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Abstract—In this paper, a new function of Variable Stiffness 

& Damping Device (VSDD) brace control systems is explored: 

facilitating structural parameter estimation and damage 

detection. In previous studies by the authors, a substructure 

identification method has been proposed to identify the 

structural parameters (story stiffness and damping coefficients) 

of a shear building.  An error analysis shows that the accuracy 

of the estimated parameters can be greatly improved by 

amplifying the interstory acceleration near the substructure 

natural frequency. To achieve this structural response change, 

two kinds of control strategies are studied herein to design a 

VSDD system: an on-off passive strategy and a semiactive 

strategy. Since the accuracy of substructure identification is 

only dependent on the controlled substructure responses, it is 

shown that the proposed control-facilitated identification is 

robust to one common control system error: feedback 

measurement noise. Finally, a numerical example of a 5-story 

shear building structure is used to illustrate the efficacy of the 

proposed control method for improving the accuracy of the 

substructure identification. 

I. INTRODUCTION

ariable stiffness and damping  devices (VSDDs), such 

as smart dampers and controllable stiffness elements, 

are controllable passive devices that potentially offer the 

reliability of the passive devices, yet maintain the versatility 

and adaptability of fully active systems [1]. Due to superior 

performance relative to passive devices and high reliability 

compared with active control, VSDDs for semiactive brace 

control systems have been recently implemented in building 

structures to mitigate large structural responses for a variety 

of dynamic loads, such as earthquakes and strong winds. 

However, such large natural hazards occur rather 

infrequently, so the VSDD control system remains unused 

the most of time. This paper presents a new technique that 

makes use of the capacity of the VSDD control system to 

facilitate structural parameter identification and improve 

damage detection accuracy by implementing alternative 

control algorithms when the control system is in idle status 

(i.e., not immediately required for vibration mitigation). This 
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new technique not only increases the cost-effectiveness of 

implementing a VSDD brace control system into the 

structure by adding new functions for the control system, but 

potentially improves the performance of the control system 

for vibration mitigation by providing a more accurate 

structural model for better control algorithm design. 

Many conventional parameter identification methods in 

Structural Health Monitoring (SHM) often confront the 

following difficulties in their application: (i) too many 

structural parameters must be identified from very limited 

measurements; (ii) the changes in measurements are usually 

insensitive to changes in the structural parameters. Both 

situations will generally lead to large errors in the estimated 

parameters. Several methods have been proposed to use 

structural control systems to overcome or alleviate these 

problems. Some researchers [2,3] propose to change 

structural modal features, like frequency, in multiple 

configurations by applying different control algorithms, 

using these multiple information sources together to solve 

the first problem of the rank-deficiency for the original 

identification and improve the accuracy of damage 

detection. To tackle the second difficulty of low sensitivity, 

other researchers [4,5,6] attempt to design structural control 

systems to enhance the sensitivity of the structural 

measurements to the change of structural parameters in order 

to reduce the identification error. 

Although these studies have somewhat demonstrated 

improvement of identification accuracy by applying their 

control algorithms, there is still a big challenge for these 

techniques: how will the imperfections in the control system 

affect the identification results? Some control system error 

always exists, such as time delay for computation, 

unmodeled actuator dynamics, measurement noise in 

feedback and so forth. For all of the aforementioned 

control-facilitated identification methods, the structural 

control system is deeply involved in the whole identification 

procedure; thus, it is inevitable that these errors will affect 

the final result of the identification, possibly even 

eliminating the identification benefits of using control. 

Moreover, because of the complexity of the closed-loop 

control system, the effects of control system error on the 

identification accuracy become extremely difficult to 

analyze and predict. Thus, it would be very beneficial to 

develop some approaches where control improves the 

identification accuracy but the identification is robust to 

errors in the control forces. 
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In previous research by the authors [7], a substructure 

identification method was proposed to identify the structural 

parameters of a shear building, specifically the story 

stiffness and damping coefficients. By using the dynamic 

equilibrium of each floor, a series of identification problems 

can be formulated, from which all structural parameters can 

be estimated from top to bottom in an inductive manner. An 

error analysis shows that the accuracy of the identification is 

determined by the frequency response of the interstory 

acceleration in a frequency range around the story 

substructure natural frequency; strongly amplifying this 

response can greatly improve the identification accuracy.  

Based on this error analysis result, two kinds of control 

strategies to design a VSDD system are studied herein to 

improve the accuracy of parameter identification: (i) an 

on-off passive strategy wherein the activated VSDD system 

functions as a passive system, adding fixed stiffness and 

damping to the structure, but adds nothing when inactive; 

(ii) a semiactive strategy wherein the VSDD device tries to 

mimic, as closely as possible, the control force trajectory of 

an optimally designed active control system. Since the 

identification accuracy of the substructure identification is 

not directly dependent on the control system itself, but on 

the control system’s amplification of a certain interstory 

acceleration response, any control system errors (e.g.,
feedback measurement noise and time delay) that do not 

significantly deteriorate the control system performance will 

not have a large side effect on the accuracy of controlled 

identification. Thus, the proposed controlled substructure 

identification should be quite robust to control system errors. 

Further, it is shown herein that certain control system 

uncertainties, specifically feedback measurement noise, may 

even have the potential to improve the control system 

performance, further enhancing identification accuracy. 

This paper is organized as follows: a brief review is first 

given of the formulation and identification error analysis 

results of the substructure identification method. Then, two 

optimization problems are proposed to find the optimal 

parameters of two control algorithms to amplify the 

interstory acceleration responses and thereby increase the 

identification accuracy. Next, an analysis is performed to 

show that one of the common control system errors, 

measurement noise in feedback responses, will not 

deteriorate but rather improve the performance of the 

designed control system. Finally, a numerical example of a 

5-story shear building illustrates the improvements of the 

controlled identification. 

II. SUBSTRUCTURE IDENTIFICATION

A. Method Formulation 
Fig. 1 shows an n-story shear structure with a VSDD 

semiactive control system. The equations of motion of this 

structure, without the effect of the control system, can be 

written in separate form as follows for top, middle and 

bottom floors, respectively: 

Fig. 1. A shear structure with a VSDD brace control system. 

top floor (i = n):

mn ����x n + cn ��x n � ��x n��( ) + kn xn � xn��( ) = �  (1) 

middle floor (2 � i � n–1):

mi ����x i + ci ��x i � ��x i��( ) + ki xi � xi��( )

+ ci+� ��x i � ��x i+�( ) + ki+� xi � xi+�( ) = �
 (2) 

bottom floor (i = 1):

m1� � x 1 + c1 � x 1 � � u g( ) + k1 x1 � ug( )
+ c2 � x 1 � � x 2( ) + k2 x1 � x2( ) = 0

 (3) 

where mi is the mass of the i-th floor; ci and ki are the 

damping coefficient and stiffness of the i-th story, 

respectively; xi is the displacement of the i-th floor relative 

to an inertial reference frame; ug is the displacement of the 

ground, and an overdot represents derivative with respect to 

time. It is assumed here that the floor masses are known. 

The motion of the top floor is affected only by the top 

story structural parameters and by the motion of the floor 

below. Thus, the identification will start as follows with the 

top floor. Adding �mn ����x n��  to both side of (1), taking the 

Fourier transform and rearranging the terms (utilizing 
����X = j�( )

�
X  for stationary initial conditions), gives 

1

1 � j cn mn�( ) � kn mn� 2( )
=

� � X n�1 � � � X n
� � X n�1

 (4) 

where ����X i = ����X i � j��  is the Fourier transform of the i-th floor 

acceleration (herein, j� is often omitted for notational 

simplicity). Since the right side of (4) only involves the 

structural acceleration, which can be easily computed from 

measured responses, the structural parameters [kn cn]
T
 can 

be identified by solving the following optimization problem: 

argmin
kn ,cn

J kn ,cn( ) = fl kn ,cn( ) � ˆ f l � � ˆ X n�1, � � ˆ X n� 
� 

� 
� 

2

l =1

N

�  (5) 

where fl kn ,cn( ) =
1

1 � j cn mn� l( ) � kn mn� l
2( )

,

ˆ f l � � ˆ X n�1, � � ˆ X n� 
� 

� 
� 

=
� � ˆ X n�1 j� l( ) � � � ˆ X n j� l( )

� � ˆ X n�1 j� l( )
=

� � ˆ X n�1,l � � � ˆ X n,l

� � ˆ X n�1,l

, and 

������X i�l = ������X i j� l( )  denotes the Fourier transform (or frequency 

response) of the i-th measured floor acceleration at distinct 

����u �

mn
kn,cn

mi
ki,ci
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frequencies �l = l·�� (l = 1,2,…,N) at which the Fourier 

transforms are calculated with frequency interval ��.

After the n-th story parameters [kn cn]
T
 have been 

identified, the following induction method can be used to 

identify structural parameters of the other stories. Adding 

�mi ����x i��  to both sides of (2) and following a similar 

procedure to transform to the frequency domain gives 

1

1 � j ci mi�( ) � ki mi� 2( )

=
� � X i�1 � � � X i

� � X i�1 + � � X i+1 � � � X i( ) jci+1 mi�( ) + ki+1 mi� 2( )[ ]

 (6) 

So, if the structural parameters [ki+1 ci+1]
T
 are known, 

then the right side of (6) is known at distinct frequencies and 

a similar optimization problem can be formulated to identify 

structural parameters [ki ci]
T
, written as: 

argmin
ki ,ci

J ki ,ci( ) = gl ki ,ci( ) � ˆ g l � � ˆ X i�1, � � ˆ X i , � � ˆ X i+1
� 
� 

� 
� 

2

l =1

N

�  (7) 

where  gl ki ,ci( ) =
1

1 � j ci mi�( ) � ki mi� 2( )
 and   

ˆ g l � � ˆ X i�1, � � ˆ X i , � � ˆ X i+1
� 
� 

� 
	 

=
� � ˆ X i�1,l � � � ˆ X i,l

� � ˆ X i�1,l + � � ˆ X i+1,l � � � ˆ X i,l� 
� 

� 
	 

jci+1

mi�
+

ki+1

mi� 2
� 


 
� 

� 

� 
 

.

Because structural parameters [kn cn]
T
 have been 

identified from (5), and can serve as the known input 

parameters for (7), the parameters [kn–1 cn–1]
T
 can be 

identified. Following the same routine, all structural 

parameters [ki ci]
T
 (i = 1,…,n) can be identified in turn. 

When the parameters of the first story are to be identified, a 

simple replacement of ����X i�� with ����U � is needed in (7).

The proposed substructure identification method has 

several advantages. (i) It is not necessary to simultaneously 

measure the acceleration of all floors; only two or three are 

needed for each identification step, potentially reducing the 

cost of an SHM system (particularly for wireless sensor 

networks where moving sensors around becomes convenient 

or battery usage limits sensor life [9]). (ii) In each step of the 

optimization procedure, there are only two optimization 

variables, making the optimization procedure much easier to 

execute and more likely to converge. (iii) Since the 

identification problem in each step of the substructure 

identification is simple and similar in its formulation, it 

becomes possible to perform analytical identification error 

analysis that reveals insight into how uncertainties in the 

identification process, like measurement noise, affect the 

final identification accuracy. Further, the error analysis 

paves a way for combining the substructure identification 

with structural control systems to further improve the 

accuracy of the substructure identification. 

B. Identification Error Analysis 
Understanding how the uncertainty in the measurement 

affects the identification accuracy plays an important role in 

better evaluating the accuracy of the identification method, 

as well as developing ways to improve it. In a previous study 

[8], based on the linearization of the original identification 

problem, the authors derived an approximate identification 

error analysis algorithm for least-square-error identification 

problems. This algorithm is applied to the substructure 

method, obtaining a simple analytical result for the relative 

identification error of the structural parameters. For the top 

story, the relative error, ���n , in �n  = [kn cn]
T
 is 

���n � Re
W11,l W12,l

W21,l W22,l

� 

� 
� 

� 

� 
� 	

ˆ N n
1,l
* 	 	 X n,l 
 	 	 X n
1,l( )

�

ˆ N n,l
* 	 	 X n,l � 	 	 X n�1,l( )

�

� 

� 

� 
� 

� 

� 

� 
� 

� 

� 
� 

� � 

� 

� 
� 

� � l =1

N

	  (8) 

(8) shows that the estimation error is proportional to the 

Fourier transforms, ