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Abstract— The present paper is concerned with the robust
state feedback stabilization of uncertain discrete-time con-
strained nonlinear systems in which the loop is closed through
a packet-based communication network. In order to cope with
model uncertainty, time-varying transmission delays and packet
dropouts which typically affect networked control systems, a
robust control policy, which combines model predictive control
with a network delay compensation strategy, is proposed.
The contribution of the paper is twofold. First, the issue
of guaranteeing the recursive feasibility of the optimization
problem associated to the receding horizon control law has
been addressed, such that the invariance of the feasible region
under the networked closed-loop dynamics can be guaranteed.
Secondly, the Input-to-Stability property of the networked
closed-loop system with respect to bounded perturbations has
been analyzed.

Index Terms— Networked Control Systems, Nonlinear Con-
trol, Model Predictive Control.

I. INTRODUCTION

In the past few years, control applications in which sensor
data and actuator commands are sent through a shared
communication network have attracted increasing attention
in control engineering, since network technologies provide a
convenient way to remotely control large distributed plants
[1]. These systems, usually referenced as Networked Control
Systems (NCS’s), are affected by the dynamics introduced
by both the physical link and the communication protocol,
that, in general, need to be taken in account in the design
of the NCS. Various control schemes have been presented
in the current literature to design effective NCS’s for linear
time-invariant systems [5], [7], [12], [20], [21]. Moreover,
if the system to be controlled is subjected to constraints
and nonlinearities, the formulation of an effective networked
control strategy becomes a really hard task [19]. In this
framework, the present paper provides theoretical results that
motivate, under suitable assumptions, the combined use of
nonlinear Model Predictive Control (MPC) with a Network
Delay Compensation (NDC) strategy [2], [18], in order to
cope with the simultaneous presence of model uncertainties,
time-varying transmission delays and data-packet losses. In
the current literature, for the specific class of MPC schemes
which impose a fixed terminal constraint set, Xf , as a stabi-
lizing condition, the robust stability properties of the overall
c-l system, in absence of transmission delays, has been
shown to depend on the invariance properties of Xf , [11],
[17]. In this regard, by resorting to invariant set theoretic
arguments [3], [9], this paper aims to show that the devised
NCS can robustly stabilize a nonlinear constrained system
even in presence of data transmission delays and model
uncertainty. In particular, the issue of recursive feasibility
in constrained networked nonlinear MPC, first addressed in
[16], in this paper is shown to be key point to prove the
Input-to-State Stability (ISS) of the scheme w.r.t. additive
perturbations. Indeed, by exploiting a novel characterization
of regional ISS in terms of time-varying Lyapunov functions,
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the closed-loop system is shown to be ISS with respect to
the aforementioned class of disturbances, even in presence
of unreliable networked communication links.

II. MAIN NOTATION AND BASIC DEFINITIONS

Let R, R≥0, Z, and Z≥0 denote the real, the non-
negative real, the integer, and the non-negative integer sets
of numbers, respectively. The Euclidean norm is denoted
as | · |. For any discrete-time sequence φ : Z≥0 → R

m,

‖φ‖,sup k≥0{|φk|} and ‖φ[τ ]‖,sup 0≤k≤τ{|φk|}, where φk

denotes the value that the sequence φ takes on in correspon-
dence with the index k. The set of discrete-time sequences of
υ taking values in some subset Υ⊂R

m is denoted by MΥ.
Given a compact set A⊆R

n, let ∂A denote the boundary

of A. Given a vector x∈R
n, d(x,A) , inf {|ξ−x| , ξ∈A}

is the point-to-set distance from x ∈ R
n to A. Given two

sets A ⊆ R
n, B ⊆ R

n, dist(A,B) , inf {d(ζ,A), ζ∈B} is
the minimal set-to-set distance. The difference between two
given sets A⊆R

n and B⊆R
n, with B⊆A, is denoted as

A\B , {x : x∈A, x/∈B}. Given two sets A∈R
n, B ∈R

n,

the Pontryagin difference set C is defined as C=A ∽ B,
{x∈R

n : x+ξ∈A,∀ξ∈B}. Given a vector η ∈ R
n and a

scalar ρ ∈ R>0, the closed ball centered in η of radius ρ
is denoted as Bn(η, ρ),{ξ∈R

n : |ξ−η|≤ρ}. The shorthand
Bn(ρ) is used when η = 0. A function α : R≥0 → R≥0
belongs to class K if it is continuous, zero at zero, and strictly
increasing.

Let us consider the time-varying discrete-time dynamic
system

xt+1 = g(t, xt, υt), t ∈ Z≥0, x0 = x , (1)

with g(t, 0, 0) = 0, ∀t ≥ T with T ∈ Z≥0, and where
xt ∈ R

n and υt ∈ Υ ⊂ R
r denote the state and the

bounded input of the system, respectively. The discrete-
time state trajectory of the system (1), with initial state
x0 = x and input sequence υ ∈ MΥ , is denoted by
x(t, x,υ0,t), t ∈ Z≥0.

Definition 2.1 (RPI set): A set Ξ ⊂ R
n is a Robust Posi-

tively Invariant (RPI) set for system (1) if, for all t ∈ Z≥0,
it holds that g(t, x0, υ) ∈ Ξ, ∀x ∈ Ξ and ∀υ ∈ Υ. �

In the following, the Regional Input-to-State Stability
property, recently introduced in [13] (see also [6]), is re-
called. It is worth noting that regional results are needed in
the framework of nonlinear MPC due to the impossibility
to obtain, in general, global bounds on the finite horizon
costs used as Lyapunov function in the stability analysis.
Nonetheless, in the framework of NCS’s, due to the vari-
ability of transmission delays, a time invariant formulation
is not suited, therefore it is necessary to extend the regional
ISS analysis in order to cope with time-varying Lyapunov
functions (see [4] and [14])

The following definition of regional ISS is provided for
time-varying discrete-time nonlinear systems of the form (1).
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Definition 2.2 (Regional ISS in Ξ): Given a compact set
Ξ⊂R

n, if Ξ is RPI for (1) and if there exist a KL-function
β and a K-function γ such that

|x(t, x,υ0,t−1)|
≤ max

{

β(|x|, t),γ(‖υ[t−1]‖)
}

,∀t∈Z≥0,∀x∈Ξ,
(2)

then the system (1), with υ ∈MΥ, is said to be regional
Input-to-State Stable (ISS) for initial conditions in Ξ. �

In literature there exist some recent results concerning the
characterization of the ISS property in terms of time-varying
Lyapunov functions for perturbed (uncertain) discrete-time
system [8], [10]; on the other hand those results guarantee
the Input-to-State Stability property in a semi-global sense,
and cannot be trivially used in the MPC setup due to
the impossibility to obtain global bounds for the candidate
ISS Lyapunov function. Indeed, for systems controlled by
predictive control schemes the stability analysis needs to be
carried out by using non smooth ISS-Lyapunov functions
with an upper bound guaranteed only in a sub-region of the
domain of attraction [13]. Therefore, a regional ISS result
for a family of time-varying Lyapunov functions is needed
to assess the stability properties of MPC-based NCS’s.

