
  

Abstract—Arbitrarily fast switching or blending among 

controllers often leads to reduced performance and possible 

instability. This paper introduces a controller interpolation 

framework for optimizing the dynamic transition among 

controllers with respect to the H∞∞∞∞ norm. Based on the 

framework, necessary and sufficient conditions are developed 

in terms of linear matrix inequalities (LMIs). In addition, the 

framework is also amenable to optimizing the controller 

interpolation for other control design objectives expressible via 

LMIs.  

I. INTRODUCTION 

 

n many applications, a controller must accommodate a 

plant with changing objectives or operating conditions. 

Generally, a fixed controller cannot accommodate such 

changes without making significant tradeoffs among the 

objectives. A practical alternative involves switching or 

blending among a family of controllers in response to 

changing objectives, thereby allowing improved 

performance over a fixed controller. Bumpless-transfer [1], 

gain-scheduling [2], and switched control [3] all invoke 

variations of this design philosophy. Beyond the potential 

for improved performance, the broad appeal of such 

techniques arises from addressing each situation individually 

rather than the entire set simultaneously. 

We refer to act of switching or blending among a set of a 

priori designed controllers as controller interpolation. The 

collective behavior of the individual controllers commanded 

by an interpolation signal (i.e. switching or blending signals) 

is described by the interpolated controller. Improper 

interpolated controller design can lead to loss of stability for 

a worst case interpolation signal. Lyapunov-based stability 

methods have been used to verify performance and stability 

for a given interpolated controller [3],[4]. However, 

relatively little research has been done in terms of 

interpolated controller design to guarantee closed loop 

stability, let alone closed loop performance. 
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Controller interpolation is not to be confused with related, 

however different, self-scheduled controller approaches 

[12],[13]. Self-scheduled approaches ensure stability and 

performance by simultaneously designing the individual 

controllers comprising the self-scheduled controller, whereas 

controller interpolation seeks to integrate a given set of 

separately designed controllers. 

Youla parameterization has been proven to be a 

particularly useful tool for designing interpolated controllers 

with stability guarantees. Hespanha [5] used Youla 

parameterization in a switched system framework to show 

there always exists a switched controller, composed of a 

given set of linear time-invariant controllers, that stabilizes a 

linear time-invariant (LTI) plant for any piecewise 

continuous switching signal. More recently, the approach 

has been applied to linear parameter-varying systems [11].  

Although the nominal stability problem for controller 

interpolation has been addressed, design techniques 

guaranteeing interpolated controller performance have not 

been extensively investigated. The robust controller 

interpolation problem seeks to optimize interpolated 

controller performance by minimizing the closed loop H∞ 

norm. A sub-optimal robust controller interpolation solution 

was first investigated via an iterative LMI algorithm in [9]. 

Recently, a controller parameterization approach, similar to 

the Youla parameterization has been shown to be non-

conservative in [10]. Practical examples in [9],[10] illustrate 

the benefits of robust controller interpolation over stability 

oriented controller interpolation techniques.  

Nevertheless, such parameterization approaches are 

limited to cases where there exists an appropriate controller 

parameterization. This paper seeks to close the perceived 

gap in controller interpolation techniques by developing a 

more versatile framework using linear matrix inequality 

(LMI) based convex optimization. Numerous control 

synthesis problems have been stated in the form of LMIs [8], 

and LMIs solvers are known to be computationally efficient. 

This paper presents a LMI-based robust controller 

interpolation synthesis technique that is shown to be non-

conservative with respect to the H∞ norm.  

The robust controller interpolation problem addressed in 

this paper is defined in Section II. In Section III, the main 

result is presented in terms of necessary and sufficient LMI 

conditions. Finally, Section V discusses implications of the 

main result and next steps. 
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II. PROBLEM DEFINITION 

For nomenclature, let the H∞ norm ||·||∞ denote the induced 

L2 norm. The notation Q1~Q2 denotes that systems Q1 and Q2 

are input-output equivalent. The two systems Q1 and Q2 are 

input-output equivalent if ||Q1-Q2||∞=0. The transpose of the 

matrix A is denoted A
∗
.  Let ( )BN  denote the null space of 

the matrix B. The space of symmetric matrices of dimension 

n is denoted as n
H . 

In the context of our investigation, the closed loop system 

Tzw is described by the interconnection of the LTI plant 
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and a LTI controller 
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where ,
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x ∈�  ,wn
w∈�  ,un

u ∈�  ,zn
z ∈�  ,yn

y ∈�  and 

Kn

K
x ∈� . Without loss of generality, it is assumed that 

22 0D = . The interconnection in Figure 1 is described in 

shorthand via the lower linear fractional transformation 

Tzw(K)=LFT(P,K). 

 
Figure 1: Closed loop system Tzw(K)=LFT(P,K) formed via lower linear 

fractional transformation 

In this paper, we consider interpolating a set of controllers 

Ki for i=1,…,r. The interpolation signal describes to what 

degree each controller in the family of controllers is active. 

Let the class of piecewise continuous arbitrary interpolation 

signals be defined as 

 { }1
( ) : ( ) 1, ( ) 0

r

i ii
t t tα α α

=
= = ≥∑A . (3) 

The class of interpolation signals α ∈A  includes prevalent 

concepts in the literature such as controller switching [5] and 

controller blending [3]. It is assumed that the interpolation 

signal is measurable but unknown a priori. Throughout this 

paper, ( )tα  refers to the current value of the interpolation 

signal, whereas α  refers to the entire trajectory of the 

interpolation signal. 

Definition 1: For a family of r controllers Ki i=1,…,r, the 

interpolated controller K(α) is admissible for an H∞ 

performance level γ if the robust controller interpolation 

criteria are satisfied: 

A1) The closed loop system Tzw(K(α)) has H∞ norm less 

than γ for any admissible interpolation signal 

α ∈A . 

A2) The local controller Ki is input-output equivalent to 

K(α) when αi(t)≡1. 

A3) The interpolated controller is a continuous function 

of α(t). ◊ 

For a given interpolation signal trajectory α, Tzw(K(α)) 

may be treated as a linear time-varying system. Criterion 

(A1) stipulates closed loop system has an H∞ norm less than 

γ for all arbitrary interpolation signals. Criterion (A2) 

enforces that each of the a priori designed controllers may 

be recovered from the interpolated controller. Lastly, 

criterion (A3) ensures there are no discontinuities in the 

interpolated controller behavior with respect to the 

interpolation signal, thereby avoiding discontinuities in the 

control signal for a continuous interpolation signal. 

III. CONTROLLER INTERPOLATION SYNTHESIS 

A. System Theoretic Context 

In order to place the following results in context, let us 

discuss necessary and sufficient LMI conditions for 

verifying the closed loop system H∞ norm and the existence 

of an LTI controller K such that || ( ) ||
zw

T K γ∞ < . First recall 

the well known LMI formulation of the bounded real lemma 

for continuous-time systems (see [6] for a complete proof). 

Lemma 1: Consider the linear time-invariant system  

 
( ) ( ) ( )

( )
( ) ( ) ( )

cl cl cl cl

zw

cl cl cl

x t A x t B w t
T K

z t C x t D w t

= +
= 

= +

�
. (4) 

The system Tzw(K) is exponentially stable and 

|| ( ) ||
zw

T K γ∞ <  if and only if there exists positive definite X  

satisfying 

 ( , ( ), ) 0

cl cl cl cl

zw cl cl

cl cl

XA A X XB C

X T K B X I D

C D I

γ γ

γ

∗ ∗

∗ ∗

 +
 

Φ − < 
 − 

� . (5) 

 

From Lemma 1, necessary and sufficient conditions have 

been developed for the existence of controller K such that 

|| ( ) ||
zw

T K γ∞ < . See [6] and [7] for further details. 

Lemma 2: There exists a linear time-invariant controller K 

ensuring || ( ) ||
zw

T K γ∞ <  for the plant P in (1) if and only if 

there exist symmetric R0 and S0 satisfying the conditions 

 0 0( , , ) ( , , ) 0
S zw S

S P N S P Nγ γ∗Γ Φ <� , (6) 

 0 0( , , ) ( , , ) 0T

R zw R
R P N R P Nγ γ∗′Γ Φ <� , (7) 

 and 
0

0

0
R I

I S

 
≥ 

 
, (8) 

where 
2 21

([ 0])
S

N C D= N  and 
2 12

([ 0])
R

N B D∗ ∗= N . 

Definition 2: Given P in (1) and γ>0, let the pair 0 0( , )R S
��

 

denote the maximal elements for the set of all 0 0( , )R S  

satisfying the conditions of Lemma 2. 

The existence of the maximal elements is guaranteed by 

the well-ordered property [7] of the associated algebraic 

Riccati inequalities. That is, 0 0R R≥
�

 and 0 0S S≥
�

 for all 

0 0( , )R S  satisfying Lemma 2. 
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B. Interpolated Controller Synthesis Conditions 

The following theorem, representing our main result, 

provides necessary and sufficient conditions for the 

existence of an interpolated controller that satisfies the 

robust controller interpolation criteria. Let 

 

1

,11 ,12 ,11 ,12

,12 ,22 ,12 ,22
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i i i i

S S R R
S

S S R R

−
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where 
,11 ,22

, Kinn

i i
S S∈ ∈H� H�. 

Theorem 1: Given the plant P in (1), r controllers Ki in (2), 

and a scalar 0γ ≥ . Then there exists an admissible 

interpolated controller ( )K α  satisfying || ( ( )) ||
zw

T K α γ∞ <  

if and only if there exists positive definite matrices 

0 0
, n

R S ∈H  and Kin n

i
S

+∈H  satisfying (6), (7),  

 ( , ( ), ) 0
i zw i

S T K γΦ < , (10) 

 

0

,11 ,12

,12 ,22

0

0

0

i i

i i

R I

I S S

S S
∗

 
 

≥ 
 
 

,  and 0 ,11
0

i
S S− ≥  (11) 

for i=1,…,r. 

Proof: See Section IV for the proof. 

Remark 1: For the single controller case (r=1), no controller 

interpolation is necessary. By constraining 0 1,11
S S=  and 

0 1,11
R R= , the conditions of Theorem 1 the conditions 

expressed in Lemma 1. ○ 

Remark 2: The controller synthesis conditions of Lemma 2 

are reflected in Theorem 1 when Si,11=S0. ○ 

Remark 3: The robust controller interpolation in [10] 

addresses the regular case, i.e. 
12 12

0D D
∗ >  and 

21 21
0D D

∗ > , 

whereas Theorem 1 also addresses the singular case, i.e. 

12 12
0D D

∗ ≥  and 
21 21

0D D
∗ ≥ . ○ 

Remark 4: The H∞ performance lower bound is 

max || ( ) ||zw i
i

T Kγ ∗

∞� . That is, the interpolated controller 

performance is limited by the the worst performing 

controller Kj, where arg max || ( ) ||zw i
i

j T K ∞� . Theorem 1 

guarantees for any γ γ ∗>  there exists an admissible 

interpolated controller. Hence, the conditions of Theorem 1 

are not conservative with respect to the robust controller 

interpolation criteria. ○ 

IV. PROOF OF MAIN RESULT 

In the process of developing a proof for Theorem 1, the 

following section offers two complementary perspectives 

towards a framework in interpolated controller design. The 

perspectives address two critical aspects: enabling controller 

state information to be shared among controllers and 

mediating controller fighting. 

