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Abstract— Motion coordination for coverage optimization
purposes in mobile networks with limited sensory range is the
scope of this paper. The coordination planning is based on
Voronoi tessellations by taking into consideration the sensory
radius of each agent. Optimization is performed in order to
increase the total area covered by the network. An online
directional–search algorithm is proposed in order to achieve
locally optimal coverage. An agent moves inside its region of
responsibility in a way that the total area surveyed by the
network increases. The online control action makes the network
adaptive to possible changes in the environment. Results are
compared to schemes that base their action on Centroidal
Voronoi Tessellations (CVT).

Index Terms— Voronoi diagrams, coverage optimization, di-
rectional search

I. INTRODUCTION

The provision of an adequate surveillance of a geographic

region with a feasible cost dictates the formation of an

integrated system with optimum geodesic topology as far as

the sensor deployment [1]. Furthermore, the mobile abilities

of these sensors can offer adaptation due to changes in the

surveyed environment (as in search–and–rescue missions) or

alteration of the network [2–4].

Many researchers have studied the problem of keeping

the network connected all the time in order to ensure data

transfer from one point to another [1, 5]. The problem is

examined from a communication point of view based on

graph theory. It is profound that such control policies do

not achieve optimum area coverage and this is the trade–off

to be balanced. In other scenarios studied, the network is

supposed to be static and the usage of mobile agents for its

re–connection is examined in cases where some nodes break

down and the latter is separated in clusters [6]. Coverage

control of agents with limited anisotropic sensory has been

studied in [7].

Since the coordination of a whole network is cumbersome

from a computational point of view especially when the

number of nodes is too large, decentralized control tech-

niques based on partitioning of the area of interest into

smaller ones (known as Voronoi diagrams [8]) have been

studied [9, 10]. In such cases each node is responsible for its

area of responsibility rather than the entire space, trying to
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optimize a criterion [9, 11]. Furthermore, an interesting field

for research is to control the transmission power of each

of the nodes in the network for reconfiguration purposes

by taking into account the lifetime of each of the nodes.

Optimum positioning scheme when the nodes’ range can

vary is studied in [12].

The innovation of this work lays in the fact that the opti-

mization criterion is the total area covered by the network,

rather than some symmetry criterion [9]. This problem has

been examined from an instantaneous coverage point of view

[10], where the agents coordinate their motion such that

all points in the environment are surveyed through time by

an equal amount. Inexistence of analytical expression for

the covered area by a set of agents results in inability to

find continuous–time control laws based on gradients. The

algorithm proposed in this paper surpasses this problem and

guarantees (locally) optimal coverage ratio.

The article is organized as follows. In section II the

coverage problem from a group of agents is presented and

the contribution of Voronoi partitioning of the space in the

first is examined. In section III the classical offline opti-

mization problem and the proposed algorithm for the online

version are discussed and compared, while in section IV

motion coordination strategies based on directional–search

optimization are analyzed. Simulation results in section V

are presented that show the efficacy of each of the proposed

algorithms. Concluding remarks are provided on the last

section.

II. PROBLEM FORMULATION

A. Coverage problem setup

Let Ω the region under surveillance be a convex closed

set in R
2. Suppose that n is the number of available mobile

agents responsible for the sensing coverage of Ω. Let us

denote the set IK = {i ∈ N : i ≤ K} for any K ∈N. The agents

are considered to move on the R
2 Euclidean configuration

space and their positions are denoted as xi ∈ R
2, i ∈ In. The

following assumption are made for the agents:

Assumption 1. The agents are supposed to move on the

R
2 plane through two control inputs each, while obeying the

discrete evolutionary equation (equivalently to [10]):

xi (k +1) = xi (k)+ui (k) , ui,xi ∈ R
2, i ∈ In, (1)

subject to saturation limits in the control inputs ui:

‖ui‖∞ ≤ ῡ , i ∈ In. (2)

Assumption 2. Each agent is supposed to have a uniform

circular sensing pattern centered at the agent’s position xi
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and is limited by a fixed maximum sensing radius r. The

critical sensing radius is the same for all agents since the

network is considered homogeneous. Let us denote as Ci the

sensing region of each agent i, i.e.:

Ci =
{

x ∈ R
2 : ‖x−xi‖ ≤ r

}

, i ∈ In. (3)

The agents are initially deployed randomly in Ω. The goal

is to find optimal positions such that the area of the covered

region set of Ω is as high as possible. For a closed compact

convex set P ⊂ R
2 let ∂P be its boundary, i.e. the smallest

polygon enclosing P. Then ∂P is fully defined by its vertices

p j =
(

xp j
,yp j

)

, j ∈ INP
, where NP is the number of the

vertices and xp j
,yp j

are the coordinates of vertex p j in the

base coordinate frame. Then the area–function A (·) for any

P is defined as [13]:

A (P) =
1

2

NP

∑
j=1

(

xp j
yp j+1

− xp j+1
yp j

)

, (4)

where pNP+1 ≡ p1 and the vertices p j are set in counter–

clockwise order.

The main objective is to position the agents at certain

positions such that the total region of Ω surveyed by the

network is maximized:

max
xi, i∈In

A

(

Ω∩
⋃

i∈In

Ci

)

. (5)

B. Voronoi spatial tessellations

At each agent a responsibility region is assigned based on

the spatial coordinates of the agents in the plane. The set of

these regions is well–known as a Voronoi diagram [8]. For

the convex closed set Ω and the n cites (agents), the region

under surveillance is partitioned in n closed convex subsets

Vi, i ∈ In, which are defined as:

Vi =
{

x ∈ Ω : ‖x−xi‖ ≤
∥

∥x−xj

∥

∥ , ∀ j ∈ In

}

, i ∈ In. (6)

The closed set Vi is known as the Voronoi cell of node/agent i.

It should be noted that a Voronoi diagram is a full tessellation

of Ω ⊂ R
2, since

⋃

i∈In
Vi = Ω. A Voronoi cell is uniquely

characterized by the set of its vertices. A point x ∈ Ω can:

a) either lay in the interior of a Voronoi cell, i.e. x ∈ int(Vi),
and node i is responsible for its coverage, or b) lay on the

boundary of a Voronoi cell, i.e. x ∈ ∂Vi and more than one

nodes are responsible it.

In this paper the agents should be moved in a way to

try and cover ideally the whole space Ω, considering their

limited sensing capabilities. Thus, the Voronoi tessellation

alone is not sufficient for the motion algorithms, but the

sensing regions Ci, i ∈ In should be taken into account. The

R–limited Voronoi sets are defined as:

V R
i = {x ∈ Ω : x ∈Vi ∩Ci} , i ∈ In. (7)

An important property of these sets is that, since Ω,Vi,Ci

are convex sets ∀i ∈ In, then V R
i are all convex sets, too.

However, they do not always apart a full tessellation of Ω,

since
⋃

i∈In
V R

i ⊆ Ω.

For each agent, the blind regions of its own Voronoi cell

(the regions inside the Voronoi cell that do not lay in the

sensing region) are defined by:

Bi = {x ∈ Ω : x ∈ (Vi −Ci)} , i ∈ In, (8)

while the unexploited regions of an agent (parts of the

sensing region of the node that do not contribute to coverage

of Vi) are defined as:

Ui =
{

x ∈ R
2 : x ∈

(

Ci −V R
i

)}

, i ∈ In. (9)

It should be noted that although Vi,V
R
i ,Bi ⊆ Ω, ∀i ∈ In

by definition, the same does not always hold for Ui. The

aforementioned regions for one node are shown in Fig.1.

Blind regions

Unexploited regions

Sensing region

R-limited Voronoi cell

Voronoi cell

Fig. 1. Characterization of the different regions concerning an agent and
its Voronoi cell

Consequently, the total region of Ω surveyed by the

network S, can be written as:

S =

{

x ∈ R
2 : x ∈ Ω∩

⋃

i∈In

Ci

}

=
⋃

i∈In

V R
i . (10)

The main advantage in computation of S via (10) is that,

since V R
i ∩V R

j = /0, i 6= j, the area covered by the network

can be computed as the summation of the areas of the

independent R–limited Voronoi sets.

III. CONTROL POLICIES FOR COVERAGE

OPTIMIZATION

A. Offline global optimization strategy

Suppose again Ω ⊂ R
2 the convex region to be surveyed

by n nodes with limited sensory range as defined by (3).