To this end, let us first consider the following definition.

Definition 2.3 (Time-varying ISS-Lyapunov Function):
Given a pair of compact sets Ξ ⊂ R

n and Ω ⊆ Ξ,
with Ξ RPI for system (1) and {0} ⊂ Ω, a function
V (·, ·) : Z≥0 × R

n → R≥0 is called a (Regional) ISS-
Lyapunov function in Ξ, if there exist K∞-functions α1,
α2, α3, and K-function σ1 and σ2, such that

1) the following inequalities hold ∀υ ∈ Υ and ∀t ∈ Z≥0

V (t, x)≥α1(|x|), ∀x∈Ξ, (3)

V (t, x)≤α2(|x|) + σ1(|υ|), ∀x∈Ω, (4)

V (t + 1, g(t, x, υ))−V (t, x)≤−α3(|x|)+σ2(|υ|),∀x∈Ξ, (5)

2) there exist some suitable K∞-functions ǫ and ρ (with ρ
such that (id − ρ) is a K∞-function, too) and a positive
scalar c ∈ R>0 such that the set

Θ , {x : V (t, x) ≤ b(υ),∀t ∈ Z≥0}, (6)

verifies the inclusion

Θ ⊆ Ω ∽ Bn(c), (7)

with {0} ∈ Θ and where b(s) , α−1
4 ◦ ρ−1 ◦ σ4(s), α4 ,

α3 ◦α−1
2 , α3(s) , min(α3(s/2), ǫ(s/2)), α(s) , α2(s) +

σ1(s), σ4 = ǫ(s) + σ2(s) and υ , maxυ∈Υ{|υ|}.

�

Now, under the following assumption, the characterization
of the regional ISS property in terms of Lyapunov functions
can be stated.

Assumption 1: For every t ∈ R>0 , the state trajectories
x(t, x0,υ0,t−1) of the system (1) are continuous in x0 = 0
and υ = 0 with respect to the initial condition x0 and the
disturbance sequence υ0,t−1. �

Theorem 2.1 (Lyapunov characterization of regional ISS):
Suppose that Assumption 1 holds. If the system (1) admits
a (time-varying) ISS-Lyapunov function in Ξ, then it is
regional ISS in Ξ with respect to υ and

lim
t→∞

d(x(t, x,υ0,t−1),Θ)=0 , ∀x ∈ Ξ. �

Theorem 2.1 can be proven following the same lines of
the main regional-ISS result in [13]. For a detailed proof see
[15].

Notably, the ISS-Lyapunov inequalities (3),(4) and (5)
differ from those posed in the original regional ISS formula-

tion [13], since an input-dependent upper bound is admitted
in (4) (thus allowing for a more general characterization).
Moreover, with regard to the regional ISS result presented in
[6], the ISS-Lyapunov function V (t, x) is allowed to belong a
family of time-varying functions. Remarkably, the possibility
to incorporate an input-dependent upper bound in (4) and to
admit a time-varying characterization will be instrumental for
characterizing the ISS property for NCS’s, as it will clearly
emerge in Section IV.

III. PROBLEM FORMULATION

Consider the nonlinear discrete-time dynamic system

xt+1 = f(xt, ut, υt), t ∈ Z≥0, x0 = x , (8)

where xt ∈ R
n denotes the state vector, ut ∈ R

m the control
vector and υt ∈ Υ is an uncertain exogenous input vector,
with Υ ⊂ R

r compact and {0} ⊂ Υ. Assume that state and
control variables are subject to the following constraints

xt ∈ X, t ∈ Z≥0 , (9)

ut ∈ U, t ∈ Z≥0 , (10)

where X and U are compact subsets of R
n and R

m,
respectively, containing the origin as an interior point. Given

the system (8), let f̂(xt, ut) , with f̂(0, 0) = 0, denote the
nominal model used for control design purposes. Moreover,
let x̂t+j|t, j ∈ Z>0 denote the state prediction generated by
the nominal model on the basis of the state informations at
time t with the sequence ut,t+j−1 = col{ut, . . . , ut+j−1}

x̂t+j|t=f̂(x̂t+j−1|t, ut+j−1), x̂t|t=xt, t∈Z≥0, j∈Z>0. (11)

Assumption 2 (Lipschitz): The nominal map f̂(x, u) is
Lipschitz with respect to x in X , with Lipschitz constant
Lfx

∈ R>0. �

Introducing the additive transition uncertainty vector dt,

f(xt, ut, υt)− f̂(xt, ut), the true state dynamics writes

xt+1 = f̂(xt, ut) + dt , t ∈ Z≥0, x0 = x . (12)

Assumption 3 (Uncertainty): The transition uncertainty

vector dt belongs to the compact ball D,Bn(d), where d,
sup υ∈Υ{µ(|υ|)}, and µ is aK-function. �

Under the posed assumptions, the control objective con-
sists in guaranteeing the ISS property for the c-l system
w.r.t. the prescribed class of uncertainties, while enforcing
the fulfillment of constraints in presence of packet dropouts,
bounded transmission delays and bounded disturbances.

With regard to the network dynamics and communication
protocol, it is assumed that a set of data (packet) can be sent,
at a given time instant, through the network by a node, while
both the sensor-to-controller and the controller-to-actuator
links are supposed to be affected by delays and dropouts
due to the unreliable nature of networked communications.
In order to cope with network delays, the data packets are
Time-Stamped (TS) [20], that is, they contain the information
on when they were delivered by the transmission node.
In this work, we will consider first the case of networks
with acknowledged communication protocols, also known
as TCP-like [7], in which the destination node sends an ac-
knowledgment packet (ACK) of successful packet reception
to the source node, and then the results will be extended to
non-acknowledged protocols, which are usually referred to as
UDP–like [7]. In a TCP-like scenario, the acknowledgment
messages are assumed to have the highest priority among all
the routed packets, such that, after each successful packet re-
ception, the source node receives a deterministic notification
within a single time-interval.
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In this regard, the presence of ACKs in TCP-like networks
can be exploited by the controller (which is acknowledged
of successful packet reception by the actuator) to internally
reconstruct the true sequence of controls which have been
applied to the plant [18] from time instat t − τc(t) to t − 1,
in order to get an estimation of the current state x̂t|t−τc(t),
on the basis of the most recent available plant measurement
xt−τc(t). A graphical representation of the overall NCS
layout is depicted in Figure 1, while the NDC and the
controller will be described in the next sections.

