems. Numerical examples are presented to
show the effectiveness of the approach.

I. INTRODUCTION

Continuous-time piecewise affine (PWA) systems have
attracted considerable interest in the control literature in
recent years [1], [2], [3], [4], [5], [6], [7], [8]. The theory
of PWA systems has found important applications in CPU
processing control [9], boost DC-DC converters [10] and
aerospace [11], to name only a few. In brief, a PWA system
consists of a set of affine subsystems (representing different
operating conditions of a system, or an approximation of a
complex nonlinear system) and a switching law that enables
switching between different subsystems. It is to be noted that
switching is also used in control to stabilize and regulate
highly uncertain systems [12], [13], [14], [15].

Many practical systems, on the other hand, are subject
to input and/or state delay. Examples of time-delay systems
include power systems [16] and communication networks
[17]. It is known that time-delay can cause poor performance
or even instability if its effect is neglected in control design.
The existing results for robust stability of time-delay systems
can be categorized as delay independent and delay dependent
results. Different delay independent robust stability criteria
have been developed in [18] and [19]. Delay independent
stability results are conservative in general because they
do not take into account any available information on the
delay. Delay dependent approaches for the systems subject
to parameter uncertainty, on the other hand, are investi-
gated in [20], [21], [22], [23], [24]. Stability analysis for
switched systems with time-delay is provided in [25], [26],
[27]. In [25], a common Lyapunov functional is used for
robust stability analysis of switched uncertain time-delay
systems with arbitrary switching. However, stability analysis
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using a common quadratic Lyapunov function is typically
known to be conservative. In [27], sufficient conditions for
exponential stability of linear time-delay systems with a
class of switching signals is developed. To the best of the
knowledge of the authors, however, the stability problem for
PWA time-delay systems has only been addressed in [2],
where a piecewise quadratic Lyapunov function is used to
derive LMIs for stability analysis following the approach of
[1]. Nevertheless, the important and practically relevant case
of robust stability of PWA time-delay systems in presence
of parametric uncertainty has not been considered in [2].
Furthermore, the affine term of the dynamics did not have a
delay in that paper.

Based on the considerations of the previous paragraph,
PWA uncertain systems with unknown time-delay are investi-
gated in this paper, and LMI-based conditions for asymptotic
stability are derived following the approach of [8]. It is
assumed that the parameter uncertainties are norm bounded
and that upper bounds on the time-varying delay and its rate
of change are given. In order to reduce the conservatism
of the results, piecewise quadratic Lyapunov functions are
employed for stability analysis. The main contributions of
this work are as follows. First, new delay dependent LMI
conditions are derived for the stability of PWA time-delay
systems. Second, the stability conditions are extended to the
case of uncertain PWA time-delay systems.

This paper is organized as follows. The problem statement
and formulation are given in Section II. The main result of
the paper is provided in Section III, followed by robustness
analysis in Section IV. Simulation results are presented in
Section V. Finally, some concluding remarks are drawn in
Section VI.

II. PROBLEM FORMULATION

Consider an uncertain piecewise affine system with time-
delay described as

ẋ(t) = (Ai +∆Ai)x(t)+(Adi +∆Adi)x(t− τ(t))+(ai +∆ai)
+(bi +∆bi) 1(t− τ(t)), x(t) ∈ Xi

(1)

where Ai,Adi ∈ Rn×n, ai, bi ∈ Rn, and {Xi} ⊆ Rn form a
partition of the state space into a number of open (possibly
unbounded) polyhedral cells with pairwise empty intersec-
tion. The index set of the cells is denoted by I = {1, ...,M}.
The set of cells that include the origin is denoted by I0 ⊆ I,
and its complement is represented by I1 = I/I0. It is assumed
that ai = 0, ∆ai = 0, bi = 0, ∆bi = 0 for i ∈ I0. In addition,
∆Ai, ∆Adi, ∆ai and ∆bi are norm-bounded uncertainties
which will be defined later. Furthermore, 1(t) is the step
function. In (1), τ(t) is a positive time-varying delay such
that

