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Abstract— Mobile boom cranes are used throughout the
world to perform important and dangerous manipulation tasks.
The usefulness of these cranes is greatly improved if they can
utilize their mobile base during the lifting and transferring
phases of operation. During such operations, the tip-over
stability is degraded when the payload swings. This paper
presents a stability study of such cranes with payloads that
cause double-pendulum dynamics. As a first step, a static
stability analysis of a single-pendulum boom crane is conducted
to provide basic insights into the effects of the payload weight
and crane configuration. Then, a semi-dynamic method is used
to take the payload swing into account. Finally, the results of
a dynamic stability analysis obtained by using a full dynamic
multi-body simulation are compared to the outcomes of the
previous approaches. The results of the semi-dynamic method
and the full dynamic simulation are verified by experiments.
This analysis provides useful guidance for the practical tip-over
stability analysis of mobile boom cranes and motivates the need
to control payload oscillations.

I. INTRODUCTION

Cranes attached to fixed bases are widely used for heavy
lifting in various applications. However, their productivity
is limited because their workspace is constrained in size.
Moving the base of the crane during lifting operations can
enhance the productivity tremendously, but this poses a sta-
bility hazard. The tip-over problem is of concern with mobile
booms cranes, cherry pickers, lifting trucks, aerial platforms,
and vehicles of a similar type. The rollover problem is also
critical in the design of All Terrain Vehicles (ATVs) and
Sport Utility Vehicles (SUVs) [1]. Previous investigations in
the area suggest methods to prevent rollover by limiting the
maximum lifting speed [2]. To predict rollover situations,
complex dynamic models including wheel slip, tire stiffness,
as well as lateral load transfer were developed [3].

Several investigations into the tip-over stability of cranes
have also been performed. However, most of the previous
work limited their investigations to a fixed base location dur-
ing crane operation. Towarek studied the dynamic stability
of a boom crane on a flexible soil foundation [4]. Kilicaslan,
Balkan, and Ider calculated the maximum possible payload
a mobile crane can carry and move while its base and
stabilizing arms are kept fixed [5].

Another factor that significantly impacts the crane sta-
bility is payload oscillations. Payload swing due to base
excitation motion was studied, and a technique limiting

these oscillations by reeling and unreeling the hoisting cable
was developed [6]. The anti-sway problem was investigated
and formulated as a nonlinear constrained optimal control
problem [7]. Lewis, Parker, Driessen and Robinett developed
a method to reduce payload oscillation by utilizing adaptive
command filters [8]. Certain types of payloads and riggings
can induce double-pendulum effects that increase the com-
plexity of the problem [9], [10], [11], [12].

In this paper, the tip-over stability of mobile boom cranes
carrying double-pendulum payloads is investigated. First, a
static stability analysis of a simple mobile boom crane is
conducted to provide insights into the relationship between
the crane configuration and the maximum allowable payload.
Then, the analysis is extended to a semi-dynamic method
by including the influences from payload swing angles.
This analysis is used to investigate the crane’s behavior
during simple base maneuvers. A full dynamic multi-body
simulation of the crane is then created to better analyze the
crane’s behavior, and the results are compared with those
of the semi-dynamic analysis. Experiments are performed
to verify the simulated results. The results indicate that
payload oscillation can significantly compromise crane tip-
over stability.

II. DOUBLE-PENDULUM MOBILE BOOM CRANE MODEL

To investigate mobile boom crane stability, a representative
model of a crane was developed. Figure 1 shows the model
utilized for the static analysis. The model is composed of a
cart platform with tires, a rotational boom, and cables with
end point masses. The cart is modeled as a thin plate, and
has a mass of mc and a center of gravity at distances of
lcom and bcom away from it geometric center. The boom
can rotate through an angle β about a point located at a
distance la forward of the cart’s geometric center. The boom
is mounted on top of the rotational platform at a distance la2

in front of the platform’s rotational center. It has a mass of
mb, length of lb, and a center of mass located at a distance
lbcom from the attachment point. The boom can be raised in
a luffing motion through angle α.