A. Network delay compensation

In the sequel, τca(t) and τsc(t) will denote the delays
occurred respectively in the controller-to-actuator and in the
sensor-to-controller links, while τa(t) will represent age (in
discrete time instant) of the control sequence used by the
smart actuator to compute the current input and τc(t) the
age of the state measurement which had been used by the
controller to compute the control actions at time t. Finally,

τrt(t),τa(t)+τc(t−τa(t)) is the so called round trip time,
i.e., the age of the state measurement used to compute the
input applied at time t.

The NDC strategy adopted in the present work, which
relies on the one devised in [18] (originally developed for
unconstrained systems nominally stabilized by a generic
nonlinear controller), is based on exploiting the time stamps
of the data packets in order to retain only the most recent
informations at each destination node: when a novel packet
is received, if it carries a more recent time-stamp than the
one already in the buffer, then it takes the place of the
older one and, in the TCP-like case, an acknowledgment
of successful packet reception is sent to the node which
transmitted the packet. The TS-based packet arrival manage-
ment implies τa(t) ≤ τca(t) and τc(t) ≤ τsc(t). Moreover,
the NDC strategy comprises a Future Input Buffering (FIB)
mechanism, which requires that the controller node send a
packeted sequence of Nc control actions (with Nc to satisfy
Assumption 4) to the actuator node (relying on a model-
based prediction performed, in this case, by the MPC). In
turn the smart actuator, at the arrival of each new packet,
first stores the entire sequence in its internal buffer, then, at
each time instant t, selects a time-consistent control action to
apply to the plant, by setting ut = ub

t , where ub
t is the τa(t)-

th element of the buffered sequence u
b
t−τa(t),t−τa(t)+Nc−1,

which is given by

u
b
t−τa(t),t+Nc−1= col[ub

t−τa(t), . . . , u
b
t , . . . , u

b
t−τa(t)+Nc−1]

= u
c
t−τa(t),t+Nc−1|t−τrt(t)

.

where the sequence u
c
t−τa(t),t+Nc−1|t−τrt(t)

had been com-

puted at time t − τa(t) by the controller on the basis of the
state measurement collected at time t − τrt(t) = t−τa(t)−
τc(t−τa(t)). In most situations, it is natural to assume that
the age of the data-packets available at the controller and
actuator nodes subsume an upper bound [18], as specified
by the following assumption.

Assumption 4 (Network reliability): The quantities τc(t)
and τa(t) verify τc(t) ≤ τ c and τa(t) ≤ τa, ∀t ∈ Z>0,
with τ c + τa + 1 < Nc. Notably, we don’t impose bounds
on τsc(t) and τca(t), allowing the presence of packet losses
(infinite delay). Under these conditions, the round trip time
verifies τrt(t) ≤ τ rt = τ c + τa ≤ Nc − 1, ∀t ∈ Z>0. �

B. Current state reconstruction in TCP-like networks and
shortening of the optimization horizon

At time t, the computation of the control sequence to
be sent to the actuator must rely on a state measurement

performed at time t−τc(t), xt−τc(t). In order to recover the
standard MPC formulation, the current (possibly unavailable)
state xt has to be reconstructed by means of the nomi-
nal model (11) and of the true input sequence ut−τc(t),t

applied by the smart actuator to the plant, ut−τc(t),t−1 ,

col[ut−τc(t), . . . , ut−1] from time t−τc(t) to t−1. In this
regard, the benefits due to the use of a state predictor in
NCS’s are deeply discussed in [18] and [20], [21]. The
sequence ut−τc(t),t−1 can be internally reconstructed by
the controller thanks to the acknowledgment-based protocol.
Moreover, in presence of delays in the controller-to-actuator
path, we must consider that the computed control sequence
may not be applied entirely to the plant. In order to ensure
that the sequence used for prediction would coincide with the
one that will be applied to the plant, we can retain, at time
t, some of the elements of the control sequence computed at
time t−1 (i.e., the subsequence u

b
t,t+τa−1|t−1−τc(t−1)), and

optimize only over the remaining elements (i.e. the sequence
ut+τa,t+Nc−1), initiating the finite horizon optimization with
the state prediction x̂t+τa

. We will show that the recursive
feasibility of such a scheme can be guaranteed w.r.t. (suitably
small) model uncertainty.

C. Finite horizon predictive controller

In the following, we will describe the mechanism used by
the controller to compute the sequence of control actions to
be forwarded to the smart actuator. It relies on the solution,
at each time instant t, of a Finite Horizon Optimal Control
Problem (FHOCP), which uses a constraint tightening tech-
nique [11] to robustly enforce the constraints.

First, let us introduce the following sets, obtained by
restricting the nominal constraint X .

Definition 3.1 (Xi(d)): Under Assumptions 2 and 3, sup-
pose1, without loss of generality, Lfx

6=1. The tightened sets

Xi(d), are defined as

Xi(d),X∽Bn

(

Li
fx

− 1

Lfx
− 1

d

)

, ∀i ∈ Z>0 . (13)

�

Problem 3.1 (FHOCP): Given a positive integer Nc ∈
Z≥0, at any time t ∈ Z≥0, let x̂t|t−τc(t) be the estimate
of the current state obtained from the last available plant
measurement xt−τc(t) with the controls ut−τc(t),t−1 already
applied to the plant; moreover let x̂t+τa|t−τc(t) be the state
computed from x̂t|t−τc(t) by extending the prediction using
the input sequence computed at time t−1, u

c
t,t+τa−1. Then,

given a stage-cost function h, the constraint sets Xi(d)⊆
X, i ∈ {τa(t) + 1, . . . , Nc}, a terminal cost function hf

and a terminal set Xf , the Finite Horizon Optimal Control
Problem (FHOCP) consists in minimizing, with respect to

a Nc − τa steps input sequence, ut+τa,t+Nc−1|t−τc(t) ,

col[ut+τa|t−τc(t), . . . , ut+Nc−1|t−τc(t)], the cost function

J◦
FH(x̂t+τa|t−τc(t),u

◦
t+τa,t+Nc−1|t−τc(t)

, Nc − τa)

, min
ut+τa,t+Nc−1|t−τc(t)

{

t+Nc−1
∑

l=t+τa

h(x̂
l|t−τc(t)

, u
l|t−τc(t)

)

+hf (x̂t+Nc|t−τc(t))

