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Abstract— In this paper, a decentralized overlapping static
output feedback law is proposed to control a linear time-
invariant (LTI) interconnected system. It is assumed that an
overlapping information flow structure is given which deter-
mines which output measurements are available for any local
control agent. Uncertain transmission delay is also considered
in communication links among different subsystems. Each
subsystem is assumed to be subject to input disturbances with
finite energy. A necessary condition for the existence of a
stabilizing overlapping controller is obtained which is easy to
check. Furthermore, a linear matrix inequality (LMI) based
design methodology is proposed to achieve internal stability
and H∞ disturbance attenuation. Simulations are presented to
demonstrate the efficacy of the developed results.

I. INTRODUCTION

Design of overlapping control systems has been of spe-

cial interest recently and various aspects of it have been

vastly studied in the literature [1], [2], [3]. This type of

systems have a wide range of real-world applications, e.g.,

in multi-agent systems [4]. The cooperative nature of control

paradigm in such systems is characterized based on the

topology of communication between control agents. Typi-

cally, it is not realistic to assume each control agent can use

all the measurement signals of the system to generate its

local control input. In other words, some kind of constraint

on the information flow between different control agents is

inevitable.

In a geographically distributed large-scale system such as

coordinated vehicles, a decentralized structure is often more

desirable in control [2]. Decentralized control theory has

attracted several researchers in the past three decades [5],

[1], [6]. Particularly, overlapping control has been studied

more recently and has found applications in various areas

[1], [4], [7]. In [1], an expansion transformation is used

to convert the original overlapping control problem into

a decentralized one. The contraction procedure is applied

consequently to provide an appropriate controller for the

original system. It is shown that such an approach is more

efficient if the system structure itself is overlapping too. The

work [6] introduces the notion of a decentralized overlapping

fixed mode (DOFM) to characterize the fixed modes of an

This work has been supported in part by the Natural Sciences and
Engineering Research Council of Canada (NSERC) under grant STPGP-
364892-08, and in part by Motion Metrics International Corp.

interconnected system with respect to the class of linear time-

invariant (LTI) structurally constrained controllers.

In a physical large-scale control system, on the other

hand, communication delays inherently exist in information

exchange between different control agents. Time-delay in

system dynamics has a significant impact on the stability

and performance of the system, and needs to be taken

into account in controller design. This problem has been

investigated intensively in the control literature, e.g. see [8],

[9], [10], [11].

Some of the recent developments in delay-dependent sta-

bility analysis have been reported in [8], [12]. Different

approaches are proposed for designing a proper feedback

controller which satisfies prescribed performance require-

ments, such as H∞ disturbance attenuation [13].

In this manuscript, an overlapping control strategy is

proposed for interconnected systems consisting of a number

of interacting subsystems. Each local controller is assumed

to share its local measurements with some of the others

local controllers (which are known a priori). The signal

transmission between different control agents is assumed

to be subject to uncertain delay. Furthermore, all actuators

are exposed to disturbances, affecting the resultant control

signals. The main contributions of this paper are as follows.

A necessary condition for the stabilizability of interconnected

systems by means of overlapping output feedback controllers

is derived first. A methodology is then proposed using linear

matrix inequalities (LMI) to design an overlapping static

output feedback controller which stabilizes the system and

attenuates the effect of disturbances on the regulated signal.

It is assumed in this paper that the interconnected system

possesses a LTI state space representation. The control gain is

then decomposed into diagonal and off-diagonal components.

A description of the resultant closed-loop system dynamics is

presented through the above gain decomposition procedure.

This results in a LTI system with an uncertain state-delay. A

graph-based algorithm is utilized subsequently to transform

the overlapping gain matrix into a block-diagonal form.

This paper is organized as follows. The problem is formu-

lated in Section II, and the main objectives of the work are

presented. In Section III, the closed-loop dynamics of the

system under overlapping static output feedback control law

is obtained and the matrix block diagonalization procedure

is reviewed. Then in Section IV, the stability analysis and
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H∞ control synthesis are addressed. Section V presents some

simulations which support the theoretical results of the paper.

Finally, concluding remarks are given in Section VI.

