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Abstract— This paper presents the design of an adaptive
flight control systems for constrained air-breathing hypersonic
vehicle models. The proposed architecture comprises a robust
adaptive nonlinear inner-loop controller, and a self-optimizing
guidance scheme that shapes the reference to be tracked in
order to avoid the occurrence of control input saturations. The
scheme is explicitly designed to account for the presence of
a state-dependent input saturation on the control loop for the
vehicle longitudinal velocity, arising from physical limitations in
the propulsion system. The approach is based on the integration
of a previously-developed adaptive controller with a self-tuning

pre-filter which shapes the reference command to maintain the
control signal within feasible values. The reference command
are left unaltered whenever there is sufficient control authority
for stable tracking. Simulation results are provided to show the
effectiveness of the method.

I. INTRODUCTION

Control of hypersonic air-breathing vehicles presents nu-

merous challenges, stemming from the complexity of the

dynamics and the unprecedented level of coupling between

the airframe and the propulsion system. The longitudinal

model of the dynamics of this kind of aircraft are known to be

unstable, non-minimum phase with respect to the regulated

output, and affected by significant model uncertainty [1]–[4].

Recently, a significant research effort has been spent towards

the development of more sophisticated models of hypersonic

vehicle dynamics that are amenable to control system design

[5], [6], in parallel with the development of control solutions

capable to deal with the specific issues inherent to this class

of aircraft (see [7]–[11], to cite just a few). In addition to

the aforementioned difficulties, the presence of unavoidable

constraints on the control inputs render the design of robust

control systems an even harder endeavor. In this paper, we

enhance a previously developed nonlinear adaptive flight

control system [12], [13] by explicitly considering the pres-

ence of a state-dependent constraint for the input controlling

the velocity loop, namely the fuel-to-air equivalence ratio

(FER). This constraint is imposed by the very nature of

the propulsion system, which is required to maintain the

conditions that sustain scramjet operation. This is a very hard

constraint for the system, which must be addressed by the

guidance and control system to avoid choking of the scramjet

engine. The recent paper [14] discusses issues related to

the thermal choking of the engine which are relevant from

the control design standpoint, and proposes the concept of
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“FER margin” to quantify robustness with respect to the

aforementioned constraint.

The approach we take here to address the presence of

the hard constraint on the FER input is to integrate a novel

adaptive guidance loop to a previously developed adaptive

inner-loop control scheme. The role of the guidance system

is to modify the bandwidth of a reference model to slow

down the reference trajectory such that the control input

limits are avoided, and to recover the desired speed of

response whenever there is sufficient control authority to

do so. To maintain the presentation streamlined, constraints

on the deflection of the aerodynamic surfaces will not be

explicitly addressed in this paper, although their presence

can be easily incorporated in the scheme. In the literature,

the presence of input constraints in adaptive control schemes

has been addressed by resorting to direct modification of

the update law or the reference model (see, for instance,

the µ-modification of [15] or the pseudo-control hedging

of [16]. Here, we take a plug-in approach to the problem by

leaving the adaptive tracking controller virtually unaltered,

and shifting the burden of ensuring that the input constraints

are not violated to an adaptive guidance system, integrated

with the inner-loop controller. The methodology is inspired

by the variable-bandwidth reference model employed in [17],

and borrows a few ideas on self-optimizing controllers

from [18]–[20]. With respect to this latter, the scheme

presented here employs a novel adaptation law for the Kuhn-

Tucker multiplier in the overall cost function.

The paper is organized as follows: In Section II, the

vehicle model employed in this study is briefly presented, and

the state-dependent input constrained discussed. Section III

presents the adaptive inner-loop controller, while Section IV

is devoted to the adaptive guidance system. Simulation

results are discussed in Section V, followed by concluding

remarks.

