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Abstract— This paper presents an iterative learning con-
troller (ILC) design method based on a frequency domain linear
matrix inequality (LMI). It modifies the LMI method for lifted
system representation. In lifted system representation, the size
of matrices grows as the number of samples in the system
increase. In the proposed approach, the size of matrices in LMI
is independent of the number of samples in the system, avoiding
computational problems due to the size of matrices. The order
of controllers can be low, even if the order of the system is
high, unlike H∞ method. Compatibility with frequency domain
robust theory and easy extension to MIMO system is another
advantage. Zero-phase weighting functions are introduced to
shape the filters to increase robustness to the disturbance in
high frequency range. This paper also examines the monotonic
convergence of the output of the feedback controllers after
implementing ILC. The performance of the designed ILC is
verified by experiments performed on an industrial robot.

I. INTRODUCTION

For the control of industrial robots, one important ob-

jective is to achieve the precise tracking. However, it is

not easy to perform precise position control in either the

joint space or the task space for industrial robots, mainly

because there are disturbances caused by friction, backlash,

and transmission error in the reducers [1]. Moreover, the

disturbances change depending on the motion of the robot.

Currently, the requirements of motion precision for industrial

robots are becoming more and more stringent.

ILC is a promising method to overcome these problems

caused by the reducers. The idea of ILC is to learn infor-

mation from previous cycles of a repetitive process so as

to shape the feed-forward input to improve the performance

of the system. The first paper on this topic was published

by Uchiyama in 1978 [2]. In 1984, Arimoto proposed a P-

type learning control law for robotic applications [3]. Also,

in the same year, Casalino and Bartolini [4], and Craig

[5] also published papers about learning control for robotic

applications.

One way to systematically design an ILC scheme is through

the H∞ method. De Roover [6], Moon and Doh [7], Xu [8]

published papers about ILC design through H∞ method. This

method can be extended to MIMO systems easily, and can be

analyzed for robustness in the frequency domain. However, it
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also has disadvantages that the order of the controller is high

if the system order is high and the learning filter is limited to

causal filters. Lifted system linear matrix inequality (LMI)

method is another method for systematic ILC design. This

method was proposed by Ahn [9]. This method can design

non-causal filters as well. On the other hand, it may be

difficult to calculate the learning filter when the number

of samples is large, because the size of system matrix is

dependent on the number of samples [10], [11]. This paper

proposes a method which modifies lifted system LMI design

method, to which we can apply frequency domain analysis.

The rest of this paper is organized as follows. Section I

I presents the proposed design method, and Section III

discusses the design of ILC for an industrial robot based on

the proposed method, and introduces weighting functions to

shape the learning filter to increase robustness in a high fre-

quency range. We also examine the condition for monotonic

convergence of the output of the feedback controllers after

implementing ILC. Finally section IV concludes the paper.

II. ILC DESIGN METHOD

A. General ILC System

General ILC systems may be represented by (1) [12]. The

system is assumed to be a discrete-time, linear time invariant

system.

y j(k +1) = P(z)u j(k)+d(k) (1)

P is an asymptotically stable closed loop system with a

feedback controller, u j is an ILC input, j is the iteration

index, and k is the time index. y j is the output which we

desire to control, and d is due to other inputs to the closed

loop system P. The following signals are stored in memory.

u j(k),k ∈ 0,1, ....,N −1

y j(k),k ∈ 0,1, ....,N −1

yd(k),k ∈ 0,1, ....,N −1

yd(k) is the desired output reference, and N is the number

of samples. An error signal is defined as

e j(k) = yd(k)− y j(k) (2)

The following ILC update law is used in this paper.

u j+1(k) = Q(z)[u j(k)+L(z)e j(k)] (3)

Q is a filter and L is a learning filter. The purpose of ILC

design is to choose proper Q and L.
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Fig. 1. ILC General Structure

B. LMI Method based on Frequency Domain

It is difficult to find the optimal solution of learning gains

for a lifted system, because we need to analyze super-vector

ILC system, even if it is known that the inverse of the

Markov matrices is the optimized solution [9]. Also, we

may face the implementation difficulty when the system is

ill-conditioned [9]. Lifted system LMI method is a useful

method to deal with these difficulties. We can convert

the condition for stability and and monotonic convergence

of the ILC system into an LMI problem. However, the

analysis of the lifted system may be difficult when it has

a large number of samples, because the size of the matrix

is dependent on the number of samples. In that case, the

computation time of the ILC gains may be too long, and the

memory requirement may be excessive. In this section, we

will discuss the design of ILC gains in frequency domain

instead of in time domain, by modifying the lifted system

LMI method.

The basic idea of the LMI method is to formulate a given

problem as an optimization problem with linear objective

and linear matrix inequality (LMI) constraints. An LMI

constraint on a vector x ∈ Rm is of the form,

F(x) = F0 +
m

∑
i=1

xiFi � 0 (4)

where the symmetric matrices Fi = F∗
i ∈Rn×n , i = 0,1, · · · ,m

are given [13]. F � 0 means the matrix F is symmetric and

positive semidefinite. The minimization problem is

minimize cT x sub ject to F(x) � 0, (5)

where c ∈ Rm. Since Fi is positive semidefinite, this problem

is called a semidefinite program (SDP). This framework has

efficient numerical calculation by LMI programs. We will

convert the conditions for stability and monotonic conver-

gence of the system into the LMI constraints.

Letting Lk ∈ RNy×Nu , the lifted ILC filter can be repre-

sented in frequency domain as [14],

L(z) = L0z−No +L1z−No+1 · · ·+LNo−1z−1 +LNo

+LNo+1z+ · · ·+LNo−1z2No−1 +L2NozNo (6)

where 2No +1 is the order of the ILC filter.

For the ILC system defined by (1) and (6), the stability

condition for the ILC system can be represented as [12],

||Q(z)(I −L(z)P(z))||∞ = γ (γ < 1) (7)

It is equivalent to the following equation. Letting M(z) =
Q(z)(I −L(z)P(z)), (7) will be represented as,

sup
Ω∈υ

σ̄ [ M(e jΩ) ] = γ (γ < 1)

(υ = R) (8)

To establish (8), we need to check supΩ∈ῡ σ̄ [ M(e jΩ) ] = γ at

every Ω. Practically, however, we can consider this condition

at only a finite but large number of frequencies, Np. i.e.

sup
Ω∈ῡ

σ̄ [ M(e jΩi) ] = γ (γ < 1)

(i = 1,2, · · · ,Np)

(ῡ = Ω1,Ω2, · · · ,ΩNp) (9)

which will be represented as

[

γ2I M∗(e jΩi)
M(e jΩi) I

]

� 0

(γ < 1 f or all Ωi) (10)

This can be represented as,

γ2

[

I 0

0 0

]

+

[

0 Q(e jΩi)∗

Q(e jΩi) I

]

+

[

0 (−QLP(e jΩi))∗

−QLP(e jΩi) 0

]

� 0 (11)

We will represent the third term in the above expression

as a standard LMI constraint.

Define,

φk(z) = z−No+(k−1) (12)

Then,

L(e jΩi) = L0φ0(z)|z=e jΩi + · · ·+L2Noφ2No(z)|z=e jΩi

=
2No

∑
k=0

Lkφk(z)|z=e jΩi (13)

We will represent Lk as a linear combination of scalars

αk, j, multiplied with matrices Vj. The dimension of Vj are

the same as that of Lk. Vj are matrices of all zeros except

for 1 at entry indexed by j, where j is counted horizontally

starting from the top-left entry and wrapped around at the

end of each row. For example, supposing Ny = 2 and Nu = 2,

Lk =

[

Lk
1,1 Lk

1,2

Lk
2,1 Lk

2,2

]

= Lk
1,1

[

1 0

0 0

]

+Lk
1,2

[

0 1

0 0

]

+ Lk
2,1

[

0 0

1 0

]

+Lk
2,2

[

0 0

0 1

]

= αk,1V1 +αk,2V2 +αk,3V3 +αk,4V4

Therefore,

L(e jΩi) =
2No

∑
k=0

NyNu

∑
j=1

αk, jVjφk(z)|z=e jΩi (14)
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Noting (14), Q(e jΩi)L(e jΩi)P(e jΩi) is expressed as,

Q(e jΩi)L(e jΩi)P(e jΩi)

= Q(e jΩi)
2No

∑
k=0

NyNu

∑
j=1

αk, jVjφk(z)|z=e jΩi P(e jΩi)

=
(2No+1)NyNu

∑
l=1

βlF
i
l (15)

where,

βl = αk, j

F i
l = Q(e jΩi)VjP(e jΩi)

Finally, (10) is represented as,

γ2

[

I 0

0 0

]

−
(2No+1)NyNu

∑
l=1

βl

[

0 (F i
l )

∗

F i
l 0

]

+

[

0 Q∗

Q I

]

� 0 (16)

This representation is the LMI constraint form (4). Letting

the first and the second terms be ∑m
i=1 xiFi and the third term

be F0, c and x in (5) are respectively c = [1,0, · · · ,0] and

x = [γ2,β1, · · · ,β(2No+1)NyNu
]. This LMI problem is to find

learning gains to minimize γ2. Notice that the size of the

matrices in the inequality is 2Ny×2Ny and is independent of

the number of samples.