A. Information Sharing Perspective 

In a switched controller, it is desirable to share state 

information among the controllers. For example, an offline 

controller Kj is updated with information from an online 

controller Ki as it comes online in an effort to avoid 

undesirable switching transients. In effect, we seek 

functional relationships ( )
Kj ji Ki

x f x=  which translate the 

information stored in the online controller states xKi into a 

form that is useful to the offline controllers. Moreover, we 

desire functional relationships that admit an interpolated 

controller satisfying the robust controller interpolation 

criteria. The following theorem searches for a linear function 

of the form .
Kj ji Ki

x T x=  Let Kn n

i
X

+∈H  take the block 

structure 

 

1

0 ,12 0 ,12

,12 ,22 ,12 ,22

i i

i

i i i i

S X R Y
X

X X Y Y

−

∗ ∗

   
= =   
      

. (12) 

Theorem 2: Given controllers Ki for i=1,…,r in (2) of order 

K
n , there exists an admissible interpolated controller ( )K α  

satisfying || ( ( )) ||
zw

T K α γ∞ <  for all α ∈A  if  there exists 

positive definite Kn n

i
X

+∈H  of the form (12) satisfying 

( , ( ), ) 0
i zw i

X T K γΦ <  for i=1,…,r.  

Proof: First, form the singular value decomposition 
1

0 0
V V S R∗ −Σ = − , where 

1 2
[ ]V V V= , 

1
diag( ,0)Σ = Σ , 

1

1 1 0 0 1
( )V S R V∗ −Σ = − . Consider the alternate controller 

realization  

 

1

1

Ki Ki Ki Ki Ki Ki Ki

i

i Ki Ki Ki Ki

x T A T x T B y
K

u C T x D y

−

−

′ ′ = +
′ = 

′= +

�
, (13) 

where 

( )
1/2

1 1

,22 ,12 1 ,12 ,12 ,22 ,12( ) ( ) ( )Ki i i i i i iT X X V X X X X
−− − ∗ ∗ =   

N N N ,(14) 

Consequently, 
1

( , ( ), ) ( , ( ), )
i izw i T i zw i TX T K U X T K Uγ γ−∗ −′Φ = Φ , 

where diag( , )
i w zT i n nU T I += , diag( , )

i n Ki
T I T= ,  

 
10 12

12 22

,i i i

S X
X T X T

X X

−∗ −

∗

 
= = 
 

  

[ ]12 1
0X V= Σ and 

22 1
diag( ,0)X = Σ . 

Consider the interpolated controller 

 

( ) ( )
( )

( ) ( )

K K K K

K K K

x A x B y
K

u C x D y

α α
α

α α

= +
= 

= +

�

  
where 

 

1

1
1

( ) ( )

( ) ( )

r
K K Ki Ki Ki Ki Ki

i

iK K Ki Ki Ki

A B T A T T B

C D C T D

α α
α

α α

−

−
=

  
=   

   
∑

.  

Given ( , ( ), ) 0
zw i

X T K γ′Φ < , then summing over 
i

α  yields 

 
1

( , ( ), ) ( , ( ( )), ) 0
r

i zw i zwi
X T K X T Kα γ α γ

=
′Φ = Φ <∑ ,  

thus guaranteeing || ( ( )) ||
zw

T K α γ∞ <  for all α ∈A .  □ 

In the proof of Theorem 2, the linear translation function 

takes the form 
1

Kj Kj Ki Ki
x T T x

−= , and a mapping to a shared 

controller state 
K Ki Ki

x T x=  was used to prove existence of 

( )K α . Although Theorem 2 provides sufficient conditions 

for information sharing, the conditions are not convex and 

may be quite conservative. 
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B. Stabilizing Signals Perspective 

Suppose each controller Ki is designed for a unique 

objective. Controller fighting arises as the controllers 

interfere with one another as the controllers attempt to 

simultaneously achieve each objective. We propose injecting 

stabilizing signals into the controllers in order to mediate the 

interaction among controllers. 