Four wheels are attached to the bottom of the cart. The
wheels are separated by lc in the longitudinal direction, and
bc in the lateral direction. The suspension cables l1 and l2
have negligible masses compared to the payloads m1 and
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Fig 1. Schematic Diagram of a Mobile Boom Crane

m2 attached at the end of the cable segments. The payload
oscillations of the double-pendulum crane are defined in the
longitudinal and the lateral directions with respect to the cart.
The angles ϕ1 and ϕ2 describe the payload oscillation of m1

and m2 respectively in the longitudinal direction. Similarly,
the angles θ1 and θ2 describe the payload oscillation of m1

and m2 in the lateral direction to the cart.

A. Static Stability Analysis

A static stability analysis was performed to study the tip-
over stability of the mobile boom crane when it is stationary
and without payload swing (ϕi and θi are zero). The analysis
calculated the maximum payload that can be attached to
the boom without causing it to tip-over. This analysis was
conducted for every possible boom angle configuration.
Therefore, the tip-over condition is split into distinct cases:
The crane will tip-over either to the front (rollover axis
indicated as A-A in Figure 1), to the back (rollover axis
indicated as D-D in Figure 1), or to the side (rollover
axes indicated as B-B and C-C in Figure 1). Equilibrium
conditions for the torques about these axes were formulated.
These torque equilibriums consist of contributions from the
cart and the boom weight, from the two payload weights,
and from the ground contact forces exerted on the wheels.
If these contact forces vanish, then the crane is starting to
tip-over. For every boom position, the total weight of the
payloads that first causes the wheel contact forces to vanish
was recorded as the maximum possible payload.

A single-pendulum crane apparatus, shown in Figure 2,
was used to experimentally verify the analysis. The geomet-
ric parameters and constants for the setup are listed in Table
I. To allow a reasonable comparison between the single-
pendulum setup and the double-pendulum mobile boom
crane model, the cable lengths l1 and l2 are adjusted so that
the total length was equal to the cable length used in a single-
pendulum setup. In addition, the mass m1 was set to 0kg.

Figures 3 and 4 show the maximum possible payload
plotted against the slew angle, β, for two different values

Fig 2. Single-Pendulum Crane Experimental Apparatus

TABLE I. Geometric Parameters of a Single-Pendulum
Crane Apparatus

mc 24.9kg lb 1.70m
mb 8.0kg lbcom 0.80m
lc 1.10m lcom 0.12m
bc 0.70m bcom 0.0m
la 0.30m r 0.14m
la2 0.28m h 0.14m
l l1 + l2 m1 0kg

of the luffing angle, α. The solid lines show the predicted
values, while the diamonds indicate the experimental results.
The maximum payload follows the same trends in both
graphs, but on a different scale.

The payload value reaches local minimums at β = 0◦,
90◦, 180◦, and 270◦. The global minimum occurs at β = 90◦

(and β = 270◦) and a luffing angle α = 0◦. This is when
the boom points exactly to the side and reaches out as far as
possible. By limiting the payload to the maximum value at
this location, a stable static behavior can be guaranteed over
the entire workspace.
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B. Single-Pendulum Semi-Dynamic Stability Analysis

Since the goal of this investigation is to develop a practical
tip-over stability analysis method for mobile boom cranes,
the static stability analysis is extended to a semi-dynamic
stability analysis by including payload swing angles in the
torque calculation. This is critical to the analysis because
large payload swings can dramatically decrease the crane
stability. The swing angles, ϕi and θi in Figure 1, are
still regarded as static in this analysis, i.e. the payloads
are deflected, but remain statically in the deflected position.
The magnitude of the swing angle from a worst-case swing
condition due to a straight-line driving maneuver is used to
conduct the stability analysis.