The monotonic condition for the ILC system

||Q(z)(I −P(z)L(z))||∞ = γ

(γ < 1 ) (17)

can be solved in a similar way, Also notice if the system is

SISO system, the stability condition (7) and the monotonic

convergence condition (17) are the same equation.

III. APPLICATION TO A ROBOT MANIPULATOR

In this section, we will apply the proposed method to a

robot manipulator. In this paper, our goal is precise position

tracking in joint space. When the same task is repeated

for industrial robots, ILC is a promising control method to

improve performance.

A. Description of the robot manipulator

The robot manipulator, used in this paper, is an M-16iB/20

industrial robot shown in Fig. 2. It is a six-axis, medium

size robot and can carry objects up to 20 kg at a maximum

speed of 2000 mm/sec. It is mainly used for high-speed

applications such as spot welding, material handling, sealing

and water-jet cutting. The specification of this robot can

be found in [15]. The hardware connection diagram of

the experimental setup is shown in Fig. 2. Controllers are

implemented by xPC Target [16] installed in the target PC.

In experiments, the available sensors are motor encoders.

Fig. 2. M-16iB/20 and hardware connection

Fig. 3. Controller Structure

B. Structure of Controller

Fig. 3 illustrates the control structure for the robot. F is a

feed-forward controller. Kpm is a proportional controller, and

Cvm is a velocity controller. Gom is the plant model from the

current in the motor to the motor velocity. Sm is a integrator. j

is a iteration index. θmr is the motor reference trajectory. u f f

is the control output of the feed-forward controller. y j is the

measured motor position by encoder. u j is the ILC input, and

um j is the control output of the proportional controller, and h j

is the output of velocity controller. y j is the measured motor

position. Therefore, the overall system can be described by

the following set of equations by defining the converged ILC

input as u∞(k) = lim j→∞ u j(k), and the converged error as

e∞(k) = lim j→∞ e j(k).

y j(k) = Tp(z)u j(k) (18)

u j+1(k)−u∞(k) = Q(I −L(z)Tp(z))

(u j(k)−u∞(k)) (19)

e j+1(k)− e∞(k) = Q(I −Tp(z)L(z))

(e j+1(k)− e∞(k)) (20)
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where,

e j(k) = θ j −θmr (21)

Sp(z) = (I +SmGvmKpm)−1 (22)

Tp(z) = (I +SmGvmKpm)−1(SmGvmKpm) (23)

Sv(z) = (I +GomCvm)−1 (24)

Tv(z) = (I +GomCvm)−1GomCvm (25)

Sp, Tp represent the sensitivity and complementary sen-

sitivity functions for the position loop, and Sv, Tv represent

the sensitivity and complementary sensitivity functions for

the velocity loop. The bode diagram of Tp is shown in Fig.

4. The bandwidth of the closed-loop system is around 3 Hz.

Fig. 4. Bode plot of Tp

C. Iterative learning control design

We consider SISO (single-input single-output system) ILC

design. The system order is 4th order, and Q-filter is designed

as a zero-phase 4th order butterworth filter with cut-off

frequency equal to 20 Hz. The Bode plot of the Q-filter is

shown in Fig. 5. Let No = 1, so that the resulting controller

Fig. 5. Bode plot of Q-filter

is 3rd order, which is much lower than the order of the

controller by H∞ design. As mentioned before, in SISO

system, the condition for system stability and the condition

for monotonic convergence become the same. In other words,

||Q(1 − L(z)Tp(z))||∞ < 1. We will use the condition as

a constraint condition for LMI problem. The numerical

calculation of LMI was performed by Sedumi software [17].

γ converged to a value of γ = 0.2165. The resulting learning

filter is shown with Tp(z)
−1

in Fig. 6. In Fig 6, we notice

that the Bode plot of L(z) follows that of T−1
p (z). As a result,

the gain of L(z) is high at high frequencies. The gain of L(z)
is close to T−1

p up to 300 Hz, as shown in Fig. 6.