The proposed controller interpolation framework injects a 

stabilizing signal 
1 2

( ) [ ( ) ( )]
i i i

t t tζ ζ ζ=  into each controller 

 
1

2

( ) ( ) ( ) ( )
ˆ

( ) ( ) ( ) ( )

Ki Ki ki Ki i

i

i Ki K Ki i

x t A x t B y t t
K

u t C x t D y t t

ζ

ζ

= + +


= + +

�
� , (15) 

where Kin

Ki
x ∈� . This has similarities to the notion of 

injecting signals into a controller in an effort to smooth the 

transition between controllers used in bumpless transfer [1]. 

Drawing from such bumpless transfer techniques, one way 

of defining the stabilizing signals is to dynamically generate 

( )
i

tζ via a stabilizing compensator Λi, as shown in Figure 2. 

Let the interconnection of ˆ
i

K  and Λi be represented by the 

augmented controller ( )
i i

K Λ� .  

It is critical that each Λi is designed to ensure the robust 

controller interpolation criteria are satisfied. The augmented 

controller must satisfy ( ) ~
i i i

K KΛ�  when ( ) 1
i

tα = , i.e. 

~ 0
i

Λ  when ( ) 1
i

tα = . The strategy is to search for Λi that 

both enables information sharing and satisfies ( ) ~
i i i

K KΛ� , 

for i=1,…,r.  

iuy

( )iiK Λ�

ˆ
iK

Ki
x

y

 
 
 

 
Figure 2: Stabilizing signals ζi generated by stabilizing compensator Λi 

uy

( )K Λ�

K̂

1[ , ]
T T T

xλµ

 

Figure 3: Λ1 and Λ2 in augmented controller ( )K Λ�  

In order to simplify notation, we temporarily focus on 

constructing a single augmented controller ( ) ~K KΛ�  and 

Kn n n
X λ+ +∈� H  of the form (12), where nλ  is the number of 

additional states introduced by Λ . An explicit 

parameterization of all linear time-invariant Λ satisfying 

( ) ~K KΛ�  is necessary. All such Λ are completely 

parameterized by Λ  of the form shown in Figure 3, where  

 

1 1 1

1 11 1

21 1

x A x

C x

C x

λ λ λ

λ λ

λ λ

µ

ζ

 =


Λ = =


=

�

, (16) 

 {2 2 2 2 21 1 22[ , ]Kx A x B x B x yλ λ λ λ λ λ µ∗ ∗ ∗Λ = = + + +� , (17) 

1

1
,

n
x λ

λ ∈�  and 2

2

n
x λ

λ ∈� . This may be shown by 

introducing 
1

Λ  and 
2

Λ  as the uncontrollable and 

unobservable modes, respectively, in the Kalman canonical 

decomposition of ( ).K Λ�  

Theorem 3: Given P of order n in (1), controller K of order 

nK, scalar 0γ ≥ , and 
0 0
, n

R S ∈H . Then there exists 

( ) ~K KΛ�  and positive definite X�  of the form (9) 

satisfying ( , ( ( )), ) 0
zw

X T K γΦ Λ <� �  if and only if  (6), (7), and 

there exists a positive definite Kn n
S

+∈H  satisfying  

 ( , ( ), ) 0
zw

S T K γΦ < , (18) 

 

0

11 12

12 22

0

0

0
T

R I

I S S

S S

 
  ≥ 
  

, (19) 

  

and 

 
0 11

0S S− ≥ . (20) 

Proof: Please see the Appendix for the proof. 

The following algorithm presents the construction of an 

augmented controller ( ) ~K KΛ�  positive definite X�  of the 

form (9) satisfying ( , ( ( )), ) 0
zw

X T K γΦ Λ <� � . 

Algorithm 1: (Construction of an Augmented Controller) 

Step 1: Given the plant P, controller K, scalar 0γ ≥ , and  

0 0
, n

R S ∈H  satisfying (6)-(7), determine S satisfying 

(18)-(20). 

Step 2: Construct positive definite matrix X� . Define the 

matrix 1

1

n n
N λ×∈�  as a solution to 

 
1 1

1 1 11 12 22 12 0
( )N N S S S S R

∗ − −= − −
, 

 and define the matrix 2

2

n n
N λ×∈�  as a solution to 

 2 2 0
N N S S

∗ = −
. 