II. PROBLEM FORMULATION

A. Problem Statement

Consider a LTI interconnected system S consisting of ν
subsystems. Assume that the state-space model for the i-th

subsystem is described by

ẋi(t) = Aiixi(t)+
ν

∑
j=1,
j 6=i

Ai jx j(t)+ Biui(t)+ Eiwi(t),

i ∈ ν̄ := {1,2, . . . ,ν}

(1)

where xi ∈ Rni and ui ∈ Rmi are the state and input for the

i-th subsystem, respectively. In (1), the term Ai jx j, j ∈ ν̄ ,

represents the effect of the j-th subsystem on the dynamics

of subsystem i. The system matrices Ai, Bi, Ei and Ai j, i, j ∈ ν̄
are constant and have appropriate dimensions. Furthermore,

wi ∈ Rpi is the disturbance affecting the input of subsystem

i, with the property wi(t) ∈ L2[0,∞).
By putting together the state-space representations of all

ν subsystems, the overall dynamics of the interconnected

system S can be expressed as

ẋ(t) = Ax(t)+ Bu(t)+ Ew(t) (2)

where

x(t) =
[

x1(t)
T x2(t)

T . . . xν(t)T
]T

u(t) =
[

u1(t)
T u2(t)

T . . . uν(t)T
]T

w(t) =
[

w1(t)
T w2(t)

T . . . wν (t)T
]T

and

A =











A11 A12 · · · A1ν

A21 A22 · · · A2ν
...

...
. . .

...

Aν1 Aν2 · · · Aνν











,

B =











B1 0

B2

. . .

0 Bν











, E =











E1 0

E2

. . .

0 Eν











The local measurement signal for the i-th local controller is

represented by

yi(t) = Cixi(t) (3)

where yi ∈ Rri , and Ci is a given constant matrix with

appropriate dimension.

Assumption 1: For the sake of non-triviality (i.e., to avoid

the exact decentralized structure with no overlapping), it is

assumed that at least one of the local controllers has access

to at least one of the other subsystems’ measurement signal

through a communication link.

Let the measurement signal y j of the j-th subsystem be

transmitted to the control agent of subsystem i to construct

the local control input ui, i, j ∈ ν̄, i 6= j. Denote the received

signal with s j, which can be represented by

s j(t) = y j(t −h) = C jx j(t −h) (4)

In the above equation, h is the communication delay which

is uncertain, but is known to be strictly positive with finite

magnitude. For simplicity and without loss of generality, it

is assumed here that the communication delay is identical

for all channels.

B. Control Objectives

To control the system S, let the following local static out-

put feedback controller be considered for the i-th subsystem

ui(t) = Kis
i(t) (5)

where Ki ∈ Rmi×r, r := ∑ν
i=1 ri and

si(t) =
[

s1(t)
T . . . si−1(t)

T yi(t)
T

si+1(t)
T . . . sν (t)T

]T

In other words, si(t) is obtained by replacing si(t) with yi(t)
in the vector s(t). Let Ki be written as

Ki =
[

Ki1 Ki2 · · · Kiν

]

(6)

where Ki j ∈ Rmi×r j for i, j ∈ ν̄ . Assumption 1 implies that

there exist distinct integers i, j ∈ ν̄ , for which the gain matrix

Ki j is nonzero. Note that the local controller for the i-th

subsystem is characterized by the set of given Ki j’s, where Kii

is the control coefficient for the instantaneous local output,

and Ki j’s, j 6= i, are the coefficients of the non-local output

signals which are subject to the communication delay. Define

K as an overlapping static output controller whose (i, j)
block entry is Ki j.

Let the regulated signal be represented by

z(t) = Γx(t)

where z ∈ Rξ and Γ ∈ Rξ×n (n := ∑ν
i=1 ni). In this paper:

i) It is desired to find a necessary condition for the

existence of a stabilizing overlapping controller K for

the interconnected system S.

ii) A set of distributed overlapping output feedback gains

Ki, i ∈ ν̄ , is sought such that for any delay h with a

known upper bound,

– the internal stability of the closed-loop system is

achieved.

– the ∞-norm of the closed-loop gain from w(t) to

z(t) is less than a prescribed value γ , i.e.

‖Tzw‖∞ :=
‖z(t)‖2

‖w(t)‖2

< γ
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III. PRELIMINARIES

A. Closed-loop Dynamics under the Controller K

Consider a distributed overlapping control gain K with the

i-th local output feedback gain denoted by Ki, i ∈ ν̄ , as given

in (5) and (6).