}

subject to the
i)nominal dynamics (11);
ii) input constraints ut−τc(t)+i|t−τc(t) ∈ U , with i ∈
{τc(t)+τa, . . . , τc(t)+Nc−1};

1The very special case Lfx
=1 can be trivially addressed by a few suitable

modifications to the Definition 3.1
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Fig. 1 Scheme of the combined NCS-NDC strategy. In evidence the predictive controller (MPC), the Time-Stamping packet

arrival management (TS) and the Future Input Buffering (FIB) mechanism at the actuator node.

u
c
t,t+Nc−1|t−τc(t)

u
c
t−τca(t),t−τca(t)+Nc−1|t−τca(t)−τc(t−τsc(t))

packet-based network

f(xt, ut, υt) sensor(s)
node

node
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FIB

z−1
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t

xt+1

xt

xt−τsc(t)

xt
υt

z−1

controller node

MPC x̂t+τ̄a|t−τc(t) Pred.

ut−τc(t),t−1

T
S

xt−τc(t)

T
S

u
b
t−τa(t),t−τa(t)+Nc−1|t−τrt(t)

u
c
t,t+τ̄a−1|t−1−τc(t−1)

data packet

networked

at each node/network

interface

packet-based link

iii)state constraints x̂t−τc(t)+i|t−τc(t) ∈ Xi(d), with i ∈
{τc(t)+τa+1, . . . ,τc(t)+Nc};

iv) terminal state constraint x̂t+Nc|t−τc(t) ∈ Xf .

Finally, the sequence of controls forwarded by the con-

troller to the actuator is constructed as u
c
t,t+Nc−1|t−τc(t)

,

col[uc
t,t+τa−1|t−1−τc(t−1),u

◦
t+τa,t+Nc−1|t−τc(t)

] (i.e., it is

obtained by appending the solution of the FHOCP a
subsequence computed at time t − 1). In the follow-

ing, we will say that a sequence u
c
t,t+Nc−1|t−τc(t)

,

col[uc
t,t+τa−1|t−1−τc(t−1),ut+τa,t+Nc−1|t−τc(t)

] is feasible

if the first subsequence yields to x̂t−τc(t)+i|t−τc(t)∈Xi(d),
∀i∈{τc(t)+1, . . . , τc(t)+τa and if the second subsequence
(possibly suboptimal) satisfies all the constraints of the
FHOCP set up at time t. �

The following definitions will be used in the sequel.

Definition 3.2 (XMPC(τ)): Given a non-negative integer
τ ∈ Z≥0, the set containing all the vectors x0 ∈ R

n for
which there exists a sequence of Nc control moves which
satisfies all the constraints specified below is said feasible set
with τ -delay restriction, and it is denoted with XMPC(τ).

XMPC(τ),











x0∈R
n

∣

∣

∣

∣

∣

∣

∣

∃u0,Nc−1 ∈ UNc :
x̂(i, x0,u0,i−1) ∈ Xτ+i(d),
∀i ∈ {1, . . . , Nc} and
x̂(Nc, x0,u0,Nc−1)∈Xf











(14)

�

For the sake of brevity, the set XMPC(0) will be denoted
as XMPC .

Definition 3.3 (Feasible sequence at time t): Given a de-
layed state measurement xt−τc(t), available at at time t to
the controller, let us consider the prediction x̂t|t−τc(t) of the
actual state xt obtained with the nominal model and with
the actual control sequence applied from time t − τc(t) to
t−1, ut−τc(t),t−1, which is known to the controller. Moreover
consider a sequence of Nc control moves u

c
t,t+Nc−1 and

its two subsequences u
c
t,t+τa−1 and u

c
t+τa,t+Nc−1 such that

u
c
t,t+Nc−1 = col[uc

t,t+τa−1,u
c
t+τa,t+Nc−1].

The input sequence u
c = u

c
t,t+Nc−1 is said feasible at time

t if the subsequence u
c
t,t+τa−1 yields to x̂t−τc(t)+i|t−τc(t)∈

Xi(d), ∀i∈{τc(t) + 1, . . . , τc(t)+τa} and if the second sub-
sequence satisfies all the constraints of the RHOCP initiated
with x̂t+τa|t−τc(t) = x̂(τa, xt−τc(t),u

∗
t−τc(t),t+τa−1). �

Remark 3.1: Note that what we call feasible sequence in t
is not just an input sequence which satisfies the constraints of
the RHOCP (specified in the horizon [t+τa+1, . . . , t+Nc]),
but it is required to keep the nominal trajectories inside the
restricted constraints for an horizon of Nc steps from t +
1 to t + Nc, that is larger than the one considered by the
optimization.

By accurately choosing the stage cost h, the constraints
Xi(d), the terminal cost function hf , and by imposing a
terminal constraint Xf at the end of the control horizon, it is
possible to show that the recursive feasibility of the scheme
can be guaranteed for t ∈ Z>0, also in presence of norm-
bounded additive transition uncertainties and network delays.
Moreover, in absence of transmission delays, this class of
controllers has been proven to achieve the ISS property if
the following assumptions are verified (see [17]).

Assumption 5: The transition cost function h is such that
h(|x|) ≤ h(x, u), ∀x ∈ X, , ∀u ∈ U, where h is a K∞-
function. Moreover, h is Lipschitz w.r.t. x, uniformly in u,
with L. constant Lh∈ R>0. �

Assumption 6 (κf , hf , Xf ): There exist an auxiliary con-
trol law κf (x) : X →U , a function hf (x) : R

n →R≥0, a
positive constant Lhf

∈R>0, a level set of hf , Xf ⊂ X and
a positive constant δ∈R>0 such that the following properties
hold:

i) Xf ⊂ X , Xf closed, {0} ∈ Xf ;
ii) κf (x) ∈ U, ∀x ∈ Xf ⊕ Bn(δ);
iii) f̂(x, κf (x)) ∈ Xf , ∀x ∈ Xf ⊕ Bn(δ);

iv) the closed-loop map f̂(x, κf (x)), is Lipschitz in Xf , with
L. constant Lfc

∈ R>0;

v) hf (x) Lipschitz in Xf , with L. constant Lhf
∈ R>0;

vi) hf (f̂(x, κf (x)))−hf (x)≤−h(x, κf (x)), ∀x∈Xf⊕Bn(δ).

�
In addition, in order to establish the ISS property for the c-l

system, we require the following assumptions to be verified
together with 5 and 6.