Fig. 6. Bode plot of T−1
p (solid), Bode plot of L (dashed)

D. Shaping the learning filter

The high learning filter gain at high frequencies, where

Tp is close to zero, may make the learning system sensitive

to the initial condition error, the disturbance, and the un-

certainty of the model at high frequencies. We do not need

to make the learning gain track the inverse of Tp above the

Q-filter bandwidth, because the learning process is needed

only within Q-filter bandwidth. We will shape the learning

filter by introducing a weighting function, Wp. Also, we

may want to make learning filter active at some frequencies

within the Q-filter bandwidth. Therefore, we will introduce

another weighting function, Wt , for it. (7) and (17) can be

represented after introducing weighting functions as,

‖WtQ(1−LWpTp)‖∞ = γ

(γ < 1 ) (26)

The Bode plot of Wp and Wt are shown in Fig. 7 and

Fig 8. Wp is a zero-phase weighting function to raise

the gain of Tp at high frequencies in order to shape the

learning filter. Wp is 1 within Q-filter bandwidth and

increase at high frequencies which is at least above Q-filter

bandwidth. We set Wp to increase around 50 Hz. Wt is also

a zero-phase weighting function for adjusting the value of

(1 − LP) at some frequencies within Q-filter bandwidth.

As the value of (1 − LP) become smaller, the learning

process become more active. Wt is 1 outside of Q-filter

bandwidth. In this case, we set the Wt to be 3 up to 0.1 Hz. It

means the value of (1−LP) will be less than 1
3

up to 0.1 Hz.

Fig. 7. Bode plot of Wp
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Fig. 8. Bode plot of Wt

γ converged to a value of 0.3462. The resulting learning

filter is shown with Tp(z)
−1

in Fig. 9. As we can see in Fig

10, the designed ILC satisfies the condition for stability and

monotonic convergence. Also, ||Q(1−LP)||∞ is less than 1
3

up to 0.1 Hz. In Fig 9, we can notice the difference between

the previous designed L(z) and the new designed L(z). The

Bode plot of the new designed L(z) follows the bode plot

of Tp up to around 20 Hz, Q-filter bandwidth. However, the

learning gain does not increase at high frequencies , and goes

down.

Fig. 9. Bode plot of T−1
p (solid), Bode plot of L (dashed)

Fig. 10. Bode plot of Q(1−LP)

E. Observation of Output of Feedback Controller after Im-

plementing ILC

We designed a learning filter by considering two condi-

tions, stability and monotonic convergence. However, we

did not consider the characteristics of the output of the

feedback controller after implementing ILC. Even if ILC

input itself is acceptable, it is possible that the output of the

feedback controller is not acceptable, for example, its norm

of the output of the feedback controller flutters a lot in each

iteration. In this section, we will observe the relationship

between the norm of feedback input and the design of Q

and L. h j is the output of the feedback controller as shown

in Fig. 3.

h j = CvmSvum j +CvmSvC
−1
vm u f f

= CvmSvKpmSp(u j +θmr)

+CvmSvC
−1
v u f f (27)

e j = θmr − y j

= θmr −SmGmoh j (28)

From (3), (27) and (28),

h j+1 = CvmSvKpmSp(u j+1 +θmr)

+CvmSvC
−1
v u f f

= CvmSvKpmSp(Q(u j+1 +Le j)+θmr)

+CvmSvC
−1
v u f f

= Q(I −CvmSvKpmSpLSmGmo)h j+

(I −Q)CvmSvKpmSpθmr +(I −Q)CvmSvC
−1
v u f f (29)

Therefore,

||h j+1 −h∞||∞

= Q(I −CvmSvKpmSpLSmGmo)||h j −h∞||∞ (30)

In SISO, considering (23), it follows that,

||h j+1 −h∞||∞ = Q(1−TpL)||h j −h∞||∞ (31)

As a result, we find that the condition for feedback signal

convergence is the same as the condition for stability and

monotonic convergence.

F. Experimental Results

We applied the learning filter to the industrial robot. The

sampling time of ILC is 1 msec, and the number of error

and ILC input samples is 3500. The results are shown in Fig.

11 − Fig. 15. Fig. 11 shows reference signal and measured

motor position before ILC.

