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Abstract— The focus of this paper is on estimating system
states in the presence of repetitive measurement noise. This
estimation technique is applied to a novel self-spinning high
speed rotary on/off valve that is being developed for pulse
width modulating (PWM) fluid flow. The PWM duty ratio is
determined by the valve spool’s axial position. Unfortunately,
the optical position measurement is corrupted by a repetitive
noise, induced by the spool’s rotary motion. Two models are
developed to represent the periodic noise: one discrete time
time invariant model based on internal model principle and a
continuous time model that uses a set of periodic basis functions.
Kalman filters are designed to estimate the spool position and
the periodic noise. This estimates are used with a PI with feed-
forward controller for the spool position reference tracking.
Simulation and experimental results indicate the usefulness of
estimating the periodic noise.

I. INTRODUCTION

A novel self-spinning rotary high speed on/off valve,
shown in Fig.1, has been proposed in [1]. The valve was de-
signed to increase the overall hydraulic system efficiency by
eliminating throttling through partially open control valves.
The valve is composed of a rotating spool driven by the fluid
flow, and a stationary sleeve. The spool consists of a center
section and two outlet turbines. The center section contains
helical barriers, which act as turbine blades, to capture the
fluid angular momentum. Two outlet turbines reverse the flow
direction relative to the inlet, and generate a reaction torque
on the spool to aid its rotary motion. When the spool rotates,
flow is apportioned to application (on) or to reservoir (off)
by the barrier. Instead of partially opening the valve, the
on/off valve modulates flow by modulating the duty ratio of
the on/off times. Since the valve is nearly either fully on or
fully off, throttling losses are minimized. The duty ratio is
determined by the axial position of the spool relative to the
rhombus inlet nozzle on the sleeve. The axial position of
the spool is actuated hydro-statically using a small electro-
hydraulic gerotor pump that is hydraulically connected to
both ends of the valve sleeve. By pumping fluid from one
end of the sleeve to the other end, the spool axial position is
varied. The differential pressure needed to actuate the spool
is less than 30psi, and the power needed for this actuation
is small. The spool axial position is measured using an
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Fig. 1. System schematic
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Fig. 2. Optical sensor output for a fixed spool axial position

optical sensor, which consists of two LEDs and a photodiode.
Light emitted from the LEDs reflects off of the polished
spool end, and is received by the photodiode. The LED
light intensity varies monotonically with the light traveling
distance. The spool axial position can be mapped to the
photodiode response statically. Since the spool end can not
be polished uniformly, rotary motion introduces a periodic
measurement noise, as shown in Fig.2. The only information
we have about this noise is that it has the same period as the
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spool rotary motion. In addition to this structured noise, other
kind of noises exist as well, including electrical noise, effect
of oil temperature on optical sensors, effect of air entrained
in oil on light intensity, etc.

Distinguishing between the spool state and the periodic
measurement noise is important. Otherwise, the actuator
would respond to the corrupted tracking error, and corre-
spondingly cause the spool to oscillate. This causees the DC
motor to switch direction at a high frequency and wastes a lot
of energy. In this paper, we develop approaches to estimating
the periodic noise and canceling it out before feeding back
the spool position state for control. Two approaches of
modeling the periodic measurement noise were introduced
in this paper: one is a discrete time time-invaraint periodic
signal exo-generator, and the other one is a continuous time
model that uses a set of weighted periodic basis functions.

In the next section, system model and the two periodic
noise models will be presented. Procedure of designing a
Kalman filter and a PI with feed-forward controller will be
discussed in sections III and IV. Simulation and experimental
results will be presented in section V. Concluding remarks
and future research plans will be discussed in section VI.

II. SYSTEM MODELING

A. Spool Dynamics

A schematic of the system studied in this paper is shown
in Fig.1. The fluid is treated as incompressible, and the spool
dynamics is modeled as:

ẋ =
Q(u)

As

(1)

x is the spool axial position, Q(u) is the flow rate acting on
the spool, and As is the spool end area.