To calculate the maximum swing angle, a closed-form
solution based on the acceleration command is derived.
The equation of motion for a one-dimensional, undamped
single-pendulum with an accelerating suspension point is
investigated. The dynamic behavior of such a pendulum is
governed by:

ϕ̈(t) + ω2 sinϕ(t) = −d
2x(t)/l
dt2

cosϕ(t) (1)

where ϕ is the swing angle, ω is the natural frequency of
the pendulum, and x is the position of the suspension point.
Using the small angle approximation for ϕ (ϕ � 1 ⇒
sinϕ ≈ ϕ, cosϕ ≈ 1), the equation can be linearized and
transformed into the Laplace domain.

G(s) =
Φ(s)
A(s)

= − 1
l(s2 + ω2)

(2)

where A(s) is the Laplace transform of the suspension point
acceleration.

In this investigation, the acceleration command is limited
to bang-coast-bang commands (trapezoidal velocity com-
mands). In the Laplace domain, such a command can be
described as:

A(s) =
M

s
(1 − e−T2s − e−T3s + e−T4s) (3)

where M is the magnitude of the acceleration and the Tis
are the respective switch times. Most significant for the
investigations of the tip-over stability are the worst cases for

the switch times in the command, i.e. the switch times that
cause the highest amplitude of payload swing. In order to
obtain the worst-case swing angle, the resulting expression
for Φ(s) is transformed into the time domain:

ϕ(t) = − M

lω2

((
1 − cos

(
ωt

))

−
(
1 − cos

(
ω(t− T2)

))
σ(t− T2)

−
(
1 − cos

(
ω(t− T3)

))
σ(t− T3)

+
(
1 − cos

(
ω(t− T4)

))
σ(t− T4)

)
(4)

It can be deduced from (4) that the largest swing angles
occur when the cosine terms are all in phase and the
multiplying step functions σ are all equal to 1, which means
that t ≥ T4. This results in the following expression for the
absolute value of the maximum possible swing angle:

|ϕmax| =
4M
g

(5)

In order to establish the accuracy of the result, a simulation
of a nonlinear single-pendulum was used to obtain the maxi-
mum swing under a variety of conditions. Consider the case
when the crane is accelerated at a constant rate of 1.0m/s2

up to a maximum speed of 1.0m/s. The deceleration occurs
at the same rate as the acceleration, but is negative in value.

The maximum payload swing angles for this maneuver
were computed for move distances between three and ten
meters. Because the swing angles ϕ and θ are measured
relative to the cart, the boom’s position does not matter in
this case. By using a payload suspension length l of 1m,
the pendulum has a natural frequency of ω = sqrt( g

l ) ≈
3.132rad/s. This means that the first and the second, as
well as the third and the fourth cosine terms in (4) combine
constructively (T2ω = (T4 −T3)ω = 1s× 3.132rad/s ≈ π).
Varying T3 by using different move distances, the worst-case
maneuvers with the largest possible swing angles for these
acceleration and velocity limits can be obtained.

Figure 5 shows the maximum swing angles for a suspen-
sion length of 1m for different maximum speeds and an
acceleration of 1m/s2. The humps in the curve occur when
the first and the second pair of cosine terms in (4) are in
phase. According to (5), the maximum swing angle for this
maneuver is 0.4077rad, which agrees with Figure 5. The
figure also shows, as predicted, that this maximum swing
angle occurs for an acceleration of 1m/s2 at a maximum
speed of 1m/s. Because neither the first and the second, nor
the third and the fourth cosine terms in (4) are in phase for
the other values of v, the maximum possible swing angles
caused by these maneuvers are lower.

Another interesting effect that can be seen in Figure 5
is that the maximum swing angle cannot be reduced below
0.2rad for values of v greater than or equal to one. This
limit occurs because this is the amplitude of deflection caused
by the initial acceleration. Only by keeping the acceleration
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pulse very short, and thus the maximum velocity v very low,
it is possible to reduce the maximum vibration below that
value, as can also be seen in Figure 5 for v = 0.6m/s.