Assumption 7: Let Xf be a sub-level set of hf ( i.e. Xf =
{x∈R

n : hf (x)≤hf} ), then we assume that the transition
cost function h and the terminal cost hf satisfy the condition

min
u∈U

{

inf
x∈C1(Xf )\(Xf⊕Bn(δ))

{hf (x)−h(x, u)}

}

>hf . (15)
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where δ ∈ R>0 is a positive scalar for which Points iii) and
vi) of Assumption 6 hold. �

Now, the following Lemma ensures that the original state
constraints can be satisfied by imposing to the nominal tra-
jectories in the RHOCP the restricted constraints introduced
in Definition 3.1.

Lemma 3.1 (Robust Constraint Satisfaction): Any feasi-
ble control sequence u

c
t,t+Nc−1|t−τc(t)

, applied in open-loop

to the perturbed system from time t to t+Nc−1, guarantees
that the true (networked/perturbed) state will satisfy xt+j∈X,
∀j∈{1, . . . , Nc}. �

Proof: Given the state measurement xt−τc(t), available
at time t at the controller node, let us consider the combined
sequence of controls u

∗ formed by: i) the subsequence
used for estimating x̂t|t−τc(t) (i.e., the true control sequence
ut−τc(t),t−1applied by the NDC to the plant from t−τc(t) to
t− 1) and ii) a feasible control sequence u

c
t,t+Nc−1|t−τc(t)

,

that is
u
∗
t−τc(t),t+Nc−1|t−τc(t)

, col[ut−τc(t),t−1,u
c
t,t+Nc−1|t−τc(t)

].
(16)

Then, the prediction error êt−τc(t)+i|t−τc(t) , xt−τc(t)+i −
x̂t−τc(t)+i|t−τc(t), with i∈{1, . . . , Nc+τc(t)} and xt−τc(t)+i

obtained by applying u
∗
t−τc(t),t+Nc−1|t−τc(t)

in open loop

to the uncertain system (8), is upper bounded by

|êt−τc(t)+i|t−τc(t)| ≤
Li

fx
− 1

Lfx
− 1

d, ∀i ∈ {1, . . . , Nc + τc(t)}

where d is defined as in Assumption 3. Being
u

c
t,t+Nc−1|t−τc(t)

feasible, it holds that x̂t−τc(t)+i|t−τc(t) ∈

Xi(d),∀i ∈ {τc(t) + 1, . . . , Nc + τc(t)}, then it follows
immediately that xt−τc(t)+i = x̂t−τc(t)+i|t−τc(t) +
êt−τc(t)+i|t−τc(t)∈X .

In the next section, the robust stability properties of the
described control policy will be analyzed in presence of
transmission delays and model uncertainty.

IV. RECURSIVE FEASIBILITY AND REGIONAL

INPUT-TO-STATE STABILITY

In the following, the set invariance theory [3] will be
used to prove the robust stability of the devised NCS. The
following definition will be used .

Definition 4.1 (Ci(X,Ξ)): Given a set Ξ ⊆ X , the i-step
Controllability Set to Ξ, Ci(X,Ξ), is the set of states which
can be steered to Ξ by an admissible control sequence of

length i, u0,i−1, under the nominal map f̂(x, u), subject to
constraints (9) and (10), i.e.

Ci(X,Ξ),

{

x0∈X : ∃u0,i−1∈U×. . .×U such that
x̂(x0,u0,i−1, t)∈X, ∀t ∈ {1, . . . , i − 1},
and x̂(x0,u0,i−1, i)∈Ξ.

}

�

In the sequel, the shorthand C1(Ξ) will be used in place of
C1(R

n,Ξ) to denote the one-step controllability set to Ξ.
Resorting to recursive feasibility arguments, the following

Theorem states that the set XMPC , is RPI under the c-l
networked dynamics, w.r.t. bounded uncertainties.

Theorem 4.1 (Invariance of the feasible set): Assume
that at time instant t the control sequence computed by
the controller, u

c
t,t+Nc−1|t−τc(t)

, is feasible. Then, in view

of Assumptions 2-6, if the norm bound on the uncertainty
satisfies

d≤ min
k∈{0,τc}

{

min

(

Lfx
−1

LNc+k
fx

−LNc−1
fx

dist (Rn\C1(Xf ),Xf ),

Lfx
−1

LNc+k
fx

− 1
dist

(

R
n\X̂k+Nc

(d),Xf

)

)}

,

(17)

then, the recursive feasibility of the scheme in ensured
for every time instant t + i,∀i ∈ Z>0, while the closed-
loop trajectories are confined into X . Hence, the feasible
set XMPC is RPI under the c-l networked dynamics w.r.t.
bounded uncertainties. �

Proof: [Theorem 4.1] The proof consists in showing that
if, at time t, the input sequence computed by the controller
u

c
t,t+Nc−1|t−τc(t)

is feasible, then, under the perturbed c-

l dynamics, there exists a feasible control sequence at
time instant t + 1 (i.e., the VHOCP is solvable and the
overall sequence verifies the prescribed constraints).Finally,
the recursive feasibility follows by induction. First, notice
that Points ii) and iii) of Assumption 6 together imply that
dist(Rn\C1(Xf ),Xf ) ≥ δ > 0. Now, the proof will be
carried out in three steps.

i) x̂t+Nc|t−τc(t) ∈ Xf ⇒ x̂t+Nc+1|t+1−τc(t+1) ∈ Xf : Let us
consider the sequence u

∗
t−τc(t),t+Nc−1|t−τc(t)

defined

in (16). It is straightforward to prove that the norm
difference between the predictions x̂t−τc(t)+j|t−τc(t)
and x̂t−τc(t)+j|t+1−τc(t+1) (initiated respectively by
xt−τc(t) and xt+1−τc(t+1)), respectively obtained
by applying to the nominal model the sequence
u
∗
t−τc(t),t−τc(t)+j−1|t−τc(t)

and its subsequence

u
∗
t+1−τc(t+1),t−τc(t)+j−1|t−τc(t)

, can be upper bounded

by |x̂t−τc(t)+j|t−τc(t)+i−x̂t−τc(t)+j|t−τc(t)|

≤
1

Lfx

i
∑

l=1

Lj−l+1
fx

d =
Lj

fx
−Lj−i

fx

Lfx
−1

d
(18)

where we have posed i = τc(t) − τc(t + 1) + 1 and
with j ∈ {i, . . . , Nc + τc(t)}. Considering now the case
j = Nc + τc(t), then (18) yields to |x̂t+Nc|t−τc(t)+i −
x̂t+Nc|t−τc(t)| = |x̂t+Nc|t+1−τc(t+1) − x̂t+Nc|t−τc(t)| ≤