The actuator is a small gerotor pump powered by a
DC motor. The speed and the direction of the motor are
controlled using an H-bridge. By pulse width modulating
the enable signal to the H-bridge, we can control the motor
speed, and therefore control the pump flow rate. The pump
unit dynamics exhibits dead-band, saturation and asymmetry.
The static relationship between input u and flow Q(u) is
calibrated experimentally.

The axial position, measured by the optical sensor, is
corrupted by a periodic noise d(t) = d(t + T ) and an
unstructured noise n(t). n(t) is modeled as a white noise
with zero mean.

y(t) = x(t) + d(t) + n(t) (2)

Since the actual spool position is taken to be the mean of
the measurement, the noise d will be a repetitive signal with
zero mean: ∫ t+T

t

d(τ) · dτ = 0

Modeling of d affects the structure of the estimator. The
idea is to form the state space formulation of the discrete
time noise model, so that it can be estimated from the
measurement. If the spool rotates at a constant angular
velocity, this noise can be represented as a function of time,

and it has the same period as the rotary motion: Here we
introduce two d models:

B. Repetitive Noise Dynamics

1) Model 1: In this model, the repetitive noise d(t) is
first discretized and then modeled using a time invariant exo-
generator. Let d(k) = d(k + Ts) be the discretized version
of d(t) with Ts being the sampling time. The discrete time
period is N = T/Ts (assuming that N is an integer). We
define the zero mean noise exo-generator as:

xd(k + 1) = Adxd(k)

d(k) = Cdxd(k) (3)

with

Ad =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 · · · 0 1
−1 −1 · · · −1 −1

⎞
⎟⎟⎟⎟⎟⎠ ∈ R

N−1×N−1

Cd =
(
1 0 · · · 0

)
∈ R

1×N−1

Notice that for any xd(0) ∈ R
N−1,

∑N
k=1 d(k) is zero mean.

The spool dynamics (1) are discretized as:

x(k + 1) = x(k) + Ts

Q(u(k))

As

(4)

Using (2) and the above, an augmented system combining
the system state and the measurement noise states is:(

x
xd

)
︸ ︷︷ ︸
xaug1

(k + 1) =

(
1 0
0 Ad

)
︸ ︷︷ ︸

Aaug1

(
x(k)
xd(k)

)

+

(
Ts

As

0

)
︸ ︷︷ ︸
Baug1

Q(u(k)) + w(k)

y(k) =
(
1 Cd

)
︸ ︷︷ ︸

Caug1

(
x(k)
xd(k)

)
+ n(k) (5)

xaug1 ∈ R
N×1, Aaug1 ∈ R

N×N, and Caug1 ∈ R
1×N. The

observability matrix of the current augmented system is O ∈

R
N×N:

O =

⎛
⎜⎜⎜⎝

Caug1

Caug1Aaug1

...
Caug1A

N
aug1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

1 1 0 · · · 0
1 0 1 0 · · ·
...

...
...

. . .
...

1 0 0 · · · 1
1 −1 −1 · · · −1

⎞
⎟⎟⎟⎟⎟⎠

det(O) = (−1)(N+1)N �= 0

The observability matrix O is of full rank, and the pair
(Aaug1, Caug1) is observable. If d is not assumed to be zero
mean, it will be impossible to distinguish the true spool
state from the DC component of the disturbance, and the
augmented system will be unobservable.
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Using this approach, the dimension of xd is typically very
large. N = T

Ts
, and T is the noise period. In our case N ≈

100. This leads to a high dimensional estimator which is
computationally expensive and may not be very robust.

2) Model 2: In the second model, the periodic noise signal
is represented by a linear combination of periodic basis
functions fi(t) = fi(t + T ):

d(t) =
∑

i

wifi(t) (6)

where wi are the weights. A variety of basis functions can
be implemented depending on the structure of the periodic
noise. Compared with the first approach, this one is more
flexible. Given a set of basis functions, the weights are
defined as the states of the repetitive noise dynamics, while
the basis functions will form the “C” matrix in d(t) =
C(t)xd. “C” is a periodic time varying matrix.