0≤ τ(t)≤ h, τ̇(t)≤ d < 1 (2)

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

ThA12.4

978-1-4244-4524-0/09/$25.00 ©2009 AACC 2373



where h and d are known positive constants.
Assume the initial condition

x(θ) = φ(θ), θ ∈ [−h, 0]

for the system (1) such that φ(θ) is a differentiable vector-
valued initial function on [−h,0], h > 0. Assume also x(t) is
a continuous piecewise C1 function of time. Following [1],
[8], the state space is partitioned based on x(t) such that
x(t) ∈

⋃
Xi as follows. Let Ēi =

[
Ei ei

]
, (with ei = 0,

∀i ∈ I0) such that

Ēi

[
x(t)

1

]
≥ 0 ∀x(t) ∈ Xi, i ∈ I (3)

Let Ni denote the set of neighbouring cells that share a
common facet with the cell Xi. The facet boundary between
the cells Xi and Xk is contained in the set {x ∈ Rn | cT

ikx(t)−
dik = 0}, where cik ∈ Rn, dik ∈ R, for all i ∈ I, k ∈ Ni.
Moreover, we use a parametric description of the boundaries
as follows

X̄i∩ X̄k ⊆ {lik +Fiks|s ∈ Rn−1} (4)

for all i∈ I, k∈Ni, where Fik ∈Rn×(n−1) is a full rank matrix
whose columns span the null space of cT

ik, and lik ∈ Rn is
given by lik = cik(cT

ikcik)−1dik.
The main objective of this paper is to determine a set

of computationally tractable conditions under which (1)
is asymptotically stable. In the next section, a Lyapunov
functional will be introduced to determine the stability of
PWA systems.

III. NOMINAL ANALYSIS

In this section, sufficient LMI conditions will be estab-
lished for the stability of (1) without uncertainties. These
conditions will then be extended to the systems with un-
certainties in Section IV. To proceed further, we define the
following matrices and sets

Āi :=
[

Ai ai
0 0

]
, Ādi :=

[
Adi 0
0 0

]
, b̄i :=

[
bi
0

]

¯A =
{[

A j a j
0 0

]
, ∀ j ∈ I

}
, A =

{
A j, ∀ j ∈ I

}
, E =

{
a j, ∀ j ∈ I1

}

B̄ =
{[

b j
0

]
, ∀ j ∈ I1

}
, B =

{
b j, ∀ j ∈ I1

}
¯Ad =

{[
Ad j 0
0 0

]
, ∀ j ∈ I

}
, Ad =

{
Ad j, ∀ j ∈ I

}
Note that system (1) without uncertainties can be rewritten

as follows

˙̄x = Āix̄(t)+ Ādix̄(t− τ(t))+ b̄i 1(t− τ(t)) (5)

where x̄(t) = [xT (t), 1]T , with x(t) ∈ Xi. We use the expres-
sion

x̄(t− τ(t)) = x̄(t)−
∫ t

t−τ(t)
˙̄x(s)ds (6)

Hence, considering (5), the equation (6) can be rewritten as

˙̄x(t) =(Āi + Ādi)x̄(t)+ b̄i 1(t− τ(t))− Ādi

∫ t

t−τ(t)
Ā j(s)x̄(s)ds

− Ādi

∫ t

t−τ(t)
Ād j(s)x̄(s− τ(s))ds

− Ādi

∫ t

t−τ(t)
b̄ j(s) 1(s− τ(s))ds

(7)

Note that j(s) in (7) is a piecewise constant function which
represents the index of the matrices Ā j(s) ∈ ¯A , b̄ j(s) ∈ B̄,
Ād j(s) ∈ ¯Ad at time s. In order to proceed further, the
following well-known lemma is borrowed from [28].