The objective is to find the planar coordinates of each node

xi ∈ Ω, i ∈ In that optimize the coverage criterion (5). Since

there is no closed form expression for A (S), a numerical

approach must be followed.

This is a standard constrained numerical optimization

problem which may converge to possible local extrema. The

constraint emerges from the fact that all nodes should lay on

the boundary or in the interior of Ω. Let X = (x1,x2, . . .xn) be

the vector of the coordinates of all the agents, X ∈ R
2n. The

constraint xi ∈ Ω, ∀i ∈ In can be cast in a linear compact

form as AconX ≤ Bcon, where the matrices Acon, Bcon are

explicitly defined by the vertices p j of Ω [14]. Note that

Acon ∈ R
nNΩ ×R

2n, Bcon ∈ R
nNΩ .
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Thus, the offline version of the coverage problem can

be defined as the solution of the following constrained

optimization:

max
X

A (S) , AconX ≤ Bcon, (11)

where S is given by (10). This is a computationally intensive

optimization problem to solve due to the inexistence of an

analytical expression for A (S), the large number of local

extrema of it and the time it takes (for even a small number

of nodes).

B. Online methods — convergence to local extrema

The most significant disadvantage in the offline version

described in III-A is its lack of adaptation. Consequently, in

case the region of interest changes or if an agent/node runs

out of energy, then a new optimization should be performed

for the “new” optimal positioning of the nodes, which may

be disastrous in cases of emergency. Online algorithms are

faster from a time–to–solve point of view and are adaptive

since the optimization is performed online by the network

itself. However, global optimal solution is not guaranteed,

due to the large number of local extrema of the problem.

One of the main differences, compared to the offline

method, is that we are not interested in defining only the

final optimal positioning of the nodes, but also the whole

path they follow (their positions at each time step), such that

(if possible) the total coverage is an increasing function of

time. What needs to be ensured is i) stability of the network’s

motion and ii) locally optimum coverage in the final state.

Accomplishment of the first objective can be ensured if

only one node moves at each time step in a way that the total

coverage increases. The selection of the node–to–move can

be performed randomly among the set of them. The motion

is performed into small maneuvers (ε–motions), such that the

Voronoi partitioning of the space does not alter significantly.

As for the second objective, the selected agent that is to

move at each time step first finds the direction at which it

should move inside its own Voronoi cell, such that the area

of the total region surveyed by the network will be increased

(due to its motion). In case that motion of the node results

in less coverage area, then another node is chosen, until one

agent able to increase coverage is found. The procedure ends

when all nodes’ motions lead in less coverage than that in

the previous time step or when the mean of the coverage

contribution in the last M steps is insignificant, when M is

a parameter chosen by the coordinator.

In the policy presented above it is profound that each

agent should be able to compute its own Voronoi cell. It

should be noted that since we are interested in the sensing

coverage of a compact region Ω, none of the Voronoi sets

is an open set. In order to be able to do this, an agent

should known the positions of its Delaunay neighbors [8],

which are all the agents that have a common Voronoi edge

with that node. In this paper it is supposed that either a

supervisor–coordinator informs periodically the agents about

the position of their Delaunay neighbors or all nodes have

communication capabilities with transmission power such

that they can exchange information with their Delaunay

neighbors, at each time step.

IV. ANALYSIS OF ONLINE METHODS — A

DIRECTIONAL SEARCH APPROACH

In this section the general online optimization strategy de-

scribed in III-B, which takes into account the limited sensory

range of the agents, is clarified step by step. The nodes

are initially deployed in Ω. In order to prevent oscillatory

phenomena in the network behavior, only one node is moved

at a time. At this point, what is not clearly yet defined are:

i) the direction at which a node is to move and ii) the

exact motion of the selected agent to move at each time

step. In this paper, two schemes are proposed concerning

the aforementioned issues, which both base their action on

directional search strategies.

According to the first, the selected agent that is to move

at each time step performs an optimization for defining the

direction at which it should move inside its own Voronoi cell.

The criterion to maximize is the slope of the area of the total

region surveyed by the network. Thus, it is guaranteed that

not only the total area will be increased comparing to the

previous time step (due to the motion of the node), but with

the highest possible rate, too. This problem can easily be

solved by scanning the node’s heading perimetrically around

itself.