(L
Nc+τc(t)
fx

− L
Nc+τc(t)−i

fx
)/(Lfx

− 1)d. If the following

inequality holds ∀k∈{1, . . . , τ c}

d ≤
Lfx

− 1

LNc+k
fx

− LNc−1
fx

dist (Rn\C1(Xf ),Xf ) ,

then x̂t+Nc|t+1−τc(t+1)∈C1(Xf ), whatever be the values
of τc(t) and τc(t + 1). Hence, there exists a control move
ut+Nc|t+1−τc(t+1) = uf (x̂t+Nc|t+1−τc(t+1)) ∈ U , with
uf : C1(Xf ) → U defined as

uf (x),arg min
u∈U :f̂(x,u)∈Xf

{|u − κf (x)|} , (19)

which can steer the state vector from x̂t+Nc|t+1−τc(t+1)
to x̂t+Nc+1|t+1−τc(t+1) ∈ Xf .

ii) x̂t−τc(t)+j|t−τc(t) ∈ Xj(d) ⇒ x̂t−τc(t)+j|t+1−τc(t+1) ∈
Xj−i(d), with i = τc(t) − τc(t + 1) + 1 and ∀j ∈
{τc(t) + 1, . . . , Nc + τc(t)}: Consider the predictions
x̂t−τc(t)+j|t−τc(t) and x̂t−τc(t)+j|t−τc(t)+i(initiated re-
spectively by xt−τc(t) and xt−τc(t)+i), respectively ob-
tained with the sequence u

∗
t−τc(t),t−τc(t)+j−1|t−τc(t)

and

its subsequence u
∗
t−τc(t)+i,t−τc(t)+j−1|t−τc(t)

. Assuming

that x̂t−τc(t)+j|t−τc(t) ∈X∽ Bn( (Lj
fx

−1)/(Lfx
−1)d ),

let us introduce η ∈ Bn( (Lj−i
fx

− 1)/(Lfx
− 1)d ). Let

ξ , x̂t−τc(t)+j|t−τc(t)+i − x̂t−τc(t)+j|t−τc(t) + η, then, in
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view of Assumption 2 and thanks to (18), it follows that

|ξ|≤|x̂t−τc(t)+j|t−τc(t)+i − x̂t−τrt(t)+j|t−τc(t)|+|η|

≤
Lj

fx
− 1

Lfx
− 1

d,
(20)

and hence, ξ ∈ Bn( (Lj
fx

− 1)/(Lfx
− 1)d ). Since

x̂t−τc(t)+j|t ∈ Xj(d), it follows that x̂t−τc(t)+j|t−τc(t) +

ξ = x̂t−τc(t)+j|t−τc(t)+i + η ∈ X , ∀η ∈ Bn((Lj−i
fx

−

1)/(Lfx
− 1)d), yielding to x̂t−τc(t)+j|t+1−τc(t+1) ∈

Xj−τc(t)+τc(t+1)−1(d).

iii) x̂t+Nc|t−τc(t) ∈ Xf ⇒ x̂t+1+Nc|t+1−τc(t+1) ∈

XNc+τc(t+1)(d); Thanks to Point i), there exists a fea-
sible control sequence at time t + 1 which yields to
x̂t+1+Nc|t+1−τc(t+1)∈Xf . If d satisfies

d ≤ min
j∈{Nc,...,Nc+τc}

{

Lfx
−1

Lj
fx
−1

dist(Rn\Xj(d),Xf )

}

,

it follows that x̂t+1+Nc|t+1−τc(t+1)∈XNc+τc(t+1), what-
ever be the value of τc(t + 1).

Then, under the assumptions posed in the statement of
Theorem 4.1, given x0 ∈ XMPC , and being τc(0) = 0
(i.e. at the first time instant the actuator buffer is initiated
with a feasible sequence )in view of Points i)–iii) it holds
that at any time t ∈ Z>0 a feasible control sequence
does exist and can be chosen as u

c
t+1,t+Nc+1|t+1−τc(t+1)=

col[uc
t+1,t+Nc−1|t−τc(t)

, ut+Nc|t+1−τc(t+1)]. Therefore the

recursive feasibility of the scheme is ensured.

Next, we will show that the devised NCS is Regional ISS
w.r.t. bounded uncertainties.

Theorem 4.2 (Regional Input-to-State Stability): Under
Assumptions 2-6, if the bound on uncertainties verifies (17),
then system (12), controlled by the proposed MPC–NDC
strategy, is regional ISS in XMPC with respect to additive
perturbations dt ∈ Bn(d). �

Proof: [Theorem 4.2] Recalling that we have posed the
assumption that, at time t = 0, the FIB contains a feasible
control sequence, then, in a worst case situation, the system
will be driven in open-loop for τa time instants. With regard
to the ISS property, this observation implies that the bound
on the trajectories after τa should depend on xτa

and the
regional ISS inequality (2) has to be modified as follows

|x(t + τa, xτa
,υ)|

≤max
{

β(|xτa
|, t),γ(‖υ[t+τa−1]‖)

}

,∀t∈Z≥0,∀xτa
∈Ξ,

where xτa
is the state at time τa after the system has been

driven for τa steps by the open-loop policy stored in the
buffer at time t = 0. In view of previous consideration, the
proof consists in showing that there exist a ISS-Lyapunov
function V (t + τa, xt+τa

) for the closed-loop system.

To this end, let us define the following positive-definite
function V ◦ : R

n → R≥0

V ◦(x̂t+τa|t−τc(t))

, JFH

(

x̂t+τa|t−τc(t),u
◦
t+τa,t+Nc−1|t−τc(t)

,Nc−τa

)

(21)

where x̂t+τa|t−τc(t) = x̂(t + τa, xt−τc(t),ut−τc(t),t+τa−1)
is a prediction obtained with the nominal model initiated
with xt−τc(t). Notice that V ◦ corresponds to the optimal
cost subsequent to the reduced horizon optimization. Now,
consider the following candidate ISS-Lyapunov function V :

Z≥0 × R
n → R≥0

V (t + τa, xt+τa
)

, JFH

(

xt+τa
,u◦

t+τa,t+Nc−1|t−τc(t)
, Nc−τa

)

=
t+Nc−1
∑

l=t+τa

h
(

x̂l|t+τa
, u◦

l|t−τc(t)

)

+ hf (x̂t+Nc|t+τa
)

(22)

where x̂t+τa+j|t+τa
, j ∈ {1, . . . , Nc − τa} are obtained

using the nominal model initialized with x̂t+τa|t+τa
= xt+τa

and the sequence u
◦
t+τa,t+Nc−1|t−τc(t)

(which is optimal

for x̂t+τa|t−τc(t) and not for xt+τa
). Notice that, since

u
◦
t+τa,t+Nc−1|t−τc(t)

is not computed in correspondence of

xt+τa
, but exploiting a past state information xt−τc(t), V

becomes a time-varying function of the state. We will show
in the following that V (t + τa, xt+τa

) verifies the ISS
inequalities with time-invariant bounds.