Lemma 1: For any vectors or matrices z and y with
appropriate dimensions and any symmetric matrix P > 0, the
following inequalities are satisfied:

−zT y− yT z≤ zT Pz+ yT P−1y

zT y+ yT z≤ zT Pz+ yT P−1y
(8)

Proof : See [28].
The following theorem presents sufficient conditions for

the stability of the PWA system (5).

Theorem 1: Consider the symmetric matrices Ūi,Ui and
W̄i,Wi, which are composed of non-negative entries, and

 H ′i hPiAdi S31 +[0n×n R3 +S3]
∗ −hM1i 0

∗ ∗ S̄2− (1−d)R̄+
[

0n×n 0n×1
01×n S2 +R2

]
+Π

< 0

(9)

Π =
[

0n×(n+1)
S32

]
+
[
0(n+1)×n ST

32
]


hQi

[
hPiAdiA j hPiAdia j

] [
hPiAdiAd j 0

]
∗ S̄1−

[
0 0
0 hbT

j M1ib j

]
S̄3

∗ S̄T
3 S̄2

≥ 0

(10)

Pi−ET
i UiEi > 0, M1i > 0 (11)

where

H ′i = Pi(Ai +Adi)+(Adi +Ai)T Pi +S1 +R1 +hQi +ET
i UiEi

(12)
for any fixed i∈ I0 and for all A j ∈A , b j ∈B, a j ∈ E , Ad j ∈
Ad , such that

S̄1 =
[

S1 S3
ST

3 S2

]
, S̄3 =

[
S31
S32

]
, S1 ∈ Rn×n, S2 ∈ R

S3 ∈ Rn×1, S31 ∈ Rn×(n+1), S32 ∈ R1×(n+1)

R̄ =
[

R1 R3
RT

3 R2

]
, R1 ∈ Rn×n, R2 ∈ R, R3 ∈ Rn×1

satisfying [
S̄1 S̄3
S̄T

3 S̄2

]
> 0, R̄ > 0 (13)

2374



for S̄1, S̄2 and S̄3. Furthermore, let the following inequalities
hold

 H̄ ′i P̄i hP̄iĀdi S̄3
∗ −M̄1i 0 0
∗ ∗ −hM̄2i 0
∗ ∗ ∗ S̄2− (1−d)R̄

< 0 (14)


hQ̄i hP̄iĀdiĀ j hP̄iĀdiĀd j

∗ S̄1−
[

0 0
0 hb̄T

j M̄2ib̄ j

]
S̄3

∗ ∗ S̄2

≥ 0 (15)

P̄i− ĒT
i W̄iĒi > 0, M̄ki > 0, k = 1,2 (16)

for any fixed i ∈ I1 and for all Ā j ∈ ¯A , b̄ j ∈ B̄, Ād j ∈ ¯Ad ,
where

H̄ ′i := P̄i(Āi + Ādi)+(Ādi + Āi)T P̄i + S̄1 + R̄+
[

0 0
0 b̄T

i M̄1ib̄i

]
+hQ̄i + ĒT

i ŪiĒi
(17)

Assume also that for all i ∈ I and k ∈Ni,

FT
ik (Pi−Pk)Fik = 0 (18a)

FT
ik (Pi−Pk)lik +FT

ik (qi−qk) = 0 (18b)

lT
ik(Pi−Pk)lik +2(qi−qk)T lik +(ri− rk) = 0 (18c)

where P̄i :=
[

Pi qi
qT

i ri

]
, for all i ∈ I. Under conditions (2), (3)

and (9)-(18), every piecewise C1 trajectory x(t), governed by
(5) for t ≥ 0, tends to zero asymptotically in the absence of
sliding modes.

