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Abstract— This paper develops a decentralized H∞ filtering
algorithm for a mobile sensor network. Each agent maintains
an estimate of the target and moves to improve the information
from its sensor. Simulation results compare the performance of
the multi-agent system to a system using only local estimates
when the network is tracking an evasive target.

I. INTRODUCTION

The area of mobile multi-agent systems has received
considerable attention recently. These multi-agent systems
are able to perform a variety of tasks such as environmental
monitoring [9], [14], [17], search and rescue operations
[7], [8], target tracking [10], [11], [21], and formation and
coverage control [2], [6], [20].

This paper considers the problem of estimation and control
for multiple mobile agents with limited sensing, computation,
communication and motion capabilities. Previous work in the
area of target tracking in sensor networks focused primarily
on Kalman filtering for both fixed sensors [1], [12] and
mobile sensors [5], [20]. One of the underlying assumptions
of the Kalman filter is that both the process and measurement
noises behave like random signals. An alternative is to design
a filter based on limited knowledge of the noise behavior.
The H∞, or minimax, filter approach minimizes the worst-
case error variance over all admissible l2 energy signals. The
H∞ filter [4], [16] has not received as much attention as the
Kalman filter, and few have tried to implement this filter in
a decentralized fashion [19].

More recent decentralized Kalman filter techniques using
consensus estimators have been proposed [11], [20]. The use
of consensus estimators are of great interest because of the
similarities in structure between the H∞ and Kalman filters.
The decentralized H∞ filter algorithm presented in this paper
borrows from these techniques. In addition, a decentralized
control law is derived. This control law will minimize a
cost function in order to improve the overall sensing quality.
This paper investigates the performance of this mobile sensor
network estimating the position of a target.

Several different motion models will be used for the target
tracking problem. In the first, the target will be driven by a
random signal. The second will assume the target will have
some information about the location of each agent and the
sensor model used. In motivating the set-valued estimator,
Schweppe [13] proposed an idea in which the target moves
intentionally to evade tracking. This paper will present a
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target motion model which moves to increase uncertainty
based on limited knowledge of the sensor network.

The main contributions in this paper include a novel
approach to decentralized H∞ filtering and a decentralized
motion control law used to improve measurements and limit
filter gains. It also discusses a evasive target model based on
information about the sensor model.

The organization of the paper is as follows. Section
II formulates the problem of a mobile multi-agent group
estimating a dynamic system’s state with limited information
about the process noise. The example of target tracking
will be used throughout the paper. Section III proposes a
novel method for decentralized H∞ filtering. Section IV
investigates a decentralized motion control law in an effort
to improve estimates and reduce filter gains. Evasive target
design is discussed in section V. The results from the
decentralized estimation and control are presented in section
VI. Section VII discusses the results and outlines future
work.

II. PROBLEM STATEMENT

Suppose there are N mobile sensors and a target moving
in a plane with positions p1, p2, ..., pN ∈ R2 and xt ∈ R2,
respectively. The sensors estimate the position of the target
whose dynamics are described by

xk+1 = Akxk + Bkwk

zk = Lkxk (1)

where xk ∈ R2 is the state vector, and the zk term is a
linear combination of target states which will be discussed
in the next section. The noise driving this system, wk ∈ R2,
is assumed to be an l2 signal. Measurements of the target
position are given by:

yi,k = xk + mi,k (2)

where yi,k ∈ R2 is the measurement reading, and mi,k ∈ R2

is the measurement uncertainty for agent i. There are several
different models that can be used, but in this paper, the range-
bearing model will be used. The level of uncertainty for agent
i is dependent on the distance and angle between the target
and sensor, ri,k = |xi,k − pi,k| and θi,k = ∠(xi,k − pi,k).
The measurement noise is described by,

mi =
[

cos(θi) − sin(θi)
sin(θi) cos(θi)

] [ √
fr(ri) 0
0

√
fb(ri)

]
(3)

where fr and fb represent the range and bearing noise
variances described by the convex functions,
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Fig. 1. Measurement uncertainties ellipses for three sensors. The ellipses
are placed at sensor locations for ease of viewing. It illustrates the distance
dependent nature of this uncertainty.

fr(ri) = a2(ri − a1)2 + a0

fb(ri) = αfr(ri)
(4)

where a0, a1, a2, α are model parameters. Each sensor has a
“sweet spot” when ri = a1 and the size of the measurement
uncertainty is at its minimum values. Figure 1 illustrates
how the size of the measurement uncertainty changes as a
function of distance.