Suppose, without loss of generality2, that Lfx
6= 1.

Now, let us point out that, in view of (18), the in-

clusion xt+τa
∈ Ω , Xf∽Bn((Lτc+τa

fx
− 1)/(Lfx

−

1)d) implies x̂t+τa|t−τc(t) ∈ Xf whatever be the
value of τc(t). Then, by Assumption 6, the control

sequence ũt+τa,t+Nc−1|t−τc(t) , col[κf (x̂t+τa|t−τc(t)),
κf (x̂t+τa+1|t−τc(t)), . . . ,κf (x̂t+Nc−1|t−τc(t))] is feasible for
the RHOCP, hence the set XMPC is not empty.

Now, our objective consists in finding a suitable compar-
ison function to upper bound the candidate ISS-Lyapunov
function V (t + τa, xt+τa

). By adding and subtracting
V ◦(x̂t+τa|t−τc(t)) to the right-hand side of (21), we obtain

V (t + τa, xt+τa
)

≤
t+Nc−1
∑

l=t+τa

h
(

x̂l|t+τa
, u◦

l|t−τc(t)

)

−h
(

x̂l|t−τc(t), u
◦
l|t−τc(t)

)

+hf (x̂t+Nc|t+τa
) − hf (x̂t+Nc|t−τc(t))

+J◦
FH

(

x̂t+τa|t−τc(t),u
◦
t+τa,t+Nc−1|t−τc(t)

, Nc−τa

)

,

(23)
Considering that

∑t+Nc−1
l=t+τa

h
(

x̃l|t−τc(t), ũl|t−τc(t)

)

+
hf (x̃t+Nc|t−τc(t) ≤ hf (x̂t+τa|t−τc(t)), then the following
bound can be established

JFH

(

x̂t+τa|t−τc(t),u
◦
t+τa,t+Nc−1|t−τc(t)

, Nc−τa

)

≤ hf (x̂t+τa|t−τc(t)) − hf (xt+τa
) + hf (xt+τa

)

≤ Lhf

Lτrt

fx
− 1

Lfx
− 1

||d[t+τa−1]|| + hf (xt+τa
).

(24)

Finally, in view of Assumptions 2,5 and thanks to (18) and
(24), the following inequality holds

V (t + τa, xt+τa
) ≤ α1(|xt+τa

|) + σ1(||d[t+τa−1]||),
∀xt+τa

∈Xf ,∀d∈MBn(d)
(25)

where

α1(s),Lhf
|s|

σ1(s),
Lτrt

fx
−1

Lfx
−1

[

Lh

LNc−τa

fx
−1

Lfx
−1

+Lhf
LNc−τa−1

fx
+Lhf

]

s

The lower bound on V (t+τa, xt+τa
) can be easily obtained

using Assumption 5

V (t + τa, xt+τa
) ≥ h(xt+τa

), ∀xt+τa
∈ XMPC (26)

Then, in view (25) of (26), the ISS inequalities (3)
and (4) hold respectively with Ξ = XMPC and

Ω =Xf∽Bn((Lτrt

fx
− 1)/(Lfx

− 1)d). Moreover, in view

2The case Lfx
= 1 can be trivially addressed with a few suitable

modification to the proof of theorem 4.2
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of Point i) in the proof of Theorem 4.1, given the (feasible)
control sequence computed at time t, u

c
t,t+Nc−1|t−τc(t)

=
col[uc

t,t+τa−1|t−1−τc(t−1),u
◦
t+τa,t+Nc−1],

the sequence ū
c
t+1,t+Nc|t+1−τc(t+1) =

col[uc
t+1,t+Nc−1|t−τc(t)

, ūf (x̂t+Nc|t+1−τc(t+1))], with

ūf (·) defined as in (19), is a feasible sequence (in
general, suboptimal) at time t + 1. The subsequence
u

c
t+τa+1,t+Nc|t−τc(t)

along the reduced horizon gives rise

to a cost which verifies the inequality

JFH

(

x̂t+τa+1|t+1−τc(t+1),u
c
t+τa+1,t+Nc|t−τc(t)

, Nc−τa

)

≤JFH

(

x̂t+τa|t−τc(t),u
◦
t+τa,t+Nc−1|t−τc(t)

, Nc−τa

)

−h
(

x̂t+τa|t−τc(t), u
◦
t|t−τc(t)

)

+

t+Nc−1
∑

l=t+τa+1

h
(

x̂l|t+1−τc(t+1),u
◦
l|t−τc(t)

)

−h
(

x̂l|t−τc(t),u
◦
l|t−τc(t)

)

+h
(

x̂t+Nc|t+1−τc(t+1), ūf (x̂t+Nc|t+1−τc(t+1))
)

+hf

(

x̂t+Nc+1|t+1−τc(t+1)

)

−hf

(

x̂t+Nc|t−τc(t)

)

(27)

Now, by (23), in view of Assumptions 2,5, we have that
∣

∣

∣
JFH

(

x̂t+τa+1|t+1−τc(t+1),u
◦
t+τa+1,t+Nc|t−τc(t)

,Nc−τa

)

−V (t + τa + 1, xt+τa+1)
∣

∣

∣

≤
Lτrt

fx
−1

Lfx
−1

[

Lh

LNc−τa

fx
−1

Lfx
−1

+ Lhf
LNc−τa−1

fx

]

||d[t+τa]||.

(28)

Moreover, in view of Point vi) of Assumption 6 and thanks
to Assumption 7, it follows that

h
(

x̂t+Nc|t+τa+1, ūf (x̂t+Nc|t+τa+1)
)

+hf

(

x̂t+Nc+1|t+τa+1

)

−hf

(

x̂t+Nc|t+τa

)

≤ hf

(

x̂t+Nc|t+τa+1

)

−hf

(

x̂t+Nc|t+τa

)

≤ Lhf
LNc−τa−1

fx
||d[t+τa]||

(29)

Finally, considering (27), (28) and (29) and by using Point
v) of Assumption 6, the third ISS inequality can be obtained

V (t + τa + 1, xt+τa+1) −V (t + τa, xt+τa
)

≤ −α2(|xt+τa
|) + σ2(||d[t+τa]||),

(30)

∀xt+τa
∈XMPC ,∀d∈MBn(d), with

α2(s),h(s)

σ2(s),

[

Lh

Lτrt

fx
− 1

Lfx
−1

+Lh

Lτc

fx
−1

Lfx
−1

LNc−τa

fx
−1

Lfx
−1

+Lhf
LNc−τa−1

fx

+2
Lτrt

fx
−1

Lfx
−1

(

Lh

LNc−τa

fx
−1

Lfx
−1

+ Lhf
LNc−τa−1

fx

)]

.