Proof: Define the candidate Lyapunov-Krasovsky func-
tional

V̄i = V̄1i +V̄2i +V̄3i (19)

where, for x(t) ∈ Xi, i ∈ I1

V̄1i = x̄T (t)P̄ix̄(t) (20a)

V̄2i =
∫ t

t−τ(t)
x̄T (s)R̄x̄(s)ds (20b)

V̄3i = h−1
∫ 0

−h

∫ t

t+s

[
x̄(θ)

x̄(θ − τ(θ))

]T [ S̄1 S̄3
S̄T

3 S̄2

]
[

x̄(θ)
x̄(θ − τ(θ))

]
dθds

(20c)

The conditions that guarantee the continuity of the Lya-
punov function at the boundaries are give in (18a-c), and can
be obtained using the same approach as the one in [8]. Note
that the candidate Lyapunov functional is positive definite
because of (16) and (13). Applying Leibnitz integral rule
and using (2), the derivative of this Lyapunov functional is

˙̄Vi ≤2x̄(t)T P̄i ˙̄x(t)+ x̄T (t)R̄x̄(t)− x̄T (t− τ(t))(1−d)R̄x̄(t− τ(t))

+ x̄T (t)S̄1x̄(t)+ x̄T (t− τ(t))S̄2x̄(t− τ(t))

+2x̄T (t)S̄3x̄(t− τ(t))

−h−1
∫ t

t−τ(t)

[
x̄(s)

x̄(s− τ(s))

]T [ S̄1 S̄3
S̄T

3 S̄2

][
x̄(s)

x̄(s− τ(s))

]
ds

(21)

Substituting (7) in (21) leads to

˙̄Vi ≤ 2x̄T (t)P̄i(Āi + Ādi)x̄(t)+2x̄T (t)P̄ib̄i 1(t− τ(t))

+ x̄T (t)(S̄1 + R̄)x̄(t)+2x̄T (t)S̄3x̄(t− τ(t))

+ x̄T (t− τ(t))(S̄2− (1−d)R̄)x̄(t− τ(t))

−2x̄T (t)P̄iĀdi

∫ t

t−τ(t)
Ā j(s)x̄(s)ds

−2x̄T (t)P̄iĀdi

∫ t

t−τ(t)
Ād j(s)x̄(s− τ(s))ds

−2x̄T (t)P̄iĀdi

∫ t

t−τ(t)
b̄ j(s) 1(s− τ(s))ds

−h−1
∫ t

t−τ(t)

[
x̄(s)

x̄(s− τ(s))

]T [ S̄1 S̄3
S̄T

3 S̄2

][
x̄(s)

x̄(s− τ(s))

]
ds

(22)

Now, considering the positive-definite matrices M̄ki, k =
1,2, i ∈ I1, using Lemma 1 and the inequalities (2), (22)
yield
˙̄Vi ≤ 2x̄T (t)P̄i(Āi + Ādi)x̄(t)+ x̄T (t)P̄iM̄−1

1i P̄ix̄(t)

+ b̄T
i M̄1ib̄i 1(t− τ(t))x̄T (t)(S̄1 + R̄)x̄(t)

+ x̄T (t− τ(t))(S̄2− (1−d)R̄)x̄(t− τ(t))+2x̄T (t)S̄3x̄(t− τ(t))

−2x̄T (t)P̄iĀdi

∫ t

t−τ(t)
Ā j(s)x̄(s)ds

−2x̄T (t)P̄iĀdi

∫ t

t−τ(t)
Ād j(s)x̄(s− τ(s))ds

+hx̄T (t)P̄iĀdiM̄
−1
2i ĀT

diP̄ix̄(t)+
∫ t

t−τ(t)
b̄T

j(s)M̄2ib̄ j(s) 1(s− τ(s))ds

−h−1
∫ t

t−τ(t)

[
x̄(s)

x̄(s− τ(s))

]T [ S̄1 S̄3
S̄T

3 S̄2

][
x̄(s)

x̄(s− τ(s))

]
ds

(23)

Note that from (2), there always exists a symmetric
positive semi-definite matrix Q̄i such that

hx̄T (t)Q̄ix̄(t)−
∫ t

t−τ(t)
x̄T (t)Q̄ix̄(t)ds≥ 0 (24)

Define now

H̄i := P̄i(Āi + Ādi)+(Ādi + Āi)T P̄i + S̄1 + R̄+
[

0 0
0 b̄T

i M̄1ib̄i

]
+hQ̄i

(25a)

Z̄i :=
[

H̄i + P̄iM̄−1
1i P̄i +hP̄iĀdiM̄−1

2i ĀT
diP̄i S̄3

S̄T
3 S̄2− (1−d)R̄

]
(25b)

Ȳj(s) :=−


hQ̄i hP̄iĀdiĀ j(s) hP̄iĀdiĀd j(s)

∗ S̄1−
[

0 0
0 hb̄T

j(s)M̄2ib̄ j(s)

]
S̄3

∗ ∗ S̄2


(25c)
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Then by adding inequality (24) to the right hand side of (23)
and considering (25a-c), one can write the following for all
x(t) ∈ Xi, i ∈ I1

˙̄Vi ≤ξ̄
T (t,τ(t))Z̄iξ̄ (t,τ(t))

+h−1
∫ t

t−τ(t)
η̄

T (t,s,τ(s))Ȳj(s)η̄(t,s,τ(s))ds
(26)

where ξ̄ (t,τ(t)) =
[
x̄T (t), x̄T (t− τ(t))

]T and η̄(t,s,τ(s)) =[
x̄T (t), x̄T (s), x̄T (s− τ(s))

]T . Note that (14) and (16) imply

ξ̄
T (·)(Z̄i + ˜̄ET

i
˜̄Ui

˜̄Ei)ξ̄ (·) < 0 (27)

using the Schur complement, where ˜̄Ui = diag[Ūi,0], ˜̄Ei =
[Ēi,0], and Ūi has only non-negative entries. Note also that
from (3), the inequality Ēix̄(t) ≥ 0 holds for all x(t) ∈ Xi.
This leads to

˜̄Eiξ̄ ≥ 0, ∀x(t) ∈ Xi, i ∈ I1

and consequently it follows that

ξ̄
T (·) ˜̄ET

i
˜̄Ui

˜̄Eiξ̄ (·)≥ 0, x(t) ∈ Xi, i ∈ I1 (28)

Therefore, the relations (3), (16) and (14) imply
ξ̄ T (·)Z̄iξ̄ (·) < 0, for all x(t) ∈ Xi, i ∈ I1. Furthermore,
(15) implies Ȳj(s) ≤ 0 and from (26), ˙̄Vi < 0, x(t) ∈ Xi, i ∈ I1.
A similar procedure can be repeated for the case when the
switching index belongs to I0, leading to (9)-(11) and V̇i < 0,
for all x(t) ∈ Xi, i ∈ I0. Thus the system is asymptotically
stable. �

Remark 1: Theorem 1 assumes the absence of sliding
modes. To avoid sliding modes at the boundaries, the fol-
lowing conditions can be added. Let the set {x ∈ Rn|σik =
cT

ikx− dik = 0} denote the sliding surface between the cells
Xi and Xk. According to [8], σ̇ik must be continuous across
the boundary described in (4), which yields

cT
ik [Ai(Fiks+ lik)+Adix(t− τ(t))+ai +bi 1(t− τ(t))]

= cT
ik [Ak(Fiks+ lik)+Adkx(t− τ(t))+ak +bk 1(t− τ(t))]

for all s ∈ Rn−1, k ∈Ni, i ∈ I. The above equation can be
rewritten as follows

cT
ik(Ai−Ak)Fik = 0 (29a)

cT
ik(Adi−Adk) = 0 (29b)

cT
ik [(Ai−Ak)lik +(ai−ak)] = 0 (29c)

cT
ik(bi−bk) = 0 (29d)

Remark 2: Using a procedure similar to the one presented
here, one can apply the results of [29] and define the
following Lyapunov-Krasovsky functional