The H∞ filtering scheme and motion controller each use
the sum of information from each individual sensor in the
calculation of the global variables Σglobal, Σr

i , and Σθ
i . Like

[20], this is a motivating factor for the use of a PI dynamic
consensus estimator. A discrete time version of the dynamic
consensus estimator presented in [20] will be used to estimate
these global variables. Each agent has an input ui ∈ Rk×r,
internal states vi, wi ∈ Rk×r, and an output yi = vi. The
discrete time version of the PI estimator is given by the
following equations,

vi(k + 1) = (1− γh)vi(k)− hKp

∑
j∈Ni(k)

[vi(k)− vj(k)]

+hKi

∑
j∈Ni(k)

[wi(k)− wj(k)] + γhui(k)

wi(k + 1) = wi(k)− hKi

∑
j∈Ni(k)

[vi(k)− vj(k)]

(5)

Here γ > 0 is a design parameter, Ni contains the set of
all one-hop neighbors of agent i, h is the sample time, and
Kp, Ki are the proportional and integral gains, respectively.
This discrete-time PI consensus estimator is stable as long
as the sample time, h, is small. The consensus estimator
will track the global signal 1

N

∑N
i=1 ui with zero steady-state

error when the inputs are constant, and there is a constant
connected network topology.

III. H∞ ESTIMATOR

The group of mobile sensors estimate the location of a
target using H∞ filters. The target dynamics are represented
by (1). The centralized version of this filter can be written
as [15],

x̂k = Ax̂k−1 + Kk(yk − CAx̂k−1)
∆k = AΣk−1A

T + BWk−1B
T

Kk = ∆k(I + CT M−1
k C∆k)−1CT M−1

k

Σk = ∆k(I − γ−2LT
k QkLk∆k + CT M−1

k C∆k)−1

ẑk = Lkx̂k

(6)

where Kk is the filter gain, and Pk, Mk and Wk are
analogous to the error, measurement and process covariances
of the Kalman filter. The noise attenuation level, γ, and the
weighting matrix, Lk are user defined values.

The structure of the H∞ filter is similar to the Kalman
filter structure, but zk, a linear combination of xk, is being
estimated. This gives the H∞ filter a directional property. It
allows the designer added flexibility in finding the optimal
performance along a specified direction in the state space
[18]. The directional property appears in the modified Riccati
equation and its dependence on Lk; there is no analog
with the conventional Kalman filter. As γ tends to infinity,
the H∞ filter reduces to the Kalman filter. It should also
be noted that the filter will be unstable if the γ value is
chosen to be smaller than the threshold γ0, the minimum
attenuation level. If the information from the N agents are
represented as, yT = [yT

1 , yT
2 , ..., yT

N ], C = [C1C2...CN ]T

and M = diag(M1,M2, ...,MN ) for the centralized filter
then the following simplifications can be made CT M−1

k C =∑N
i=1 CT

i M−1
k,i Ci and CT M−1

k yk =
∑N

i=1 CT
i M−1

k,i yk,i.
Given that each agent has limited communication, assume

it can communicate with at least one neighbor (i.e. the net-
work is connected). Each agent runs PI consensus estimators
to approximate the average fused covariance matrix

C̃ ≈ 1
N

N∑
i=1

CT
k,iM

−1
k,i Ck,i (7)

and the average fused measurement

ỹ ≈ 1
N

N∑
i=1

CT
k,iM

−1
k,i yk,i (8)

where Mk,i, Ck,i and yk,i are dependent on the ith sensor,
and N is the total number of sensors in the system. The
output of the consensus estimators are fed into the H∞ filter
resulting in the equations:

x̂k = Ax̂k−1 + NK̃k(ỹk − C̃Ax̂k−1)
∆k = AΣk−1A

T + BWk−1B
T

K̃k = ∆k(I + NC̃∆k)−1

Σk = ∆k(I − γ−2LT
k QkLk∆k + NC̃∆k)−1

ẑk = Lkx̂k

(9)
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where the approximate fused covariance matrix and fused
measurement replace the actual variables allowing for de-
centralized filtering.

IV. MOTION CONTROL LAW

To capitalize on its limited motion, each agent implements
a motion controller in order to improve the overall sensing
quality of the system. Given the limited communication ca-
pacity of each agent, the controller needs to be decentralized.