In this paper, we select Fourier series expansion, but
instead of using an infinite number of harmonic frequencies,
the first several terms are used to represent the periodical
signal. Express it using the state space form:

d(t) =
(
cos(ωt) sin(ωt) · · · cos(nωt) sin(nωt)

)
︸ ︷︷ ︸

Cd2(t)

⎛
⎜⎝

xd1

...
xd2n

⎞
⎟⎠

︸ ︷︷ ︸
xd

Notice that this model automatically ensures that d(t) is zero
mean.

An investigation was first conducted to determine the
number of basis functions required.
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Fig. 3. Repetitive noise and its estimate using different number basis
functions

We present the corrupted measurement of the spool axial
position in Fig. 2 in section I. The DC component of
the measurement represents the spool axial position. By
extracting it from the noise, we get the repetitive noise as
shown in Fig. 3. This repetitive noise is estimated using three
groups of basis functions. They are designed using the same
fundamental frequency, and they consist of 10, 20, and 40
basis functions respectively. The 40 basis functions model
can capture more structure of the periodic noise compared
with the other two groups, while 10 and 20 basis functions
models do not exhibit a significant difference. The estimation
error is not very sensitive to the number of basis function

selected. To reduce the dimension of the repetitive noise
dynamics while maintaining the estimation resolution, we
use 10 basis functions in the simulations and the experiments
below.

The augmented system combining the spool dynamics and
the noise dynamics is a periodic system:

d

dt

(
x
xd

)
︸ ︷︷ ︸
xaug2

=

(
0 0
0 0

)
︸ ︷︷ ︸

Aaug2

(
x
xd

)
+

(
1
0

)
︸︷︷︸
Baug2

Q

As

+ w

y =
(
1 Cd(t)

)
︸ ︷︷ ︸

Caug2(t)

(
x
xd

)
+ n (7)

Checking the observability of the above augmented system
by checking the observability grammian over one period:

M(0, T ) =

∫ T

0

ΦT(t, 0)CT
aug2Caug2(t)Φ(t, 0)dt

=

∫ T

0

Caug2(t)
TCaug2(t)dt

det(M(0, T )) =

(
T

2

)2N

> 0 (8)

Therefore, the states can be uniquely determined from the
measurement through a proper state estimator.

III. STATE ESTIMATOR

In both augmented systems (5) and (7), we assume the
process noise w and the un-modeled measurement noise n
to be white noise with zero mean. A Kalman filter is designed
as the state estimator.

For periodic noise model 1, since the augmented system is
modeled in discrete time form, a discrete time Kalman filter
is designed. Dimension of the estimator increases linearly
as the sampling time decreases for a fixed spool rotating
period. This may lead to a slow and un-robust Kalman filter
dynamics.

x̂−

aug1(k) = Aaug1x̂aug1(k − 1) + Baug1Q(u)(k − 1)

x̂+
aug1(k) = x̂−

aug1(k) + L(k)(y(k) − Caug1(k)x̂−

aug1(k))
(9)

L(k) is computed from solving a discrete time Riccati
equation [2].

For periodic noise model 2, the dimension of the noise
model is not a function of the sampling time. By properly
selecting the type of basis functions, dimension of xd can
be optimized, and it allows us to choose a small sampling
time. The same formulation can be easily adapted to other
periods. A continuous time varying Kalman filter is needed:

d

dt
x̂aug2 = Aaug2x̂aug2+Baug2Q(u)+L(t)(y−Caug2x̂aug2)

(10)
where the injection gain L(t) is computed based on a
continuous time periodic Riccati equation.
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IV. CONTROLLER DESIGN

A PI with feedforwad controller is designed using the
spool state estimated from the Kalman filters. The control
objective is for the duty ratio of the valve to track a reference
trajectory. Equivalently, the spool axial position needs to
track a desired trajectory r(t). The tracking error and its
integral are defined as:

e := r − x (11)

ėi = e (12)

Define E =
(
ei e

)T
, the dynamics of the position tracking

error are:

ė = ṙ −
Qd − Qm

As
Ė = (A + BK)E − BKCaugx̃aug (13)

with A =

(
0 1
0 0

)
, B =

(
0
1

As

)
and K being the feedback

PI gain. Qd is the desired flow rate used as the feed-forward
term: Qd = ṙAs. We define Qm as Qm = Qd−Q(u)

As
.

Define x̃aug = xaug − x̂aug , we summarize the state
estimate error dynamics as:

˙̃xaug = (Aaug − LCaug)x̃aug (14)

The closed loop dynamic of the combined error is:

d

dt

(
E

x̃aug

)
=

(
A − BK BKCaug

0 Aaug − LCaug

) (
E

x̃aug

)
(15)

The closed-loop poles are the combination of the poles from
the observer and the poles that would have resulted from
using the same feedback on the true states. K and L can be
designed separately, and the combined error dynamics can
be stabilized.

The first augmented system is modeled in discrete time.
Similar closed loop dynamics of the combined error can be
derived in discrete time difference equation form. Therefore,
K(k) and L(k) can be designed separately to stabilize the
combined error dynamics as well.

For the first noise model, tracking error dynamic is con-
verted into discrete time system by applying a zero-order-
hold sampling to the system:

E(k + 1) =

(
1 Ts

0 1

)
E(k) +

(
T 2s
2
Ts

)
Qm(k)

State feedback gain is determined by doing pole place-
ment.

The control law is designed using flowrate, and it is
converted to control input through an inverted mapping from
Q(u) to u, which is calibrated experimentally. In practice,
the dynamics of the actuator can not be perfectly inverted,
and the dead-band is not known precisely either.

If there is no stochastic noise n, poles of the estimator
can guarantee that the estimates converge to the real states
asymptotically. When considering the existence of bounded
and stochastic noise, the output of the Kalman filter is
guaranteed to be bounded; however, estimation error does
not necessarily converge to zero.

V. SIMULATION AND EXPERIMENTAL RESULTS

A block diagram summarizing the state estimation and
control strategy is shown in Fig.4.

feedforwad

with PI controller

signal processing

Kalman filter

optical

sensor

+

-

+

+

reference
x(t)xx((t))

d(t)d(t)
y(t)y(t)

n(t)n(t)

1
As

1
Ass

Fig. 4. System Block Diagram

As presented in section II-A, the gerotor pump unit is
experimentally calibrated: Using the same experimental data,
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Fig. 5. Mapping between the control input and the gerotor pump flow rate

maps from u to Q and from Q to u were fitted separately.
As shown in Fig. 5, the mapping is not exact.

We simulate the performance of the first repetitive noise
model in Simulink. The measurement has a 25 Hz repetitive
noise. Using a sampling time of 2ms, we need 20 states
to represent the disturbance dynamics. As shown in Fig. 6
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Fig. 6. Repetitive noise and its estimation error

and Fig. 7, spool position state can be distinguished from the
repetitive noise, and the tracking performance is satisfactory.

If the sampling time is selected to be 1ms, and the
repetitive noise is of 10Hz, we need 100 states to represent
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Fig. 7. Trapezoid reference signal, tracking error, and the control command

this noise. With the second model, faster sampling time does
not require increase in the number of noise dynamic states.

Next, we consider the second noise model. A simplistic
way of estimating the spool state from a noisy measurement
is to design a continuous Kalman filter which lumps all the
measurement noise into one term nt without considering its
temporal structure.

ẋ =
Q(u)

As

, y = x + nt

˙̂x =
Q(u)

As

+ L(y − x̂) (16)
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Fig. 8. Spool tracking error comparision: state estimated from lumped
model Kalman filter is fed back in the first 10 sec, and after 10 sec, the
state estimated form the basis function Kalman filter is fed back

Figure 8 shows the comparisons between the lumped
estimation model and the periodic basis function model
in simulation. The lumped model Kalman filter in (16) is
used in the first 10 sec, and from 10sec, the feedback state
is switched to the estimated state from the periodic basis
function Kalman filter. With the lumped model Kalman filter,
the repetitive noise corrupts the estimate of the true spool
state so that the actuator responds to the repetitive noise (as
shown in Fig. 9), making the spool oscillates. In contrast,
with the periodic basis function Kalman filter, Fig. 8 shows
that the spool position is regulated to the desired value in the
presence of the periodic noise, and the control input does not
respond to the periodic noise (Fig. 9).
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Fig. 9. Control input comparison between feeding back state from lumped
model Kalman filter and feeding back state from basis function Kalman
filter