 Define the matrix Kn n n
X λ+ +∈� H  as 

 
1

2

0 12 1 2

12 22

1

2

0 0
.

0 0

0 0

n

n

S S N N

S S
X

N I

N I

λ

λ

∗

∗

∗

 
 
 

=  
 
  

�  

Step 3:Parameterize augmented controller closed loop 

system. The two static output feedback gains 

1 1 11 21
[[ ] ]A C Cλ λ λ

∗ ∗ ∗ ∗ ∗Θ =  and 
2 21 2 22

[[ ] ]B A Bλ λ λΘ =  

 parameterize the closed loop system ( ( ))
zw

T K Λ�  

 

1

1 1

1

2

2 2 2

0

0

cl cl

cl cl

x xBA Bx
C

w wDC Dz

xB
C D

w

λ
λ

λ

λ
λ λ

       
 = + Θ         

       

   
 + Θ    

  

� � ��

�
, (21) 

 where [ , ]
cl

x x xλ
∗ ∗ ∗=� , 

1 2
[ , ]x x xλ λ λ

∗ ∗ ∗= , ,
cl cl

D D=  
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0
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n

I
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11

0

0

nIC
λλ

∗

 
 

=   
  
   , 2

2

0

0

n

B

I
λ

λ

 
 

=   
  
   ,   

and , , ,
cl cl cl cl

A B C D  are the state space matrices of Tzw(K). 

Step 4:Search over parameter space (Θ1,Θ2). Determine 

Θ1 and Θ2 satisfying the linear matrix inequality 

( , ( ( )), ) 0
zw

X T K γΦ Λ <� � . 

Step 5: Construct the augmented controller. Form Λ1 and 

Λ2 from Θ1 and Θ2, respectively. Subsequently, 

construct ( )K Λ�
 
through the interconnection of K̂ , Λ1, 

and Λ2 via (15), (16), and (17).  ○ 

C. Proof of Theorem 1 

In order to show sufficiency, suppose the conditions of 

Theorem 1 are satisfied. Then from Theorem 3, there exists 

augmented controllers 
i

K�  of order 
K

n  and positive definite 

Kn n

i
X

+∈� H  of the form (12), such that  ( , ( )) 0
i zw i

X T KΦ <� �  

for i=1,…,r. By construction, the augmented controllers 

satisfy the conditions of Theorem 2, thereby ensuring the 

existence of an admissible interpolated controller ( )K α  

satisfying || ( ( )) ||
zw

T K α γ∞ <  for all α ∈A . 

Concerning necessity, consider any finite 

max || ( ) ||zw i
i

T Kγ γ ∗

∞> � . Applying Lemma 1, there exists 

0
i i

S S
∗= > of the form (9) satisfying (10) for i=1,…,r. In 

addition, the pair ,11 ,11
( , )

i i
S R  also satisfies Lemma 2 for 

i=1,…,r. Applying the well-ordered property of Riccati 

inequalities, choosing 
0 0

( , )R S  arbitrarily close to 
0 0

( , )R S
��

, 

proves there always exists 
0 0

( , )R S satisfying (6), (7), 

0 0 ,11i
R R R≥ ≥
�

, and 
0 0 ,11i

S S S≥ ≥
�

 for i=1,…,r. Thus 

condition (11) is satisfied. Since γ  may not be less than the 

lower bound γ ∗
, the conditions of Theorem 1 have been 

shown to be necessary. □ 

The following algorithm presents the construction of an 

admissible robust interpolated controller . 

Algorithm 2: Robust Interpolated Controller Construction 

Step 1: Given P, r controllers Ki of the order nKi, and  a 

scalar γ γ ∗≥ , determine R0, S0, and Si satisfying (6), 

(7), (11) for i=1,…,r. 