Definition 1: KD is the set of all block-diagonal matrices

which have ν diagonal entries, where the i-th block entry on

the main diagonal is a mi × ri matrix, for all i ∈ ν̄ .

Definition 2: The decentralized gain matrix K̄ is defined

as

1) K̄ ∈ KD.

2) The (i, i) block entry of K̄, is equal to Kii.

Definition 3: Define the overlapping gain matrix K̃ as a

matrix of the following form:

1) Its (i, j) block entry, i 6= j, is Ki j if the output of

subsystem j is available to local controller i, and is a

mi × r j zero matrix otherwise.

2) Its (i, i) block entry is a mi × ri zero matrix.

Consider the interconnected system S given by (2), and

let the overlapping static output feedback control law K be

applied to S. The input ui in (5) can then be rewritten as

ui(t) =
ν

∑
j=1, j 6=i

Ki js j + Kiiyi

From (3) and (4), it follows that

ui(t) =
ν

∑
j=1, j 6=i

Ki jC jx j(t −h)+ KiiCixi(t)

This leads to the following expression for the input

u(t) = K̃Cx(t −h)+ K̄Cx(t) (7)

where

C =











C1 0

C2

. . .

0 Cν











and K̄ and K̃ are introduced in Definitions 2 and 3. By

Substituting (7) into (2), the closed-loop dynamics of the

system S under the overlapping static output feedback K is

obtained as follows

ẋ(t) = (A + BK̄C)x(t)+ BK̃Cx(t −h)+ Ew(t)

B. Matrix Block Diagonalization Procedure

Inspired by [6], the following graph-theoretic algorithm

is presented to convert K̃ to a block diagonal matrix H

using a single transformation matrix. This diagonalization

procedure is used in developing the main results of the paper.

Algorithm 1:

Step 1- Construct the overlapping graph G as follows:

a. Consider two sets of ν vertices denoted by I and J.

Label the vertices in I and J as vertex 1 to vertex ν .

b. For any i, j ∈ ν̄ , i 6= j, if there exists a communication

link from local controller j to local controller i, connect

vertex i ∈ I to vertex j ∈ J with an edge. The gain of

this edge is Ki j.

Step 2- Consider the i-th vertex in I and define a new graph

Gi which includes all the edges connected to this vertex.

Thus, the graph G is partitioned into ν subgraphs G1, G2,

. . ., Gν .

Step 3- Consider the subgraph Gi, i ∈ ν̄ , and denote the

set of all vertices of I which appear in Gi with Ii. Note that

|Ii| = 1, where |.| is the cardinality of a set. In addition, let

the set of all vertices of J which appear in Gi be denoted

by Ji. Suppose that |Ji| = δi, i ∈ ν̄; define H as a block-

diagonal matrix where its (i, i) block entry, i ∈ ν̄ , is a block

row whose j-th block entry, j = 1, . . . ,δi, is the gain of the

edge connecting the only vertex in Ii to the j-th vertex in Ji.

Remark 1: In step 2 of Algorithm 1, some vertices of J

might appear in more than one subgraph Gi, i ∈ ν̄ . In other

words, for some distinct i, j ∈ ν̄ , Ji

⋂

J j might be non-empty;

however, Ii

⋂

I j = /0, ∀i, j ∈ ν̄ , i 6= j.

Definition 4: Let Ci = Ji

⋃

{i}, for any i∈ ν̄ . Define HD as

the set of all block-diagonal matrices which have ν diagonal

block entries, where the i-th block entry, i ∈ ν̄ , is a mi × µi

matrix itself, and

µi = ∑
j∈Ci

r j (8)

The following lemma relates the matrix H, obtained from

step 3 of Algorithm 1, to K̃.