We implemented the second approach experimentally. The
control objective is to achieve disturbance rejection, so
that the valve duty ratio remains constant. The spool was
estimated to rotate at around 10.5Hz, and the sampling time
was 0.5ms. 10 basis functions were used:

d(t) =

5∑
k=1

[xd2k−1cos(kωt) + xd2ksin(kωt)]
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Fig. 10. Spool position tracking performance: before 30 sec, state estimated
from the lumped model Kalman filter was fed back ,and at 30 sec, the
feedback state was switched to that from the basis function Kalman
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Fig. 11. Spool position tracking control input

Initially, the spool state estimated from a lumped Kalman
filter is used as feedback state(green line in Fig. 10). The
repetitive noise introduces a tracking error varying at a
very high speed, which drives the actuator to compensate
it. However, the actuator has a bandwidth limitation, and
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can not respond to the command as shown in Fig. 11. This
causes the actuator to switch direction at a very fast speed.
Since the tracking error amplitude is small, the effective
control input is small, and the spool is not driven to oscillate.
However, when performing an FFT analysis on the control
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Fig. 12. FFT analysis on control input

input of both state feedback cases, as shown in Fig.12: we
can see that when feeding back the state estimated from
the lumped Kalman filter, the control input has a significant
frequency component at a harmonic of the spool frequency
(∼ 19.53Hz). When the feeding back state is switched to the
estimated state from the basis function Kalman filter at 30
sec, the frequency component is removed from the input. In
both cases , the spool is stabilized with a tracking error. By
switching the feedback signal, the tracking error is reduced
from 0.005inch to 0.0009inch.

As shown in the experimental results, there is an discrep-
ancy between the estimate of the spool frequency 10.5Hz
and the true frequency analyzed using FFT 9.766Hz. In
practice, the angular velocity of the spool is not measured
directly, and it can vary as the oil operating conditions varies.
The sensitivity of the periodic noise estimate to the bias of
the fundamental frequency is investigated in simulation.
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Fig. 13. Noise estimate with a fundamental frequency bias

A 0.5Hz bias on the fundamental frequency is imposed
onto the basis function, while the repetitive noise has a
frequency of 10Hz. As shown in Fig. 13, this induces an
estimation error on both the repetitive noise and the spool
position. This is similar to the problem when using a lumped
model Kalman filter. The difference is that estimation error
on spool state is smaller compared with the error using a
lumped model Kalman filter. In simulation, the actuator can
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Fig. 14. Spool position tracking and control input with the fundamental
frequency bias

respond to the state tracking error(shown in Fig. 14) fast
enough, and the spool can oscillate. In practice, the error may
be so small that the actuator input falls into dead-band, and
can not cause oscillation. This simulation shows that states
estimator error is sensitive to the fundamental frequency bias.
Precisely knowing the repetitive noise period is crucial to
accurate spool position control.

VI. CONCLUSION AND FUTURE WORK

Periodic measurement noise can be estimated using state
estimators that incorporate models for the periodic noise.
Simulation and experimental results show that the spool
position can be distinguished from the periodic noise, and
the spool achieved improved trajectory tracking performance.
The time-invariant periodic noise model results in a high
dimension system especially when small sampling times are
used. On the other hand, the model that uses a set of periodic
basis functions can be effective with a lower dimension.

Sensitivity of the noise model to the dimension of the noise
dynamics and the accuracy of the fundamental frequency
were investigated in simulation. It is found that knowledge of
the period of the periodical signal is crucial. The noise period
can potentially be obtained from the rotary position sensing
using a coarse optical encoder. An event based Kalman filter
has been developed to more accurately estimate the rotary
states from the encoder [4]. Combining this with the work
presented in this paper will be pursued next.
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