Step 2: Via Algorithm 3.1, construct augmented controllers 

 

( ) ( ) ( )

( ) ( ) ( )

Ki Ki Ki Ki

i

Ki Ki Ki

x t A x t B y t
K

u t C x t D y t

= +


= +

� � � �
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�
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 and 

 

1

0 ,12 0 ,12

,12 ,22 ,12 ,22
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i

i i i i

S X R Y
X

X X Y Y

−

∗ ∗

   
= =   
      

� �
�

� � � �
  

 satisfying ~
i i

K K�  and ( , ( ), ) 0
i zw i

X T K γΦ <� � , for 

i=1,..,r. Note that the order of ( )K α  
K

n is determined 

by choosing 
1i

nλ and 
2i

nλ  such that 

1 2K Ki i i
n n n nλ λ= + + . 

Step 3: Construct an alternate augmented controller 

realization 

 

1

1

( ) ( ) ( )

( ) ( ) ( )

K Ki Ki Ki K Ki Ki

i

Ki Ki K Ki

z t T A T z t T B y t
K

u t C T z t D y t

−

−

 = +
′ = 

= +
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�
�

, 

 where 
Ki

T �  is defined in (14). 

Step 4: Construct the interpolated controller  
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( )

( ) ( )

K K K K

K K K

x A x B y
K

u C x D y

α α
α

α α

= +
= 

= +

�

 
 where 

 

1

1
1

( ) ( )

( ) ( )

r
K K Ki Ki Ki Ki Ki

i

iK K Ki Ki Ki

A B T A T T B

C D C T D

α α
α

α α

−

−
=

  
=   

   
∑

� � � � �

� � � . ○ 

V. CONCLUSION 

This paper addressed the problem of interpolating among 

a set of LTI controllers while maintaining a certain level of 

H∞ performance, which is framed in terms of the robust 

controller interpolation criteria. The main result provides 

non-conservative LMI conditions for the synthesis of an 

admissible robust interpolated controller. The proof of the 

main result was presented in the form of two controller 

interpolation perspectives. The results presented here are 

extensible to interpolated controller design for various other 

control problems framed in terms of LMIs [8],[13]. 

Consequently, the controller interpolation approach 

discussed here enables a new dimension on control design, 

while complementing the existing literature. 

APPENDIX 

A. Some Useful Results 

The following lemmas will prove useful in the following 

proofs. For more details, the interested reader is directed to 

[4] and [6]. 

Lemma 3: Given matrices G, H, and symmetric matrix Ψ , 

there exists Θ  satisfying 

 0H G G H
∗ ∗ ∗Ψ + Θ + Θ <  (22) 

if and only if  both 

 ( ) ( ) 0H H∗ Ψ <N N  and ( ) ( ) 0G G∗ Ψ <N N . (23) 

For Lemma 4 consider the matrix X of the form 

 

1

22 22

T T

S N R M
X

N X M Y

−
   

= =   
   

. (24) 
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Given the submatrices (R,S), the following Matrix 

Completion Lemma [6] guarantees the existence of positive 

definite X satisfying (24). 

Lemma 4: Suppose , n
R S ∈H  are positive definite and 

1
0n ≥  is an integer. The following statements are 

equivalent: 

i) There exists 1, n n
N M

×∈�  and  positive definite 

1

22 22
,

n
X Y ∈H  satisfying (24) 

ii) 1 0S R
−− ≥  and ( )1

1rank S R n
−− ≤  (25) 

iii) 0
S I

I R

 
≥ 

 
 and 1rank

S I
n n

I R

 
≤ + 

 
 (26) 

B. Proof of Theorem 3 

In order to prove Theorem 1, first we develop necessary 

and sufficient conditions for the existence of an augmented 

controller ~K K�  satisfying ( , ( ), ) 0
zw

X T K γΦ <� �  for some 

X�  of the form (12).  