V̄ ′i =x̄T (t)P̄ix̄(t)+
∫ t

t−τ(t)
x̄T (s)eβ (s−t)R̄x̄(s)ds

+h−1
∫ 0

−h

∫ t

t+s

[
x̄(θ)

x̄(θ − τ(θ))

]T

eβ (θ−t)
[

S̄1 S̄3
S̄T

3 S̄2

]
[

x̄(θ)
x̄(θ − τ(θ))

]
dθds

to obtain the LMIs that determine the exponential stability
of the system (5). It is to be noted that exponential stability
is stronger than asymptotic stability, at the cost of more
conservative LMIs.

IV. ROBUSTNESS ANALYSIS

Consider now the system (1) and define the matrices Ãi =
Ai +∆Ai, Ãdi = Adi +∆Adi, ãi = ai +∆ai, b̃i = bi +∆bi (i ∈ I)
and

¯̃Ai = Āi +∆Āi, ∆Āi =
[

∆Ai ∆ai
0 0

]
¯̃Adi = Ādi +∆Ādi, ∆Ādi =

[
∆Adi 0

0 0

]
¯̃bi = b̄i +∆b̄i, ∆b̄i =

[
∆bi
0

]

∆ ¯A =
{[

∆A j ∆a j
0 0

]
, ∀ j ∈ I

}
, ∆A =

{
∆A j, ∀ j ∈ I

}
∆E =

{
∆a j, ∀ j ∈ I1

}

∆B̄ =
{[

∆b j
0

]
, ∀ j ∈ I1

}
, ∆B =

{
∆b j, ∀ j ∈ I1

}

∆ ¯Ad =
{[

∆Ad j 0
0 0

]
, ∀ j ∈ I

}
, ∆Ad =

{
∆Ad j, ∀ j ∈ I

}
Let || · || denote the 2-norm. The following bounds are

assumed to be given for the norm of respective matrices

‖∆Ai‖ ≤ αi, ‖∆Adi‖ ≤ βi

‖∆Āi‖ ≤ ᾱi, ‖∆Ādi‖ ≤ β̄i, ||∆b̄i|| ≤ δ̄i

max
X∈∆ ¯A

||X || ≤ ᾱ
∗, max

X∈∆ ¯Ad

||X ||= max
X∈∆Ad

||X || ≤ β
∗

max
X∈∆A

||X || ≤ α
∗, max

X∈∆E
||X || ≤ γ

∗

max
X∈∆B̄

||X ||= max
X∈∆B

||X || ≤ δ
∗

The following theorem presents sufficient conditions for
the stability of uncertain PWA systems described by (1).

Theorem 2: Consider the symmetric matrices Ūi,Ui and
W̄i,Wi, composed of non-negative entries. Then, the uncertain
PWA time-delay system (1) is asymptotically stable in the
absence of sliding modes if (11), (16), (13) and (18a-c) hold,
and there exist positive definite matrices Lki, k = 1, ...,10, L̄ki,
k = 1, ...,9, M1i, i ∈ I0 and M̄pi, p = 1,2, i ∈ I1 such that



hQi hPiβiα∗ hPiβi hPiα∗Adi hPiβiβ∗ hPiβ2
i hPiβ∗Adi hPiβiδ∗ hPiAdiδ∗

∗ hρL1i
I 0 0 0 0 0 0 0

∗ ∗ hρX1i
I 0 0 0 0 0 0

∗ ∗ ∗ hρL3i
I 0 0 0 0 0

∗ ∗ ∗ ∗ hρL4i
I 0 0 0 0

∗ ∗ ∗ ∗ ∗ hρX2i
I 0 0 0

∗ ∗ ∗ ∗ ∗ ∗ hρL6i
I 0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ hl2i I 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ hl3i I
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
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hPiβ2
i hPiβi hPiβiγ∗ hPiAdiγ∗ hPiAdi [A j a j ] hPiAdi [Ad j 0]