Lemma 1: Assume the block-diagonal matrix H ∈ HD is

obtained from K̃ using Algorithm 1. One can find a matrix

T such that

K̃ = HT (9)

Proof: Following an approach similar to [14], it is straight-

forward to show that the matrix H can be derived through

only a finite sequence of operations on the columns of K̃, and

therefore a unique transformation matrix T can be obtained

such that (9) holds. �

As an illustrative example, consider a vehicle formation

system F consisting of 3 vehicles with the i-th input and

output (i = 1,2,3) denoted by ui ∈ R and yi ∈ R2, re-

spectively. Suppose that vehicle 2 has access to the local

measurements of the other 2 vehicles while vehicles 1 and

3 receive the measurement of vehicle 2 only, and there is no

communication link between them (this formation topology

is referred to as leader-follower in the literature, where

vehicle 1 is the leader and vehicles 2 and 3 are followers

[3]). In this case, the structure of the gain matrix K̃ is as

follows

K̃ =





01×2 K12 01×2

K21 01×2 K23

01×2 K32 01×2





where K12,K21,K23,K32 ∈ R1×2. Following the procedure

given in Algorithm 1, the overlapping graph G corresponding

to the matrix K̃ is obtained as shown in Figure 1. Further-

more, following step 2 of the algorithm, one can find the

subgraphs G1, G2 and G3 depicted in Figure 2.

4237



1

12
K

23
K

21
K

32
K

2 3

1 2 3

Fig. 1. The overlapping graph G for the formation F
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Fig. 2. The subgraphs obtained from the graph G using step 2 of
Algorithm 1

Using step 3 of the algorithm, the block diagonal matrix

H is obtained as

H =





K12 01×2 01×2 01×2

01×2 K21 K23 01×2

01×2 01×2 01×2 K32





Moreover, the transformation matrix T (defined in (9)) for

this example is

T =









02 I2 02

I2 02 02

02 02 I2

02 I2 02









where I2 and 02 denote the 2×2 identity matrix and the 2×2

zero matrix, respectively.

IV. MAIN RESULTS

A. Stabilizability Conditions for Overlapping Control Sys-

tems

Definition 5: GD is defined as the set of all block-diagonal

matrices with ν diagonal entries, where the i-th block entry

on the main diagonal is a mi × (ri + µi) matrix itself (µi is

given by (8)).

It is easy to verify that the block matrix

[

K̄ H
]

can be converted to a proper block-diagonal matrix of the

form given in the above definition by a finite number of

elementary column operations. Therefore, let

[

K̄ H
]

= K̂Ω (10)

where K̂ ∈ GD, and Ω is a proper transformation matrix (as-

sociated with the above-mentioned elementary operations).

Definition 6: The system Ŝ is defined by the following

state-space equations

ẋ(t) = Ax(t)+ B̂u(t)

q(t) = Ĉ0x(t)+ Ĉ1x(t −h)

where

B̂ = B, Ĉ0 = Ω

[

C

0r×n

]

, Ĉ1 = Ω

[

0r×n

TC

]

(note that q(t) ∈ R2r, and Ω is given in (10)).

Now, let the matrices B̂, Ĉ0 and Ĉ1 be partitioned as

B̂ =
[

B̂1 B̂2 · · · B̂ν

]

Ĉ0 =











Ĉ0
1

Ĉ0
2
...

Ĉ0
ν











, Ĉ1 =











Ĉ1
1

Ĉ1
2
...

Ĉ1
ν











where B̂i ∈Rn×mi and Ĉσ
i ∈R(ri+µi)×n, for i∈ ν̄ and σ = 0,1.

The following two lemmas play key roles in obtaining a

necessary condition for the stabilizability of the system S

with respect to the overlapping controller K (the first one is

borrowed from [15]).
Lemma 2: Consider the matrices Mi and Ni, i = 1,2, . . . ,η ,

where Mi ∈Cρ×γi and Ni ∈Cρ×νi . A necessary and sufficient
condition for the following inequality

rank
[

M1 +N1K1 M2 +N2K2 · · · Mη +Nη Kη
]

<

min

{

ρ,
η

∑
i=1

γi

}

to hold for all Ki ∈ Cνi×γi , i = 1,2, . . . ,η , is that there
exists a non-empty subset Φ = {i1, i2, · · · , i j} of the index
set {1,2, · · · ,η} for which

rank
[

Mi1 Ni1 · · · Mi j
Ni j

]

< min

{

ρ − ∑
i/∈Φ

γi, ∑
i∈Φ

γi

}

The following lemma follows from the result obtained

originally in [15]. In this lemma, C denotes the set of the

complex numbers and A(e−sh), B(e−sh), C(e−sh) are quasi-

polynomials matrices corresponding to A(λ ), B(λ ), C(λ ) of

a LTI time-delay system (see [16]).