According to the second algorithm, the selected agent at

each time step does not perform any optimization at all, but

move towards the direction of the centroid of its R–limited

Voronoi. This strategy needs by far less computational effort

compared to the first one; however, since its roots lay in

CVT theory, it does not guarantee optimum coverage, but

optimizes some symmetry criterion, instead. Comparing to

other CVT algorithms though [12, 15], the one chosen in

this article is the one that contributes most to coverage.

A. Steepest descent scheme

As mentioned above, what needs to be defined clearly

is the appropriate direction towards which the node should

move, along with the manner of its motion. According to

this algorithm, the selection of the appropriate heading is

made considering the one that leads in the highest area

covered by the network. Thus, it results in a steepest descent

optimization algorithm which is performed for one node at

a time in order to define the direction at which it will move.

It is profound that in case the node lays in a position which

is a local maximum for its own coverage contribution, then

the first is selected to stand still and another agent from the

random list is chosen to fulfill the objective. When all nodes’

motions lead in less coverage ratio than the current one, then

their current positions are the optimal ones that one seeks.

The problem is that their is no analytical expression for

the total area covered, and thus the gradients have to be

computed in a discrete manner. Let j be the node that is

to move. Discrete gradient implementation implies that the

points at which the “new” coverage ratio will be computed,
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should not be too far from the current node’s position x j (k)
or equivalently:

∥

∥x j (k)− x̂ j (k +1)
∥

∥ ≤ ε, (12)

where x̂ j (k +1) is the estimated node’s position at the next

time step and 0 < ε ≤ ῡ is to be kept small, so that the

current tessellation of Ω is not altered significantly (Note:

the inequality ε ≤ ῡ emerges from (2)). The reason for using

an estimated position is that during the optimization stage

for determining the suitable heading, one does not know yet

which direction will be selected for the node’s motion. As a

conclusion, the optimal heading computed with this method

is given as:

θ (k) = argmax

{

∑
i∈In

A
(

V̂ R
i (k +1)

)

− ∑
i∈In

A
(

V R
i (k)

)

}

,

(13)

subject to:

∑
i∈In

A
(

V̂ R
i (k +1)

)

> ∑
i∈In

A
(

V R
i (k)

)

. (14)

Constraints (14) have been inserted since we are interested

in only increasing the coverage ratio performed by the

network. It should be noted that the reason for computing

the network coverage area as the summation of the areas

of the independent R–limited Voronoi sets (instead of the

the area of their union) is because the latter are disjoint

by definition, i.e. V R
i ∩V R

j = /0, ∀(i, j) ∈ In × In, i 6= j. Of

course, in case that there is no valid solution in (13)–(14),

then another node is chosen as a candidate to move. It should

be noted that the constrained optimization problem (13)–(14)

is computationally tractable, since the search is performed for

a single parameter θ (k).
Having computed the suitable heading θ (k) for node j,

the latter has to move towards that direction. It is profound

that the amount of distance the node moves should be that at

which the prediction was made, considering (12) and (13).

As a result, the control inputs of the agent are given by:

u j (k) =

(

ε cosθ (k)
ε sinθ (k)

)

, (15)

where constraints (2) obviously hold and ui (k) = 0, i ∈
In, i 6= j.

B. CVT–based scheme

Although the category of algorithms that base their action

on centroids converge in solutions that optimize some “sym-

metry” criterion, they are presented in order to emphasize

their contribution to coverage problems. The main difference

compared to [12] is that a node is chosen to move towards

that centroid iff the network’s coverage is increased by that

motion; otherwise another node is chosen to move.

The most common algorithm for quasi–symmetric spatial

distribution of the nodes in a sensor network is to move

each node to the centroid of its own Voronoi cell. However,

this algorithm is not suitable in cases where the sensors

have limited range, since it takes into account only the

spatial characteristics of the network and thus is not suit

for coverage purposes.

A more appropriate version of this algorithm is to move

each node to the centroid of its own R–limited Voronoi cell.

Taking into consideration that the sensing pattern of all nodes

is symmetrical, it is profound that in the case when Ci ⊆Vi ⇔
Ci ≡ V R

i , the centroid of V R
i coincides with the node itself,

i.e. C
(

V R
i

)

≡ xi.