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

hρL9i
I 0 0 0 0 0

∗ hρL10i
I 0 0 0 0

∗ ∗ hl1i I 0 0 0
∗ ∗ ∗ hl4i I 0 0
∗ ∗ ∗ ∗ S1 −Π1

j S3
∗ ∗ ∗ ∗ ∗ S2 −Π2

i


≥ 0 (30)

where

Π
1
j = h(L1i +L2i +L3i +

[
0 0
0 bT

j (M1i +L9i)b j

]
+
[

0 0
0 aT

j L10ia j

]
)

Π
2
i = h(L4i +L5i +L6i)


H ′i hPiAdi Piαi Piβi S31 +[0n×n R3 +S3]
∗ −hM1i 0 0 0
∗ ∗ −ρL7i I 0 0
∗ ∗ ∗ −ρL8i I 0
∗ ∗ ∗ ∗ S̄2− (1−d)R̄+Γ

< 0

(31)

Γ =
[

0n×n 0n×1
01×n S2 +R2

]
+
[

0n×(n+1)
S32

]
+
[
0(n+1)×n ST

32
]

[
X1i X1iA j
∗ L2i

]
> 0,

[
X2i X2iAd j
∗ L5i

]
> 0 (32)

for any fixed i∈ I0 and for all A j ∈A , b j ∈B, a j ∈ E , Ad j ∈
Ad . In addition, let the following LMIs hold



hQ̄i hP̄iβ̄iᾱ
∗ hP̄iβ̄i hP̄iᾱ

∗Ādi hP̄iβ̄iβ̄
∗ hP̄iβ̄

2
i hP̄iβ̄

∗Ādi
∗ hρ̄L̄1i

I 0 0 0 0 0
∗ ∗ hρ̄X̄1i

I 0 0 0 0
∗ ∗ ∗ hρ̄L̄3i

I 0 0 0
∗ ∗ ∗ ∗ hρ̄L̄4i

I 0 0
∗ ∗ ∗ ∗ ∗ hρ̄X̄2i

I 0
∗ ∗ ∗ ∗ ∗ ∗ hρ̄L̄6i

I
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗ ∗ ∗ ∗

hP̄iβ̄iδ
∗ hP̄iĀdiδ

∗ hP̄iβ̄i hP̄iĀdiĀ j hP̄iĀdiĀd j
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

hl̄2iI 0 0 0 0
∗ hl̄3iI 0 0 0
∗ ∗ hρ̄L̄9i

I 0 0
∗ ∗ ∗ S̄1− Π̄1

j S̄3

∗ ∗ ∗ ∗ S̄2− Π̄2
i


≥ 0 (33)

Π̄
1
j = h(L̄1i + L̄2i + L̄3i +

[
0 0
0 b̄T

j (M̄2i + L̄9i)b̄ j

]
)

Π̄
2
i = h(L̄4i + L̄5i + L̄6i)



ˆ̄Hi P̄i hP̄iĀdi P̄iᾱi P̄iβ̄i P̄iδ̄i S̄3
∗ −M̄1i 0 0 0 0 0
∗ ∗ −hM̄2i 0 0 0 0
∗ ∗ ∗ −ρ̄L̄7i

I 0 0 0
∗ ∗ ∗ ∗ −ρ̄L̄8i

I 0 0
∗ ∗ ∗ ∗ ∗ −l̄1iI 0
∗ ∗ ∗ ∗ ∗ ∗ S̄2− (1−d)R̄


< 0

(34)

[
X̄1i X̄1iĀ j
∗ L̄2i

]
> 0,

[
X̄2i X̄2iĀd j
∗ L̄5i

]
> 0 (35)

for any fixed i ∈ I1 and for all Ā j ∈ ¯A , b̄ j ∈ B̄, Ād j ∈ ¯Ad ,
where the following inequalities are satisfied

ρLki > 0, Lki−ρLki I > 0, k = 1, 3, 4, 6, 7, ..., 10 ∀i∈ I0
(36)