Lemma 3: Let the matrices A(e−sh) ∈ Cn×n, B̂i(e
−sh) ∈

Cn×πi , and Ĉi(e
−sh) ∈ Cπi×n, i ∈ ν̄ , be given. For any s ∈ C,

the matrix

sI −A(e−sh)−
ν

∑
i=1

B̂i(e
−sh)K̂iĈi(e

−sh)

is not full-rank for all K̂i ∈ Rπi×πi if and only if














sI −A(e−sh) B̂1(e
−sh) B̂2(e

−sh) · · · B̂ν (e−sh)
Ĉ1(e

−sh) L1 0 · · · 0

Ĉ2(e
−sh) 0 L2 · · · 0
...

...
...

. . .
...

Ĉν (e−sh) 0 0 · · · Lν















is not full-rank for all πi ×πi real matrices Li, i ∈ ν̄ .
Theorem 1: A necessary condition for the existence of a

stabilizing overlapping controller K for the system S is that
for any s ∈ sp(A), Re{s} ≥ 0, all of the following matrices
are full-rank











sI −A B̂i1 · · · B̂il

Ĉ0
il+1

+Ĉ1
il+1

e−sh 0 · · · 0

...
...

. . .
...

Ĉ0
iν

+Ĉ1
iν

e−sh 0 · · · 0










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where i1, i2, ..., iν are distinct integers representing any

permutation of the set ν̄ . Furthermore, l = 0, . . ., ν + 1 and

B̂i0 = Ĉσ
iν+1

= /0, σ = 0,1.

Proof: Equation (7) can be expressed as

u(t) =
[

K̄ K̃
]

[

Cx(t)
Cx(t −h)

]

It follows from Lemma 1 and equation (9) that

u =
[

K̄ H
]

[

Cx(t)
TCx(t −h)

]

Using (10), one will obtain

u = K̂

(

Ω

[

C

0

]

x(t)+ Ω

[

0

TC

]

x(t −h)

)

From the above equation, it is inferred that the system S is

stabilizable by an overlapping static controller of the form K

if and only if Ŝ is stabilizable by a decentralized static output

feedback controller with the output feedback gain K̂ ∈ GD.

A necessary condition for the latter statement to hold is that

for any s ∈ sp(A) with Re{s} ≥ 0, there exists a K̂∗ ∈ GD

such that [17]

det

(

sI−A−
ν

∑
i=1

B̂iK̂
∗
i

(

Ĉ0
i + Ĉ1

i e−sh
)

)

6= 0

K̂∗
i ∈ Rmi×(ri+µi), and

K̂∗ = block diagonal
[

K̂∗
1 , K̂∗

2 , . . . , K̂∗
ν

]

Using Lemmas 2 and 3, it can be shown in a manner similar

to the techniques used in [15] that all the rank conditions

provided in this theorem must hold for the system S to be

stabilizable with respect to an overlapping controller of the

form K. This completes the proof. �

B. H∞ Decentralized Overlapping Control Synthesis

Definition 7: QD is the set of all block diagonal matrices

which have ν block-diagonal entries, where the i-th block

entry of the main diagonal, i ∈ ν̄ , is a mi ×mi matrix itself.
Theorem 2: Consider the system S and let the delay h

be an arbitrary positive value with a known upper bound h̄.
Assume that for a given γ > 0, there exist matrices Q1 > 0,
0 < Q2 ∈ QD, Y1 ∈ KD, Y2 ∈ HD, R11 > 0, R12 and R22 > 0
which satisfy the LMIs given below























Z11 Z12 Z13 Z14 Z15 0 0 0
∗ Z22 Z23 Z24 Z25 Z26 Z27 Z28

∗ ∗ Z33 Z34 Z35 0 0 0
∗ ∗ ∗ Z44 Z45 Z46 Z47 Z48

∗ ∗ ∗ ∗ −0.5γ2I 0 0 0

∗ ∗ ∗ ∗ ∗ −0.5γ2I 0 0

∗ ∗ ∗ ∗ ∗ ∗ −h̄R11 −h̄R12

∗ ∗ ∗ ∗ ∗ ∗ ∗ −h̄R22























< 0

(11)
[

R11 R12

∗ R22

]