For the following lemmas, consider positive definite 

1 2( )Kn n n n
X λ λ+ + +∈� H , 

( ), , ,Kn n
R S S

+∈H and 
0 0
, n

R S ∈H   

satisfying 

 

1

12 3 2 13

1

12 22 23 2 22 23

3 23 33 13 23 33

S X N R M Y

X X X X M Y Y Y

N X X Y Y Y

−

∗ ∗ −

∗ ∗ ∗ ∗

   
   

= = =   
   
   

� �

� � � � � �

� � � �

, (27) 

 

1

2 12

1

2 22 12 22

R M S X
Y

M Y X X

−

∗ ∗

   
= =   
   

, (28) 

 0 12 0 12

12 22 12 22

, and 
R R S S

R S
R R S S

∗ ∗

   
= =   
   

. (29) 

For a given X� , Lemma 5 employs two consecutive 

applications of Lemma 3 in order to produce necessary and 

sufficient conditions for the existence of 
1

Θ  and 
2

Θ  

satisfying ( , ( ( )), ) 0
zw

X T K γΦ Λ <� � . 

Lemma 5: Suppose 1 2( )Kn n n n
X λ λ+ + +∈� H  is a positive definite 

matrix satisfying (27)-(29). There exists 
1

Θ  and 
2

Θ  such 

that ( , ( ( )), ) 0
zw

X T K γΦ Λ <� � , if and only if (6), (7), and (18) 

are simultaneously satisfied. 

Proof: Using the description of ( ( ))
zw

T K Λ�  in (21), the 

matrix inequality ( , ( ( )), ) 0
zw

X T K γΦ Λ <� �  can be 

parameterized as an affine function of Θ1 and Θ2,  

 
2

1
0i i i iX Xi Xii

H G G H
∗ ∗ ∗

=
Ψ + Θ + Θ <∑� � � . (30)  

By invoking Lemma 3 to eliminate Θ1, (30) yields the 

necessary and sufficient conditions 

 ( )1 2 2 2 2 12 2
( ) ( ) 0

X X X
G H G G H G

∗ ∗ ∗ ∗Ψ + Θ + Θ <N N� � �  (32) 

and 

 ( )2 2 2 21 2 2 1
( ) ( ) 0

X X X X X
H H G G H H

∗ ∗ ∗ ∗Ψ + Θ + Θ <N N� � � � � . (33) 

Eliminating Θ2 from (32) via Lemma 3 produces the 

equivalent conditions 

 ( ) ( )2 1 1 1 2 1( ) ( ) ( ) ( ) 0
X

G G G G G G
∗ ∗ Ψ <N N N N N N�  (34) 

and 

 ( ) ( )1 1 1 12 2
( ) ( ) ( ) ( ) 0

X X X
H G G G H G

∗ ∗ Ψ <N N N N N N� � � . (35) 

Matrix inequalities (33) and (34) are equivalent to (6)-(7), 

whereas (35) is equivalent to (18). □ 

Lemma 6 presents the necessary and sufficient conditions 

for the existence of positive definite X�  satisfying (27)-(29). 

Lemma 6: Given ( )Kn n
S

+∈H  of the form (9) and 

0 0, n
R S ∈H , there exists positive definite X�  satisfying (27)-

(29) if and only if (19) and (20) are satisfied. 

Proof: Starting with the completion of Y1, (19) yields 
1 0R S

−− ≥  by applying the Schur complement [4]. Lemma 

4 guarantees there exists 1

2 12,
n n

M X λ×∈�  and 

1

22 22,
n

Y X λ∈H  if and only if (19) is satisfied and 1nλ  is 

greater than the rank of (19). Turning our attention to the 

completion of X� , 0S S− ≥ is equivalent to (20). Lemma 4 

subsequently ensures there exists 2

3 13,
n n

N Y λ×∈� � , 

1 2

23 23,
n n

X Y λ λ×∈� � � , and 2

33 33,
n

X Y λ∈� H
 
if and only if (20) is 

satisfied and 2 0 11rank( )Sn Sλ −≥ . □ 

Theorem 3 may easily be shown to be true by combining 

the necessary and sufficient conditions for the existence of 

( )K Λ�  and X�  provided by Lemma 5 and Lemma 6. 
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