Fig. 11. Reference (Solid) and Motor Position before ILC (dashed)
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Fig. 12. Motor Position Error before ILC (dashed) and after ILC (Solid)

We can observe in Fig. 12 that the motor position error

becomes close to zero after implementing ILC, which

implies that Q-filter bandwidth is high enough to learn

the external disturbance. Also, we can confirm stability

and monotonic convergence of the system in Fig. 13−
Fig. 15. The ILC input converges after 5−6 cycles, and

its convergence is monotonic. Also, we can observe that

the norm of error and the norm of the output of feedback

controller converge monotonically after 3−4 cycles.

Fig. 13. Norm of ILC Input

Fig. 14. Norm of Motor Position Error

Fig. 15. Norm of Output of Feedback Controller

IV. CONCLUSIONS

We proposed a design method for ILC in the frequency

domain, by modifying the lifted system LMI method. The

designed ILC was applied to an industrial robot after shaping

the learning filter by weighting functions. Also, we examined

the condition for monotonic convergence of the output of

the feedback controllers after implementing ILC. Through

experiments with the robot, we demonstrated stability of the

system and monotonic convergence of the norm of ILC input,

the norm of error, and the norm of the feedback controller

output, as well as showing the improvement of the tracking

performance.

V. ACKNOWLEDGMENTS

This work was in part supported by Fanuc Ltd. The authors

would also like to thank H. Stearns.

REFERENCES

[1] C. -C. Wang, "Motion Control of Indirect-Drive Robots", Ph.D thesis,

Department of Mechanical Engineering, U. C. Berkeley

[2] M. Uchiyama, "Formulation of high-speed motion pattern of mechan-
ical arm by trial", Trans. SICE (Soc. Instrum. Contr. Eng.), vol.14, no.
6, pp.706-712(in Japanese), 1978

[3] S. Arimoto, S. Kawamura, and F. Miyazaki, "Bettering operation of
robots by learning", J. of Robotic Systems, vol.1, no. 2, pp.123-140,
1984

[4] G. Casalino, G. Bartolini, "A learning procedure for the control of
movements of robotic manipulators", IASTED symposium on robotics

and automation, Amsterdam, 1984, pp. 108-111
[5] J. J. Craig, "Adaptive control of manipulators through repeated trials",

in Proceedings of the American control conference, San Diego, 1984,
pp. 1566-1574

[6] D. D. Roover, "Synthesis of robust multivariable iterative learning con-
trollers with application to a wafer stage motion system", international

Journal of Control, vol. 73, no. 10, 2000, pp. 968-979
[7] J. H. Moon, T. Y. Doh, and M. J. Chung, "A robust approach to

iterative learning control design for uncertain systems", Automatica,
vol. 34, no. 8, 1998, pp. 1001-1004

[8] J. Xu, M. Sun, and L. Yu, "LMI-based synthesis of robust iterative
learning controller with current feedback for linear uncertain systems",
International Journal of Control Automation and Systems, vol. 6, no.
2, 2008, pp. 171-179

[9] H. Ahn, K. L. Moore, and Y. Chen, "LMI Approach to Iterative
Learning Control Design", Adaptive and Learning Systems, 2006 IEEE

Mountain Workshop on, 2006, pp.72-77
[10] S. Mishra and M. Tomizuka, "Iterative Learning Control Design

Application Waferstage Control", MSC Seminar , Mar 2007
[11] S. Mishra and M. Tomizuka, "Iterative Learning Control Design for

Waferstage Positioning based on Orthogonal Projection", American

Control Conference , Seattle, WA, Jun 2008
[12] D. A. Bristow, M. Tharayil, and A. G. Alleyne, "A survey of iterative

learning control", Ieee Control Systems Magazine, vol. 26, no. 3, 2006,
pp. 96-114

[13] L. El. Ghaoui and S. Niculescu, Advances in linear matrix inequality

methods in control , Society for Industrial and Applied Mathematics,
PA; 1999, pp. 3-37

[14] S. -C. Wu and M. Tomizuka, "An Iterative Learning Control Design
for Self-Servowriting in Hard Disk Drive", in Proceeding of the 17th

World Congress The International Federation of Automatic Control,
Seoul, Korea, 2008

[15] Fanuc Ltd., "http://www.fanucrobotics.com/24,987.html"
[16] Mathworks., "http://www.mathworks.com/products/xpctarget/"
[17] Sedumi, "http://sedumi.mcmaster.ca/"

251