> 0 (12)

where

Z11 = AT Q1 +Q1A+ΓT Γ

Z12 = Q1B+ATCTY1
T +ATCT T TY2

T

Z13 = AT Q1

Z14 = ATCTY1
T +ATCT T TY2

T

Z15 = Z35 = Q1E

Z22 = BTCTY1
T +BTCT T TY2

T +Y1CB+Y2TCB

Z23 = BT Q1

Z24 = BTCTY1
T +BTCT T TY2

T

Z25 = Z45 = Y1CE

Z26 = Z46 = Y2TCE

Z27 = Z47 = h̄Y2TCA

Z28 = Z48 = h̄Y2TCB

Z33 = −2Q1 + h̄R11

Z34 = h̄R12

Z44 = −2Q2 + h̄R22

(13)

Set

K̄ = Q2
−1Y1, K̃ = Q2

−1Y2T (14)

and let the overlapping controller with the above parameters

be denoted by K∗. Then,

• the system S under the controller K∗ is internally stable;

and

• the ∞-norm of the closed-loop transfer function from

disturbance input w(t) to regulated variable z(t), de-

noted by ‖Tzw‖∞, is less than γ , i.e.

‖Tzw‖∞ = ‖z(t)‖2/‖w(t)‖2 < γ (15)

Proof: Define

θ (t)=
[

x(t)T u(t)T
]T

, v(t)=
[

w(t)T w(t −h)T
]T

It is straightforward to show that

θ̇(t) =

[

A B

K̄CA K̄CB

]

θ (t)+

[

0 0

K̃CA K̃CB

]

θ (t −h)

+

[

E 0

K̄CE K̄CE

]

v(t)

z(t) =
[

Γ 0
]

θ (t)

(16)

Consider the performance index given below

J(v) =
∫ ∞

0

[

z(t)T z(t)− γ2w(t)T w(t)
]

dt

=

∫ ∞

0

[

z(t)T
z(t)−

γ2

2
v(t)T

v(t)

]

dt

and let the system (16) be represented in the following
descriptor form

θ̇ (t) =ζ (t)

ζ (t) =

[

A B

K̄CA K̄CB

]

θ (t)+

[

0 0

K̃CA K̃CB

]

θ (t −h)

+

[

E 0

K̄CE K̄CE

]

v(t)

Define the following Lyapunov-Krasovskii functional for the
above system

V (t) =
[

θ (t) ζ (t)
]T
[

P 0
0 0

][

θ (t)
ζ (t)

]

+
∫ 0

−h

∫ t

t+β
ζ (α)T

Rζ (α)dα dβ
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where

P =

[

Q1 0
0 Q2

]

> 0, R =

[

R11 R12

∗ R22

]

> 0

and Q1 ∈ Rn×n, Q2 ∈ QD. Thus, it can be concluded that if
the inequality







Z11 Z12 Z13 Z14

∗ Z22 Z23 Z24

∗ ∗ −0.5γ2I 0

∗ ∗ ∗ −h̄R






< 0

holds for

Z11 = Z12 +Z12
T +Φ1

Φ1 =

[

ΓT Γ 0
0 0

]

Z12 =

[

AT Q1 Φ2

BT Q1 Φ3

]

Φ2 = ATCT K̄T Q2 +ATCT K̃T Q2

Φ3 = BTCT K̄T Q2 +BTCT K̃T Q2

Z13 =

[

Q1E 0

Q2K̄CE Q2K̃CE

]

Z14 = h̄

[

0 0

Q2K̃CA Q2K̃CB

]

Z22 =

[

−2Q1 + h̄R11 h̄R12

∗ −2Q2 + h̄R22

]

Z23 = Z13 = Z24 = Z14

(17)

then V̇ (t) < 0 and J(v) < 0 for all nonzero v(t) ∈ L2[0,∞).
This implies that the two objectives proposed in this theorem

are satisfied. Substitute K̃ in (17) with HT as noted in

Lemma 1, and define

Y1 = Q2K̄, Y2 = Q2H

Using the above relations, the LMIs introduced in (11)-(13)

are obtained. On the other hand, since Q2 ∈QD and K̄ ∈KD,

this implies that Y1 also belongs to KD. Similarly, it can be

concluded that Y2 ∈ HD. This completes the proof. �

Remark 2: Unlike Theorem 1, it is required in Theorem 2

to use the transformation T to find K̃. One can simply choose

Y2 as Q2K̃, and consider a structure similar to K̃ for Y2.