We could design a central (unimplementable) control law
based on a global cost function, and replace the unknown
global values with local estimates [20]. The cost function,
J , is defined as the trace of Σglobal:

J = tr [Σglobal] (10)

Σglobal is the solution to the Riccati equation from the
centralized H∞ filter:

Σglobal,k = ∆k(I + CT M−1C∆k − γ−2Q̄k∆k)−1 (11)

We want to take the gradient with respect to each sensor’s
state to determine the best path.

Suppose all the agents are kinematic, and fully actuated
so that pk = pk−1 + ui; our initial control law follows [20]

ui = −ΓTT
i

 ∂J
∂ri

1
ri

∂J
∂θi

 (12)

where Γ > 0 is a gain matrix and Ti is the rotation matrix
for agent i. The derivatives are written as

∂J

∂ri
= tr [Σr

i ]

∂J

∂θi
= tr

[
Σθ

i

]
(13)

with Σr
i and Σθ

i representing the derivatives of the global
covariance with respect to ri and θi, respectively.

Proposition 1. (Motion Control Law)
Take the gradients of the cost function J with respect to
the sensor’s coordinates (zi represents either ri or θi). The
gradient controller can be written in closed form solution
as:

∆z
k = AΣz

k−1A
T (14)

Σz
i,k = ∆z

kΩ−1 + ∆kΩ−1CT ∂

∂zi
(M−1)C∆kΩ−1

−∆kΩ−1(CT M−1C∆z
k − γ−2LT QL∆z

k)Ω−1(15)

with

Ω = I − γ−2LT QkL∆k − CT M−1
k C∆k (16)

Based on our sensor-bearing model, it follows

∂

∂ri
V −1

k = −2a2(ri,k − a1)Ti,kR−2
i,k

[
1 0
0 α

]
TT

i,k

∂

∂θi
V −1

k = V −1
k (Ψi,k + ΨT

i,k)V −1
k (17)

with

Ψi,k =
[

0 −1
1 0

]
Ti,kR−1

i,kTT
i,k (18)

A decentralized version of this control can be implemented
with some minor changes. Each agent keeps a local copy of
the gradients Σr

i,k and Σθ
i,k. The global ∆k and Ωk variables

are replaced by the equivalent local filter values. The use of
consensus estimators allow each agent to replace M−1 with
its local approximation, C̃.

V. EVASIVE TARGET DESIGN

In the application of target tracking, assumptions are made
about the signal driving target. For simplicity, the signal is
often assumed to be white noise. How does the filter perform
if the target is purposely performing evasive maneuvers, as
suggested in [13]? The target requires information about the
sensor model and possibly the filter used by each agent for
it to move in an effective manner. Assuming the target is
capable of determining the distance between itself and each
agent, in addition to knowledge of the sensor model, it is able
to construct a possible uncertainty ellipses Mi,k for each
agent i. Let Qfused represent the fused target uncertainty
ellipse based on all of the sensor measurement ellipses. The
calculation of Qfused will be discussed later in this section.

There are several different ways the target can behave. The
target can behave in a greedy manner and try to maximize
trace of the overall measurement set, i.e.,

max tr[Q(k)] (19)

at every time step, as discussed previously, or it can try to
maximize the time before capture, when the trace of the
uncertainty set drops below a certain threshold level:

max {T : tr[Q(k)] ≥ γ, t0 ≤ t ≤ t0 + T} (20)

The level of evader intelligence is also an aspect to consider.
In this example, the target is only aware of the sensor models
used but is unaware of the filtering techniques used. The
target motion problem can be formulated as an optimiza-
tion problem searching for the minimum trace (or volume)
ellipsoid.

In this paper, the goal of the target is to maximize the
uncertainty at every time step (19), so the cost function is,

J = tr Qfused (21)

the trace of a fused measurement covariance matrix. The
target does not use the “one-shot” approach. It looks at the
smallest over-bounding ellipse of the intersection of a series
of measurement covariances (22).