Finally, in view of (25), (26) and (30), it is possible to
conclude that the closed-loop system is regional ISS in
XMPC with respect to d ∈ Bn(d).

Remark 4.1 (UDP-like networks): In the case of UDP-
like networks, no ACKs are sent by the actuator node to the
controller. In this scenario, the problem of delayed arrival
of packeted input sequences to the actuator (which may
lead to wrong open-loop predictions at the controller side,
due to the fact that the truly applied input sequence is not
known), could represent a major source of uncertainty, if
no proper provisions are adopted. Thus, with the aim to
recast the formulation in a deterministic framework, such
that the sequence used by the controller to obtain x̂t would
coincide with the true input sequence applied by the actuator
to the plant from time t− τc(t) to t− 1, a possible solution

consists in further shortening the optimization horizon w.r.t.
the TCP-like case. In this set up, being Nc the length of the
sequence computed by the controller to be forwarded to the
actuator, the optimization is performed over the Nc − τ rt

subsequence ut+τrt,t+Nc−1|t−τc(t), and initiated with the
predicted state x̂t+τrt|t−τc(t). The input sequence used to
obtain x̂t+τrt|t−τc(t) is

u
∗
t−τc(t),t+τrt−1

= col[u∗
t−τc(t),t−2,u

c
t−1,t+τrt−1|t−1−τc(t−1)]

(31)

where u
∗
t−τc(t),t−2 and u

c
t,t+τrt−1|t−1−τc(t−1) are respec-

tively a subsequence of u
∗
t−1−τc(t−1),t+Nc−2 and a sub-

sequence of the control sequence u
c
t−1,t+Nc−2|t−1−τc(t−1)

computed at time t − 1. At this point, noting that the first
τ rt elements of u

c
t−1,t+Nc−2|t−1−τc(t−1) coincide with the

subsequence u
∗
t−1,t+τrt−2, then (31) can be rearranged as

u
∗
t−τc(t),t+τrt−1

= col[u∗
t−τc(t),t+τrt−2, u

c
t+τrt−1|t−1−τc(t−1)]

where uc
t+τrt−1|t−1−τc(t−1) is the first element of the

optimized sequence u
◦
t+τrt−1,t+Nc−τrt−2|t−1−τc(t−1), ob-

tained by solving the RHOCP at time t − 1; i.e.,
uc

t+τrt−1|t−1−τc(t−1) = u◦
t+τrt−1|t−1−τc(t−1). By this po-

sition, with suitable few modifications to the proof Theorem
4.1, we can show that the proposed scheme is robustly
recursively feasible in the UDP-like framework.

Remarkably, the further shortening of the optimization
horizon may reduce the degree of optimality of the control
action w.r.t. the TCP-like formulation. �

V. EXAMPLE

In order to show the effectiveness of the devised control
scheme, the closed-loop behavior of the following nonlinear
system (forward-Euler discretized version of an undamped
single-link flexible-joint pendulum) is simulated first in nom-
inal conditions and then under the simultaneous presence of
model uncertainty and unreliable communications between
sensors, controller, and actuators
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(
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=x(4)t

+
Ts

J

[

k
(
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)

+u
]

x0 = x, t ∈ Z≥0

(32)

where x(i)t
, i ∈ {1, . . . , 4} denotes the i-th component of

the vector xt, Ts = 0.05 s is the sampling interval, I =
0.25 kg · m2 the inertia of the arm, J =2 kg · m2 the rotor
inertia, g=9.8ms2 the gravitational acceleration, M =1 kg
the mass of the link, L = 0.5m the distance between the
rotational axis and the center of gravity of the pendulum-
arm, k=20N ·m/rad the stiffness coefficient of the link. The
control objective consists in stabilizing the system toward the
(open-loop unstable) 0-state equilibrium, while keeping in
the trajectories within prescribed bounds depicted in Figure
2 (green).

The following auxiliary linear controller is used κf (x) =
[−55.92 − 7.46 124.01 19.22] · x, with Xf = {x ∈ R

4 :
xT ·Pf ·x ≤ 1}, hf (x) = 103(xT ·Pf ·x) and

Pf = 103







1.3789 −0.0629 −1.7904 −0.1508
−0.0629 0.0186 0.1404 0.0074
−1.7904 0.1404 3.1580 0.2216
−0.1508 0.0074 0.2216 0.0292
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The predictive controller has been set up with control se-
quence length Nc = 12, and quadratic stage cost h(x) =
xT·Q·x+Ru2, where Q=diag(10, 0.1, 0.1, 0.1) and R=10−3.

In the uncertain/unreliable networked scenario, a TCP-like
protocol has been simulated, with delay bounds τ c = τa =
5, while the nominal model is subjected to the following
parametric uncertainty Mnom=1.05M . Figure 2 shows the
trajectories of the state variables in the nominal case (black)
and in the uncertain/delayed conditions (blue). Notably, the
constraints are fulfilled and the recursive feasibility of the
scheme is guaranteed even in the networked case.

Fig. 2 Trajectories of the state variables of system (32)

controlled by the combined strategy MPC+NDC over an

unreliable network with uncertainty (blue : τ c = τa = 5)

and in nominal conditions (black : τ c = τa = 0).
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At the opposite, if a network delay compensation strategy
is not used, then system (32), controlled by a nominal MPC,
becomes unstable even for small delays τ c=τa=2, Figure 3.

Fig. 3 Trajectories of the state variables for system (32)

controlled by a nominal NMPC, without delay compensation

(τ c=τa=2). Feasibility gets lost and instability occurs.
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CONCLUSION

In this paper a networked control system, based on the
combined use of a model predictive controller with a net-
work delay compensation strategy, has been designed with
the aim to stabilize toward an equilibrium a constrained
nonlinear discrete-time system, affected by unknown pertur-
bations and subject to delayed packet-based communications
in both sensor-to-controller and controller-to-actuator links.
The characterization of the robust stability properties of the

devised scheme represents a significant contribution in the
context of nonlinear networked control systems, since it
establishes the possibility to enforce the robust satisfaction
of constraints under unreliable networked communications in
the feedback and command channels, also presence of model
uncertainty. In particular, sufficient condition to ensure the
recursive feasibility of the scheme have been determined.
Finally, by exploiting a novel characterization of the regional
Input-to-State Stability in terms of time-varying Lyapunov
functions, the closed-loop system has been shown to be
regional Input-to-State stable with respect to bounded per-
turbations.
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