V. SIMULATION RESULTS

Example 1: Consider a formation flight consisting of 3
unmanned aerial vehicles (UAV) with leader-follower struc-
ture. Let UAV 1 be the leader, and UAVs 2, 3 the followers.
The objective here is to control the planar motion of the for-
mation. Assume that all UAVs are desired to fly at the same
velocity (vx,vy) with the distance vector (dxi

,dxi
) between

UAVs i and i+1, i = 1,2. The model of the formation in the
relative coordinate frame is obtained as follows [18]





ẋ1

ẋ2

ẋ3



=











02 02 02 02 02

I2 02 −I2 02 02

02 02 02 02 02

02 02 I2 02 −I2

02 02 02 02 02















x1

x2

x3





+











I2 02 02

02 02 02

02 I2 02

02 02 02

02 02 I2















u1 +w1

u2 +w2

u3 +w3




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Fig. 3. The state response of vehicle 1 for h = 0.1 in Example 1

where

x1 =
[

x11 x12

]T
, x1 =

[

x21 x22 x23 x24

]T

x3 =
[

x31 x32 x33 x34

]T

Assume that the i-th vehicle can measure its state in the
relative coordinates (i.e. xi, i = 1,2,3) using GPS-based
sensors. Thus, C1 = I2 and C2 = C3 = I4. Consider the
same communication topology as the one in the illustrative
example of Subsection III-B, and suppose that Γ = I10. The
transformation matrix in this case is

T =







04×2 I4×4 04×4

I2×2 02×4 02×4

04×2 04×4 I4×4

04×2 I4×4 04×4







Using the above transformation, it is straightforward to

show that the rank conditions in Theorem 1 hold for h < 1.

A proper control design technique will be employed next to

achieve stability.
Consider the H∞ control synthesis provided in Theorem 2

with h̄ = 0.1 and γ = 0.15, and assume that

w1(t) = 0, w2(t) = w3(t) = 160× sin(20πt)

[

1
1

]

Using the LMIs given by (11)-(13), the following overlap-
ping static feedback control parameters are obtained

K̄ =





K̄11 02×4 02×4

02×2 K̄22 02×4

02×2 02×4 K̄33





K̃ =















0 0 −23.51 0 0 0 0 0 0 0
0 0 0 −23.51 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 7.83 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0.01 0 0 0 0 0 0 0















where

K̄11 =

[

−11.76 0
0 −11.76

]

K̄22 =

[

7.83 0 −11.76 0
0 7.83 0 −11.76

]

K̄33 =

[

23.51 0 −11.76 0
0 23.51 0 −11.76

]

For h = 0.1, the state variables of the system under the

controller given above are depicted in Figures 3, 4 and 5. It
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Fig. 4. The state response of vehicle 2 for h = 0.1 in Example 1
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Fig. 5. The state response of vehicle 3 for h = 0.1 in Example 1

can be verified that the formation remains stable for all h <
0.85. However, the performance of the closed-loop system

obtained by applying the proposed overlapping controller

to the formation deteriorates as h increases. Suppose that

UAVs 1, 2 and 3 are initially located in (0,0), (−450,100),
(−200,850), respectively. Let also

dx1
=
[

50 100
]T

, dx2
=
[

50 −150
]T

and assume that the leader is moving in the x−y plane with

the constant velocity vector [200 100]T . The trajectory of

the formation under the proposed overlapping controller for

h = 0.1 is sketched in Figure 6.

VI. CONCLUSIONS

This work deals with stability analysis and control de-

sign problem for LTI interconnected systems with a given
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Fig. 6. Planar motion of the formation for h = 0.1 in Example 1

information flow topology using decentralized overlapping

controllers. The subsystems are assumed to be subject to

input disturbances with finite energy. Furthermore, the in-

formation flow among different control agents is subject to

transmission delay. First, some rank conditions are given

which are necessary for the existence of a stabilizing overlap-

ping output feedback controller. Then, a LMI-based design

method is proposed for solving H∞ control synthesis problem

to attenuate the effect of disturbance in the regulated output.

The simulation results elucidate the effectiveness of the

proposed technique.
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