ρ̄L̄ki
> 0, L̄ki− ρ̄L̄ki

I > 0, k = 1, 3, 4, 6, 7, 8, 9 ∀i∈ I1
(37)

ρXki > 0, ρXki I−Xki < 0, k = 1 and 2 ∀i ∈ I0 (38)

ρ̄X̄ki
> 0, ρ̄X̄ki

I− X̄ki < 0, k = 1 and 2 ∀i ∈ I1 (39)

where
Ĥi = H ′i +L7i +L8i +

[
0 0
0 hl1i +hl4i

]
ˆ̄Hi = H̄ ′i + L̄7i + L̄8i +

[
0 0
0 l̄1i +hl̄2i +hl̄3i

]
(note that H ′i and H̄ ′i are defined in (12) and (17), respec-
tively).

Proof: The proof is similar to the proof of Theorem 1, and
is omitted here due to space restrictions.

V. NUMERICAL EXAMPLES

In this section, two examples are provided to show the
effectiveness of the proposed approach.

Example 1: In this example, the stability of a time-delay
system is investigated and it is shown that while the LMIs
proposed in [2] are infeasible, the ones introduced in this
paper are quite effective. Consider the piecewise linear time-
delay system ẋ(t) = Aix(t) + Adix(t − τ) with the system
matrices given by

A1 = A3 =−
[

0.1 0
0 0.1

]
A2 = A4 =−

[
0.3 0
0 0.3

]

Ad1 = Ad3 =
[

0 0
0 0

]
Ad2 = Ad4 =

[
5 0
0 0

]
and let the cell partition be given by

E1 =−E3 =
[
−1 1
−1 −1

]
E2 =−E4 =

[
−1 1
1 1

]
(40)
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One can verify that using the LMIs proposed in [2],
stability of the system is guaranteed only for time-delays
less than 0.005, which is a very small margin. However, the
LMIs derived in Theorem 1 ensure the stability for the time-
delays as large as h = 105.

Example 2: Consider the piecewise linear time-delay sys-
tem ẋ(t) = Aix(t)+ Adix(t− τ), with the same cell partition
as in (40), and the system matrices given by

A1 = A3 =−
[

1 0
0 1

]
, A2 = A4 =−

[
0.9 0
0 0.9

]

Ad1 = Ad3 =
[

0.1 5.0
−5.0 0.1

]
, Ad2 = Ad4 =

[
1.0 5.0
−5.0 −1.0

]
The LMIs derived in Theorem 1 are feasible for time-

delays less than or equal to h = 0.0264 in this example. Using
simulations, the system is unstable for τmax = 0.031. This
suggests that the result obtained in this example using the
approach proposed for systems with no uncertainty is not too
conservative.

Assume now that the matrices Ai and Adi (i = 1, ..., 4)
in the above example are subject to uncertainty. It can be
verified that for ||∆Ai|| ≤ 0.1 and ||∆Adi|| ≤ 0.1 (i = 1, ..., 4)
the LMIs given in Theorem 2 are feasible for the time-delays
less than or equal to h = 0.024.

VI. CONCLUSIONS

In this paper, robust stability of a class of piecewise affine
(PWA) systems with time-varying delay is considered. It is
assumed that the system is subject to bounded uncertainty.
It is also assumed that the time delay is unknown and time-
varying, but upper bounds on the magnitude of the delay and
its rate of variation exist. Sufficient conditions in the form of
linear matrix inequalities (LMI) are derived for robust stabil-
ity of the system. Numerical examples are provided to show
the usefulness of the proposed approach. The following open
problems can be considered for future work: (i) finding less
conservative LMIs using different Lyapunov functionals; (ii)
robust performance analysis of time-delay PWA systems; (iii)
finding stability conditions for other types of uncertainties
such as polytopic and polynomial, and (iv) stability analysis
for neutral-type time-delay PWA systems.
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