For a compact convex closed set P ⊂ R
2 let the smallest

enclosing polygon ∂P consist of NP vertices p j, j ∈ INP
and

its area denoted as A (P). The planar coordinates of the

centroid of this set C (P) =
(

xC (P),yC (P)

)

are then given by

[13]:

xC (P) =
1

6A (P)

NP

∑
j=1

(xp j
+ xp j+1

)(xp j
yp j+1

− xp j+1
yp j

), (16)

yC (P) =
1

6A (P)

NP

∑
j=1

(yp j
+ yp j+1

)(xp j
yp j+1

− xp j+1
yp j

), (17)

where pNP+1 ≡ p1, A (P) is defined in (4) and the vertices

p j are considered in counter–clockwise order.

In order to emphasize in the intuitive physical properties

of an algorithm that coordinates the nodes’ motion towards

the centroid of their R–limited Voronoi cells, imagine that the

sensing radius of an agent increases with a steady rate; there

will be a time where ∂Ci will intersect ∂Vi and consequently

Ui 6= /0. Let the centroid of the unexploited regions be denoted

as C (Ui). By definition of the area centroid, since Ci =V R
i ∪

Ui, A
(

V R
i ∩Ui

)

= 0, and C (Ci) = xi, ∀i∈ In, one can verify

that:

C
(

V R
i

)

A
(

V R
i

)

+C (Ui)A (Ui) = xiA (Ci) . (18)

Furthermore A (Ci) = A (Ui)+A
(

V R
i

)

holds and thus the

centroid of V R
i can be computed by (18) as:

C

(

V R
i

)

= xi

(

A (Ui)+A
(

V R
i

)

A
(

V R
i

)

)

−C (Ui)

(

A (Ui)

A
(

V R
i

)

)

(19)

Note that when A (Ui) = 0, then C
(

V R
i

)

≡ xi.

A important remark is that the unexploited regions of

an agent’s sensing region w.r.t its own Voronoi cell act as

repulses when the agent is moving towards the centroid of its

R–limited Voronoi cell, while the magnitude of the “artificial

repulsive force” is proportional to the area of these unex-

ploited regions. Thus one can conclude that this algorithm

tends to maximize the “symmetry” of the unexploited regions

around an agent itself.

As in IV-A, one should defined the appropriate direction

towards which the node should move, along with the control

inputs, by using the algorithm presented in this section. Let

again j ∈ In be the index of the agent that is selected (in a

random manner) to move, and x j (k) be its spatial coordinates

at this time step. Let θ (k) be the appropriate heading, which

in this case is given as:

θ (k) = angle
(

C
(

V R
j (k)

)

−x j (k)
)

, (20)

where angle(·) is the heading function of the vector given

as argument.
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By taking into account the selected heading direction θ (k)
one could select the control inputs via the following control

law:

u j (k) =

(

min
{

Kῡ ,

∥

∥

∥
x j (k)−C

(

V R
j (k)

)∥

∥

∥

}

cosθ (k)

min
{

Kῡ,

∥

∥

∥
x j (k)−C

(

V R
j (k)

)∥

∥

∥

}

sinθ (k)

)

, (21)

where 0 < K ≤ 1 is a factor to suppress high values of ῡ ,

that may lead to significant change in the Voronoi topology

from one step to another. This alternative offers a special

advantage over (15) in case where the centroid lays near

the node, avoiding so any oscillatory undesired response

in the node’s positioning between consecutive steps of the

algorithm.

Overall, the suggested algorithms fall along the concept

of a single–step ahead predictive control laws. The con-

vergence can certainly be improved if a multi–step ahead

cost function is employed; however, the problem becomes

computationally intractable due to the exploding number

of constraints (14) and prediction–horizon related results

(θ (k) , θ (k +1) , . . .).

V. SIMULATION RESULTS

Simulation studies were carried out in order to show

the efficacy of the proposed schemes. The region Ω to be

surveyed is a convex set in R
2. During network evolution

the covered area is always increasing until it converges to

an extremum solution. The agents are initially deployed in

Ω, while their kinematics are described by (1). The control

inputs are determined online as explained in sections IV-A

and IV-B, depending on the strategy used in each case, while

their maximum values were selected as ῡ = 5 cm
sample

.