C. Double-Pendulum Semi-Dynamic Stability Analysis

The maximum swing angle calculated for a single-
pendulum was directly applied to the double-pendulum sta-
bility analysis. This is justified by assuming that the worst
case occurs when both cable segments l1 and l2 are swung
outward to form the same angle with the vertical direction
(ϕ2 = θ2 = 0). For this reason, the maximum swing angle
given by (5) is reused. By setting the magnitude of the
acceleration to 1m/s2 and the total payload suspension
length to 1m, the maximum swing angle of 0.4077rad
(23.36◦) was computed and used for the stability analysis.

The results of the semi-dynamic stability analysis of
the mobile boom crane model equipped with single- and
double-pendulum were compared. The same parameters from
Table I were used for the single-pendulum. For the double-
pendulum, the cable lengths l1 and l2 were again adjusted
to set the total length equal to the cable length used for the
single-pendulum. To reduce complexity, equal lengths for l1
and l2 were used, and the mass m1 was set to a fixed value of
1kg. In Figure 6, the maximum possible payload (m1 + m2

for the double-pendulum) is plotted against the slew angle
β for a fixed luffing angle of α = 30◦. The plot illustrates
that the maximum payload for the single-pendulum and the
double-pendulum follow a similar shape. However, some
differences arise because the double-pendulum case includes
m1 and the single-pendulum case does not. In some cases
m1 acts as a stabilizing force. However, when m1 swings out
past the wheel base, it acts to decrease the tip-over stability.
Also, note that the maximum payload values in Figure 6
are lower than those in Figure 4 (static case), indicating that
payload oscillations do make a mobile crane less stable.

A payload deflection was added to the static stability
analysis by using the single-pendulum maximum swing
angles. In this investigation, the crane was only moved in
the forward direction, thus the values for the lateral swing θ
were zero. Furthermore, the semi-dynamic analysis does not
take the centripetal force caused by the longitudinal swing
into account, which also has an influence on the torque
equilibrium about rollover axis B-B. In order to compensate

0
3
6
9

12
15
18

0

30

60
90

120

210

240
270

300

330

Single Pendulum
Double Pendulum

Slew Angle (deg)

M
ax

. P
ay

lo
ad

 (
kg

)

Front of
Crane

Fig 6. Max. Payload for α = 30◦ (Semi-Dynamic
Stability)

1

2

3
N

A

B

2

3 1

[x y]

w1

w2

w4

w3

D

2
3 1

13
2

AO

BO

DO

β

ψ

Fig 7. Dynamic Multi-Body Model (Top View)

for this fact, and to make the semi-dynamic estimation more
conservative, the longitudinal payload swing ϕ was also
added as a lateral payload deflection. In addition to that
effect, the torque about the rollover axis A-A caused by
the inertia forces affecting the boom and the cart during
the deceleration of the driving maneuver can be added to
the torque equilibrium as a constant. This only impacts the
forward tipping condition, decreasing the maximum payload
near the front of the crane.

III. DYNAMIC STABILITY ANALYSIS

A double-pendulum crane can exhibit a rich and complex
dynamic behavior that can significantly impact the stability
of the mobile platform. Therefore, the full dynamic effects
of payload swing angles must be considered. To fully inves-
tigate the stability analysis of the double-pendulum mobile
boom crane, a dynamic multi-body simulation of the crane
was developed.

Figure 7 shows the top view of a schematic model of the
multi-body simulation. The origin of the coordinate system A
is located on the ground. The cart’s position in the Newtonian
coordinate system N is defined by a vector [xy] that describes
the location of the origin of A and a rotation about a vertical
axis (angle ψ). The boom rotates relative to the cart (angle
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β). The coordinate system D is always aligned with A. Thus,
it is possible to describe the payload swing angles relative
to the cart.

Figure 8 shows a side view of the model. The cart can
pitch along its lateral axis, described by angle q1. It can also
move up and down. Therefore, the vector from point AO
to point CC (indicated as a dotted line in Figure 8) has a
variable length, but is always aligned with coordinate system
C. The cart motion is constrained by wheel-ground contacts,
modeled by spring-damper subsystems. To better match the
behavior of a real system, these forces are limited to be
compressive forces so that the springs do not pull the wheels
back to the ground. The payload swing angles are measured
relative to the coordinate system C. The basic dimensions
and weights of the crane are taken from the single-pendulum
crane apparatus utilized in the static stability experiment.

Figure 9 shows the model from the back. The location
of the center of the cart CC is defined by a vector that is
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collinear with the upward pointing axis of the coordinate
system C. The cart rotates relative to the A frame about the
longitudinal axis of the cart, described by angle q2.

This multi-body simulation was used to detect the maxi-
mum payload that does not cause a bucking motion, i.e. the
wheels of the crane do not lose contact to the ground at
any time, when the maximum swing angle is 0.4077rad. A
bucking motion does not require any translational movement
of the cart. Therefore, no influence of the cart’s or boom’s
inertia caused by acceleration or deceleration was utilized.

Figures 10 and 11 show the results from the full dynamic
simulations and the semi-dynamic model prediction, as well
as the experimental outcomes for two different values of
the luffing angle α. The results from the simulation match
up with those from the experiments. Additionally, the semi-
dynamic model reproduces the shape obtained by the simu-
lations and experiments. For α = 30◦ it underestimates the
maximum possible payload over the whole range of slew
angles β. This is a desirable result because it provides an
approximate, yet conservative, estimation. For α = 45◦,
however, the predicted maximum payload lies higher than
the results obtained from the simulations and experiments
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around β = 0◦ and β = 180◦. A closer investigation
shows that the semi-dynamic model tends to overestimate
the maximum stable payload with increasing values of α.
Because the maximum payload values for lower values of α
are also lower and thus more critical for stability, this effect
does not compromise the usefulness of this stability analysis.

Figure 12 illustrates the results of the full dynamic sta-
bility analysis of the mobile boom crane model equipped
with single- and double-pendulums. The maximum possible
payload is plotted against the slew angle β for a fixed value
of the luffing angle (α = 30◦). An arbitrary bang-coast-bang
acceleration input of 1.0m/s2 with 2.5sec intervals between
the pulses was supplied to accelerate the cart. The circular
markers represent the double-pendulum simulation results,
and the diamond markers indicate the single-pendulum sim-
ulation results.

Many of the simulated results coincide, especially toward
the back of the crane, indicating a similar stability behavior
for both single-pendulum and double-pendulum cases. This
is beneficial because the semi-dynamic stability analysis,
which is a simple and practical tool, also produced results
illustrating the similar stability characteristics for both cases.

Figure 12 also shows that the double-pendulum mobile
boom crane is less stable than the single-pendulum mobile
boom crane. This effect is more apparent toward the front of
the crane. This clearly shows that the extra weight and the
double-pendulum dynamics hinder the overall stability of a
mobile boom crane. The complex swinging motion produced
a reduced workspace area, and thus leads to lower crane
performance efficiency.

IV. CONCLUSIONS

A static stability analysis revealed basic insights into tip-
over stability properties of a mobile boom crane. A semi-
dynamic model was developed to extend the analysis to
account for simple driving maneuvers that induce payload
swings and inertia forces. The results from the semi-dynamic
analysis align with the outcomes of a full dynamic simulation
of the mobile boom crane for low values of the luffing
angle. Experiments with a single-pendulum crane apparatus

verified the results. Thus, the semi-dynamic model estimation
provides a useful and simple tool to investigate the tip-
over stability of mobile boom cranes with double-pendulum
payloads.
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