Qfused ⊃
N⋂

i=1

Mi,k (22)

This over-bounding is accomplished as follows. Given a
symmetric matrix A > 0, a vector b of same size and a
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scalar ρ > 0, define vector q and symmetric matrix Q > 0
as

Q =
[
1 + bT A−1b− ρ

]
A−1

q = A−1b (23)

F is defined as a mapping, (q, Q) = F(A, b, ρ), and F is
smooth over this domain. Because the target has knowledge
of the sensor model used and the distance between it and
each agent, the target is able to calculate the correspond-
ing uncertainty, E(xt,Mj) for each agent. Given multiple
uncertainty ellipses E(xt,Mj), we define the smallest over-
bounding ellipse as:

(q, Q) = F(
∑

j

λjM
−1
j ,

∑
j

λjM
−1
j xt,

∑
j

λjx
T
t M−1

j xt)

(24)
where λj are nonnegative weights with

∑
j λj = 1.

VI. SIMULATIONS

This section will evaluate the performance of decentralized
H∞ filters for both stationary and mobile sensors. Two
target models will be used, the random walk and the evasive
motion technique discussed in the previous section. The
communication links between agents are described below,

li,j =
{

1, |pi − pj | ≤ r
0, else (25)

where r is the communication radius, pi and pj are the
positions of sensor i and j and li,j represents whether sensor
i and sensor j can communicate with each other. The agents
will use the sensing model from section II, eqs. (3), (4).
The sensor model parameters are a0 = 0.3528,a1 = 15.625,
a2 = 0.0008 and α = 5. The communication radius is set at
r = 20 to guarantee the network is connected.

Figure 2 compares the performance of the decentralized
and local H∞ filters for one of the ten stationary agents
tracking a target with white process noise. Each agent can
communicate with at most two neighbors, and the process
noise covariance, Wk = 0.01I2, is known. Figure 3 shows
the performance of the decentralized and local H∞ filters for
an agent, but the process noise covariance, Wk = 0.001I2,
has decreased. After comparing the performance of the
decentralized filter between the figures 2 and 3, the perfor-
mance of it improves as the speed of the target increases. The
increase in performance from the decentralized filter is the
result of the consensus estimator. At every time step, each
estimator combines its local information with the information
its neighbors sent last time step introducing lag into the
system. As the process noise decreases, the information
passed between agents is more relevant at the next time step
and can be used to improve the estimates.

By introducing a motion controller with each agent, the
agent should move in a direction to improve the performance
of the sensor. Figure 4 shows the estimation error for a
stationary agent using only local information for estimates
and an agent with the motion controller starting from the
same position using a decentralized estimator. The estimation

Fig. 2. Estimation error for the local (blue) and decentralized H∞ (red)
filters. The process noise of the target Wk = 0.01I

Fig. 3. Estimation error for the local (blue) and decentralized H∞ (red)
filters. The process noise covariance Wk = 0.001I

error for the mobile agent is smoother and approaches zero
quicker than the stationary agent. Figure 5 compares the
performance of a stationary agent and an agent with motion
both using decentralized H∞ estimation.

Figure 6 illustrates the motion for an evasive target and
four sensors. The target uses the equation described in the
previous section, eq. (19). The agents follow the control law
derived in section IV. The process noise covariance of the
target is described as Wk = 0.01I2. All four sensors use the
sensor model and parameters discussed in section II. The
agents move to align themselves for better sensor readings
as the target reacts to the sensor motion.

VII. SUMMARY AND FUTURE WORK

We present a framework for performing decentralized
motion control and H∞ estimation for a mobile multi-agent
system. Because of the similarities in structure between the
Kalman and H∞ filters, we were able to utilize several of
the techniques in [20] to perform decentralized H∞ filtering.
We were able to validate this algorithm with simulations.
A decentralized gradient control law was also proposed in
this paper. Simulations compared the sensing performance
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Fig. 4. Estimation error for a stationary (blue) sensor using only local
H∞ filter and a mobile (red) sensor using a decentralized H∞ filter. The
target is stationary in this example.

Fig. 5. Estimation error for a stationary (blue) and mobile (red) sensor
using decentralized H∞ filters. The target is stationary in this example.

Fig. 6. Motion of the sensor network following an evasive target. The
sensors are represented as circles and the target as a square. The tails show
how the network and target evolve over time.

between a stationary and mobile sensor for a stationary
target. This control law was also tested against a target

performing evasive maneuvers.
Future work would include stability analysis for this cou-

pled estimation and control problem, and the effect of time
delays in the communication channels and the performance
of the consensus filters. The premise of this work is that
the H∞ filter should outperform the Kalman filter when
the target maneuvers to intentionally avoid tracking. A more
thorough analysis is needed in regards to the performance
of these two filters and whether there is a performance
advantage with the H∞ filter.
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