In the simulation studies following, the number of agents is

n = 12 with critical sensing radius equal to r = 2m. The max-

imum theoretically achievable sensing area is ∑i∈In A (Ci) =
nπR2 = 150.8m2, while the area of the region of interest

is A (Ω) = 226.37m2. The convex area under surveillance is

that presented in [1, 12]. Ideally, if possible, the agents should

be able to cover the region without any overlapping, and thus

covering
∑i∈In A (Ci)

A (Ω) = 66.6% of Ω. In both studies, the main

algorithm used is that described in section III-B. Each time

step was considered a 10msec time interval. The algorithm

stops when all nodes’ motions lead in less coverage or when:

k

∑
ℓ=k−M+1

A (S (ℓ))−A (S (ℓ−1)) = A (S (ℓ))−A (S (ℓ−M)) < δ ,

(22)

where S is defined in (10), M is chosen to 50 samples and δ

is set equal to δ = 1cm2. In both scenarios the agents’ initial

configuration is that shown in Fig. 2.

The evolution of the network in time, its final configu-

ration, along with the coverage percentage ratio w.r.t. time,

when the control scheme presented in section IV-A (IV-B)

was applied are shown in Fig. 3 (4). The straight line in the

percentage covered area figures (c) represents the maximum

possible coverage ratio, which in our case is 66.6%.

The value of ε was selected equal to ῡ , since the latter

is not considered large enough. As far as concerns the final

Fig. 2. Initial state of the network for both simulation studies

nodes state, it is obvious that the agents have positioned

themselves such that there is no overlapping between their

sensing patterns, while attaining optimum coverage, for both

cases. As far as concerns Fig. 3(c), the initial coverage

percentage ratio is 21.57%, while in almost 10sec (1000 sam-

ples) the latter has reached the maximum possible coverage

percentage ratio 66.6%. It is also obvious that the covered

area by the network is a strictly increasing function of time,

as expected, since as it has been mentioned, a node does not

move unless its motion contributes to total coverage.

As for Fig. 4(c), in the first 20sec (2000 samples) of

simulation the network has achieved coverage percentage

ratio 65%, while maximum coverage percentage ratio is

achieved after 40sec more. The covered area by the network

is a strictly increasing function of time, as expected in this

scenario, too. It should be noted that the maximum possible

coverage ratio is the same for both simulations, since it only

depends on the nodes’ common sensing radius r and the

number of nodes n.

Judging from the results obtained by simulation studies,

one can see that optimum coverage is obtained faster when

using the algorithm of section IV-A, compared to that when

using that of IV-B. Indeed, this was absolutely expectable,

since according to the first algorithm, the moving node

drives towards the direction where maximum coverage will

be achieved. Apart from that, when using the algorithm

of section IV-B, due to the control law (21), when the

network state is near–to–optimal, the nodes perform micro–

maneuvers. Finally, comparing Fig. 4(b) and Fig. 3(b), one

can see that usage of the control scheme in section IV-B

tends to keep the network more cohesive.

Comparing this work to previous ones, it is seen that the

network tries to optimize the area covered by itself, rather

than some symmetry criterion [9, 12, 15]. The fact that only

one node moves at a time parts the main difference, while

proof of optimal area achievement is guaranteed by this way.

VI. CONCLUSIONS

In this paper control strategies are presented for optimizing

the area covered by a homogeneous network consisted of

mobile agents, where the coordination planning is based on

Voronoi tessellations. Two directional–search online control
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Fig. 3. Control scheme presented in section IV-A: (a) Evolution of the agents’ positions (the dots represent final positions), (b) Final state of the network,
(c) Percentage of covered area w.r.t. time
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Fig. 4. Control scheme presented in section IV-B: (a) Evolution of the agents’ positions (the dots represent final positions), (b) Final state of the network,
(c) Percentage of covered area w.r.t. time

schemes were proposed in order to achieve optimum cover-

age. Due to the nature of the latter, the total area covered by

the agents is a strictly increasing function of time. Online

action makes the network flexible and reconfigurable to

environmental changes. Considering heterogeneous networks

or unequal surveillance of regions inside a node’s pattern

consist possible extension of this work.
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