II. VEHICLE MODEL

The control-oriented model of the longitudinal vehicle

dynamics considered in this study is given by (see [4], [9])

V̇ =
T cosα − D

m
− g sinγ

ḣ = V sinγ

γ̇ =
L + T sin α

mV
−

g

V
cos γ

θ̇ = Q
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Q̇ =
M

Iyy

η̇ = Aηη + Nη (1)

This model is comprised of five rigid-body state vari-

ables x = [V, h, γ, θ, Q]T , six aeroelastic states η =
[η1, η̇1, . . . , η3, η̇3]

T corresponding to the first three lon-

gitudinal bending modes, and three control inputs u =
[Φ, δc, δe]

T which affect (1) through the thrust, T , the pitch-

ing moment about the body y-axis, M , lift, L, and drag, D.

The meaning of the state variables and the input vector is

given in Table I. The output to be controlled is selected as

y = [V, h, α]T . Following [9], approximations of the forces

and moments to be employed for control design and stability

analysis have been derived as follows:

T ≅ q̄S
[

CΦ

T (α)Φ + C0

T (α)
]

L ≅ q̄S
[

Cα
L(α) + Cδc

L δc + Cδe

L δe + Cη
Lη

]

D ≅ q̄S Cα
D(α)

M ≅zT T + q̄c̄S
[

Cα
M (α) + Cδc

Mδc + Cδe

Mδe + Cη
Mη

]

Nη ≅ q̄S [Nα2

α2 + Nαα + N δcδc + N δeδe + N0 + Nηη ]

where

CΦ

T (α) = CΦα3

T α3 + CΦα2

T α2 + CΦα
T α + CΦ

T

CT (α) = C3

T α3 + C2

T α2 + C1

T α + C0

T

CL(α) = Cα
Lα + C0

L

Cα
D(α) = Cα2

D α2 + Cα
Dα + C0

D

Cδ
D(δ) = C

δ2
c

D δ2

c + Cδc

D δc + C
δ2

e

D δ2

e + Cδe

D δe

Cα
M (α) = Cα2

M α2 + Cα
Mα + C0

M

The relationship q̄ = 1

2
V 2ρ0 exp(−(h − h0)/hs) has been

used for the dynamic pressure, where ρ0, h0 and hs are

positive constants. It is assumed that all the coefficients of the

control design model and all vehicle parameters are subject to

uncertainty. The vector of all uncertain parameters is denoted

by ϑ ∈ R
p and it is assumed that ϑ ∈ Θ, where Θ is a known

compact convex set. All model parameters will be considered

constant during each tracking maneuver.

The input Φ is subject to a state-dependent constraint of

the form Φ0 < Φ < Φch(α, q̄, V ) ≤ Φ1, where Φ0 and Φ1

are respectively the constant upper and lower limits shown in

Table I. The function Φch(·) represents the maximum fuel-

to-air ratio that can be provided at a given flight condition

compatible with scramjet combustion in the engine. As a

matter of fact, heat addition (due to increased FER) tends

to slow down the flow within the combustion chamber, until

it becomes subsonic, at which point, scramjet combustion

can no longer be sustained. While a closed-form solution

for Φch(·) can not be computed, an analytical expression

can be given using curve-fitting. In this paper, a cubic spline

was employed to derive an approximation of Φ ch(·) over the

range of interest, using the first-principle model in [4]. It is

worth noting that Φch(·) depends on the vehicle velocity,

the angle-of-attack, and altitude (by way of the dynamic

pressure), that is, on the regulated output. As an example,

TABLE I

ADMISSIBLE RANGES FOR STATE, INPUT, AND VARIABLES OF INTEREST

Variable Min Value Max Value

V Vehicle Velocity 7500 ft/s 11000 ft/s

h Vehicle Altitude 85000 ft 135000 ft

γ Flight-Path Angle (FPA) −3 deg 3 deg

θ Pitch Angle −5 deg 5 deg

Q Pitch Rate −10 deg/s 10 deg/s

Φ Fuel-to-air Ratio 0.05 1.5

δc Canard Deflection −20 deg 20 deg

δe Elevator Deflection −20 deg 20 deg

α Angle-of-Attack, α = θ − γ −5 deg 5 deg

q̄ Dynamic Pressure 182.5 psf 2200 psf

M Mach Number 6 12

Figure 1 shows plots of Φch versus Mach number for given

values of α at q̄ = 1800 psv. It can be noted that at

lower Mach number the attainable thrust (hence, the vehicle

acceleration) is limited by the choking conditions.

III. BASELINE ADAPTIVE CONTROLLER

In this section, we present the inner-loop adaptive con-

troller developed in [13] that will be used in the integrated

flight control scheme. The controller is developed ignor-

ing the presence of the constraint on the control input,

which, as mentioned, will be dealt with by the guidance

system. The goal of the control algorithm is to steer the

output of system (1) to a desired trim condition y ⋆
∞ =

[V ⋆
∞, h⋆

∞, α⋆
∞]T , along smooth exogenous reference trajec-

tories yref(t) = [Vref(t), href(t), αref(t)]
T , robustly with re-

spect to the considered model parameter uncertainty. Clearly,

limt→∞ yref(t) = y⋆
∞. The reference trajectories for the

remaining state variables are defined as γref := ḣref/Vref ,

θref := αref + γref and Qref := θ̇ref , and let xref =
[Vref , href , γref , θref , Qref ]

T . We say that xref is admissible

if xref(t) ∈ A, where A is the set defined by the admissible

ranges given in Table I. For controller design, define com-
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Fig. 1. Plot of Φch(α, q̄, V ) vs. Mach number for different values of α.
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manded trajectories as γcmd :=−khVref [h−href ]/Vref +γref

and Qcmd :=−kθ[θ−θref ]+Qref , where kh > 0 and kθ > 0
are gain parameters, and let the tracking error be defined as

x̃ = [Ṽ , h̃, γ̃, θ̃, Q̃]T := [V −Vref , h− href , γ − γcmd, θ−
θref , Q− Qcmd]. Following [13], the plant model is written

in the form

V̇ = ϑT
1 Ψ1(q̄, α) + ϑT

1 B1(q̄, α)Φ

ḣ = V sin γ

γ̇ = ϑT
2 Ψ2(x, Φ) + ϑT

2 B2(x)δ + P2(x)η

θ̇ = Q

Q̇ = ϑT
3 Ψ3(x, Φ) + ϑT

3 B3(x)δ + P3(x)η

η̇ = Aηη + Nη(x, η, δ) (2)

where ϑi ∈ Θi, 1 ≤ i ≤ 3, where Θi ⊂ R
pi are

known compact convex sets. Accordingly, we define ϑ =
col(ϑ1, ϑ2, ϑ3) and Θ = Θ1 ×Θ2 ×Θ3. For notational con-

venience, let δ = [δc, δe]
T , ϑa = col(θ2, θ3) and Ba(x, θa) =

col
(

ϑT
2 B2(x), ϑT

3 B3(x)
)

. The certainty-equivalence adap-

tive controller considered in this study is given by the

assignment

Φ =
1

ϑ̂T
1
B1(α, q̄)

[

− kV Ṽ − ϑ̂T
1 Ψ1(α, q̄) + V̇ref

]

δ = B−1

a (x, θ̂a)

(

−kγ γ̃ − ϑ̂T
2 Ψ2(x, Φ) + γ̇cmd

−kQQ̃ − ϑ̂T
3 Ψ3(x, Φ) + Q̇cmd

)

(3)

together with the update laws

˙̂
ϑ1 = Proj

ϑ̂1∈Θ1

{

Γ1

[

B1(α, q̄)Φ + Ψ1(α, q̄)
]

Ṽ + v1

}

˙̂
ϑ2 = Proj

ϑ̂2∈Θ2

{

Γ2

[

B2(x)δ + Ψ2(x, Φ)
]

γ̃ + v2

}

˙̂
ϑ3 = Proj

ϑ̂3∈Θ3

{

Γ3[B3(x)δ + Ψ3(x, Φ)]Q̃
}

(4)

where kV > 0, kγ > 0 and kQ > 0 are qain parameters, and

Γi ∈ R
pi×pi , 1 ≤ i ≤ 3, are positive definite matrices.

The external input v = [v1, v2]
T will be used by the

adaptive guidance law, yet to be defined. Setting this input

to zero yields the baseline adaptive controller. Finally, let

ϑ̂ = col(ϑ̂1, ϑ̂2, ϑ̂3). After the coordinate transformation

x �→ x̃ and ϑ̂ �→ ϑ̃ := ϑ − ϑ̂, the model (2) reads as1

˙̃V = −kV Ṽ +
[

Ψ1(q̄, α) + B1(q̄, α)Φ
]T

ϑ̃1

˙̃h = −khh̃ + Vref γ̃ + Ṽ sin γ

˙̃γ = −kγ γ̃ +
[

Ψ2(x, Φ) + B2(x)δ
]T

ϑ̃2 + P2(x)η

˙̃
θ = −kθθ̃ + Q̃
˙̃Q = −kQQ̃ +

[

Ψ3(x, Φ) + B3(x)δ
]T

ϑ̃3 + P3(x)η

η̇ = Aηη + Nη(x, η, δ) (5)

Using arguments similar to those in [13], it is possible

to show that the baseline adaptive controller satisfies the

following:

1In equation (5), whenever convenient, we have used the small-angle
approximation sinγ ≅ γ.

Proposition 3.1: Assume that the control input is

unconstrained. Fix, arbitrarily, compact sets of admissible

initial conditions Kx ⊂ A and Kη for the rigid-body

and flexible states, respectively. Then there exists a

selection of the controller gains kV , . . . , kQ and Γi such

that, for any admissible reference trajectory xref(·), all
(

x(0), η(0), ϑ̂(0)
)

∈ Kx × Kη × Θ, and for v = 0, the

trajectories of the closed-loop system (3)–(5) are bounded

and satisfy limt→∞ x̃(t) = 0. �

In particular, in [13] it is shown that there exists a Lyapunov

function of the form

W (x̃, χ̃, ϑ̃) = V (x̃, χ̃) + ϑ̃T Γ−1ϑ̃

where η �→ χ̃ is an invertible transformation involving the

states of the flexible dynamics, V (x̃, χ) is a positive definite,

radially unbounded and locally-quadratic function, and Γ =
diag(Γ1, Γ2, Γ3), such that its derivative along trajectories of

the closed-loop system (3)–(5) satisfies

Ẇ (x̃, χ̃, ϑ̃) ≤ −λ1‖x̃‖
2 − λ2‖χ̃‖

2

for all (x̃, χ̃) ∈ Ωc := {(x̃, χ̃) : V (x̃, χ̃) ≤ c} and all ϑ̂ ∈ Θ,

where λ1 > 0, λ2 > 0 are suitable constants, and c > 0 is

such that Kx ×Kη ∈ Ωc .

IV. ADAPTIVE GUIDANCE FOR THE VELOCITY LOOP

We turn now our attention to the design of the guidance

outer loop to account for the constraint on the input Φ. as

mentioned, limits on the control surface deflection, δ, will not

be explicitly considered in this paper. Their incorporation on

the guidance scheme via management of the reference h ref

and αref can be accomplished in a straightforward manner

by mimicking the development of guidance loop for V ref .

First, define the feasible set Y for the output set-point

as the set of all constant y⋆ = [V ⋆, h⋆, α⋆]T for which the

steady-state control input

Φss(α
⋆, q̄⋆, ϑ̂1) = −

ϑ̂T
1 Ψ1(α

⋆, q̄⋆)

ϑ̂T
1
B1(α⋆, q̄⋆)

is such that

Φ0 < Φss(α
⋆, q̄⋆, ϑ̂1) < Φch(α⋆, q̄⋆, V ⋆)

for all ϑ̂1 ∈ Θ1. Let y⋆
0 and y⋆

∞ define respectively feasible

values of the initial and the desired setpoints. The adaptive

guidance system for the velocity loop is given by

V̇ref = −κVref + κV ⋆
∞ Vref(0) = V ⋆

0

κ̇ = τ(x, xref , ϑ̂) (6)

where τ(·) is an update law to be defined. For the sake

of simplicity, the reference trajectory αref(t) is obtained

by filtering through a second-order stable LTI filter a step

commands of amplitude α⋆
∞ − α⋆

0. The reference trajectory

href is obtained from the expression of q̄ so as to maintain

a constant desired dynamic pressure q̄⋆, that is,

href(t) = h0 + hs[ ln(ρ0V
2

ref(t)) − ln(2q̄⋆) ]
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Let c(Φ, Φch) be defined as

c(Φ, Φch) =

(

Φ0 − Φ(α, q̄, V̇ref , ϑ̂)

Φ(α, q̄, V̇ref , ϑ̂) − Φch(α, q̄, V )

)

so that the feasibility condition for the velocity guidance loop

is given by ci(Φ, Φch) < 0, i = 1, 2. Define the logarithmic

barrier function

b(Φ, Φch) := b0 − ln(−c1) − ln(−c2)

where b0 > 0 is selected such that b(·) ≥ b̄0 > 0 for all Φ0 <
Φ < Φch. Note that b(Φ, Φch) is indeed a function of the

variables α, q̄, Ṽ , Vref , V̇ref , ϑ̂1. Consider the cost function

J(κ, ̺, Φ, Φch) := 1

2
(κ − κ⋆)2 + ̺ b(Φ, Φch) + 1

3
̺3

where ρ ∈ R≥0 is a Kuhn-Tucker multiplier and κ⋆ > 0
is the desired value of the gain of the adaptive filter (6).

Since b(·) > 0, for any fixed Φ ∈ (Φ0, Φch) the function

J(·) is a positive definite function of (κ−κ⋆, ̺) over the set

X = R × R≥0; moreover, for any (κ, ̺) ∈ X − (κ⋆, 0),

lim
Φ→Φ

+

0

J(·) = +∞ , lim
Φ→Φ

−

ch

J(·) = +∞

The derivative of the cost function J(·) along trajectories of

the closed-loop system reads as

J̇ = (κ − κ⋆)κ̇ +
[

̺2 + b(Φ, Φch)
]

˙̺ + ̺ ḃ(Φ, Φch) (7)

Since

Φ̇ =
∂Φ

∂α
α̇ +

∂Φ

∂q̄

[

∂q̄

∂h
ḣ +

∂q̄

∂V
V̇

]

+
∂Φ

∂Ṽ

[

V̇ + V̇ref

]

+
∂Φ

∂V̇ref

V̈ref +
∂Φ

∂ϑ̂1

˙̂
ϑ1

Φ̇ch =
∂Φch

∂α
α̇ +

∂Φch

∂q̄

[

∂q̄

∂h
ḣ +

∂q̄

∂V
V̇

]

+
∂Φch

∂V
V̇

one obtains

ḃ =

[

∂b

∂Φ

∂Φ

∂α
+

∂b

∂Φch

∂Φch

∂α

]

[

Q−ϑT
2 Ψ2(x, Φ)−ϑT

2 B2(x)δ
]

+

[

∂b

∂Φ

∂Φ

∂q̄
+

∂b

∂Φch

∂Φch

∂q̄

]

∂q̄

∂h
V sinγ

+

[

∂b

∂Φ

[

∂Φ

∂q̄

∂q̄

∂V
+

∂Φ

∂Ṽ

]

+
∂b

∂Φch

[

∂Φch

∂q̄

∂q̄

∂V
+

∂Φch

∂V

]]

×
[

ϑT
1 Ψ1(q̄, α)+ϑT

1 B1(q̄, α)Φ
]

+
∂b

∂Φ

[

∂Φ

∂Ṽ
V̇ref +

∂Φ

∂ϑ̂1

˙̂
ϑ1

]

+
∂b

∂Φ

∂Φ

∂V̇ref

[

κ2Vref − κ2V ⋆
∞ − Vref κ̇

]

Collecting terms, the derivative of the barrier function along

solutions of the closed-loop system can be written as

ḃ = l0(x, xref , ϑ̂, v) + lT1 (x, xref , ϑ̂)ϑ1 + lT2 (x, xref , ϑ̂)ϑ2

+lκ(x, xref , ϑ̂)κ̇ (8)

Combining (7) with (8), the derivative of the cost function

reads as

J̇ =
[

κ − κ⋆ + ̺ lκ(x, xref , ϑ̂)
]

κ̇ +
[

̺2 + b(Φ, Φch)
]

˙̺

+l0(x, xref , ϑ̂, v) + ̺ lT1 (x, xref , ϑ̂)ϑ1

+̺ lT2 (x, xref , ϑ̂)ϑ2 (9)

The update law for κ and ̺ are chosen respectively as

κ̇ = −ǫ1
[

κ − κ⋆ + ̺ lκ(x, xref , ϑ̂)
]

˙̺ =
1

̺2 + b(Φ, Φch)

[

− ǫ2̺
2 − l0(x, xref , ϑ̂, v)

−̺ lT1 (x, xref , ϑ̂)ϑ̂1 − ̺ lT2 (x, xref , ϑ̂)ϑ̂2

]

(10)

where ǫ1 > 0 and ǫ2 > 0 are design parameters, with initial

conditions κ(0) = κ0 ≥ 0 and ̺(0) = ̺0 > 0. The additional

input v in the update law (4) for the parameters of the inner-

loop controller is selected as

v1 = Γ1l1(x, xref , ϑ̂)̺ , v2 = Γ2l2(x, xref , ϑ̂)̺ (11)

Note that, since b(Φ, Φch) ≥ b̄0 > 0 in its domain of

definition, the update law for ̺ is well-defined.

Proposition 4.1: Consider the closed-loop system given

by the plant model (2), the inner-loop controller (3)-(4),

and the adaptive guidance system (6), (10)–(11). Assume

that the initial setpoint y⋆
0 and the desired setpoint y⋆

∞ are

feasible. Then, for any feasible initial condition (x0, η0),
the trajectories of the closed-loop system are bounded and

satisfy limt→∞ x̃(t) = 0. Moreover, the input Φ satisfies

Φ0 < Φ(t) < Φch(α(t), q̄(t), V (t)) for all t ∈ [0,∞), and

limt→∞ Vref(t) = V ⋆
∞, limt→∞ κ(t) = κ⋆. �

Proof: Consider the Lyapunov function candidate

W(x̃, χ̃, ϑ̃, κ, ̺) = W (x̃, χ̃, ϑ̃) + J(κ, ̺, Φ, Φch)

which is positive definite in (x̃, χ̃, ϑ̃, κ−κ⋆, ̺) ∈ Ωc ×R
p×

X , and evaluate its derivative along trajectories of the closed-

loop system to obtain

Ẇ ≤ −λ1‖x̃‖
2 − λ2‖χ̃‖

2 − ǫ1
[

κ − κ⋆ + ̺ lκ(x, xref , ϑ̂)
]2

−ǫ2̺
2

where we have used the properties of the smooth parameter

projection. Since by assumption ̺0 > 0, and ̺ = 0 is

an equilibrium for the dynamics of ̺ given by the second

equation in (10), it follows that ̺(t) > 0 for all t ≥ 0. As

a result, for any feasible initial condition, there exist d > 0
such that (x̃(t), χ̃(t), ϑ̃(t), κ(t), ̺(t)) ∈ ΩW

d := {W ≤ d}
for all t ≥ 0, where ΩW

d is compact. Note also that, since

by construction W is proper on the set {(x, ϑ̂, xref) : Φ ∈
(Φ0, Φch)}, and the trajectories of the closed-loop system

evolve in a compact set, necessarily Φ(t) remains bounded

away from its lower and upper limits. By LaSalle’s invariance

principle, trajectories converge to the largest invariant set

contained in the set

S := {x̃ = 0, χ̃ = 0, κ− κ⋆ = 0, ̺ = 0}

from which the result follows.

From the result of Proposition 4.1 it is evident that the

guidance system modifies adaptively the rate of change of

the velocity reference in such a way that the input constraints

are avoided during the transient, while recovering both the

desired value of the bandwidth of the pre-filter (basically, κ ⋆)

and the desired set-point at steady-state, V ⋆
∞. The fact that the

Kuhn-Tucker multiplier vanishes at stead-state is expected,

as the desired set-point is assumed feasible.
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Fig. 2. Control inputs with and without adaptive guidance. Top plot: input
Φ(t) and Φch(t); bottom plot: input δ(t).

V. SIMULATION RESULTS

The proposed scheme has been tested in simulation using

the nonlinear control-oriented model (1). The maneuver

considered in the simulation presented here is a climbing

at constant dynamic pressure q̄ = 1800 psv, obtained by

increasing the velocity from an initial trim condition at

V ⋆
0 = 9000 tf/s to a final trim at V ⋆

∞ = 10500 ft/s. This

correspond to climbing from approximately h ⋆
0 ≅ 9.4×104 ft

to h⋆
∞ ≅ 10.05 × 104 ft. The angle-of-attack is kept

constant at α⋆ = 2 deg. The parameter of the adaptive

inner-loop controller have been selected as in [13], whereas

the parameters of the guidance law have been selected as

follows:
ǫ1 = 0.1 ǫ2 = 0.05
κ0 = 0 ̺0 = 1
κ⋆ = 75

For the first simulation, only static saturations corresponding

to the values on Table I have been incorporated in the

controlled system, and the adaptive guidance law has been

removed. In this case, the gain of the pre-filter for the

velocity reference has been kept fixed at κ = 75. The

result of this simulation, as far as the input is concerned,

is visible in the top plot of Figure 2 (red dash-dotted line)

showing Φ(t), and the bottom plot of the same figure (solid

cyan and magenta lines) showing δ(t). The control effort

for Φ(t) reaches the choking condition (green solid line)

during the first few seconds of the simulation after the

reference command is issued at t = 0. The simulation should

have terminated when the choking condition is met, as the

conditions that sustain scramjet propulsion are violated. On

the other hand, when the adaptive guidance is active, the

control input Φ is prevented from reaching Φ ch during the

initial transient (blue dashed line in the top plot of Figure 2).

The surface deflections remain also very well-behaved as

seen in the bottom plot of Figure 2 (dashed blue and green

lines). Figure 3 compares the vehicle velocity V (t) under

the adaptive guidance and control systems with the reference

Vref , computed with and without adaptive guidance. It can be

seen that the three trajectories are almost identical, and differ

ï200 0 200 400 600 800 1000
9000

9200

9400

9600

9800

10000

10200

10400

10600

Time [s]

V
el

o
ci

ty
[f

t/
s]

 

 

Vref, adaptive guidance

V , adaptive guidance

Vref, no adaptive guidance

ï1 0 1 2 3 4 5 6 7 8 9 10
8990

9000

9010

9020

9030

9040

9050

9060

9070

9080

9090

9100

Fig. 3. Vehicle velocity, V (t), and velocity reference, Vref(t), with and
without adaptive guidance.
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Fig. 4. Parameters of the adaptive guidance scheme, κ(t) and ̺(t).

only slightly during the first few seconds after the command

is issued. Finally, Figure 4 shows κ(t) and ̺(t), respectively.

As expected, ̺(t) is active only when the constraint would

be violated, and settles to zero very rapidly after t = 200 s,

whereas the gain κ(t) converges to the desired steady-state

value.

VI. CONCLUSION

The adaptive guidance and control scheme presented in

this paper constitutes a preliminary step towards the defini-

tion of a truly integrated flight control architecture for hyper-

sonic vehicles. Current work is addressing the incorporation

of rate-limits and constraints on the aerodynamic control

surface, as well as the adoption of anti-windup schemes to

alleviate the burden on the guidance system.
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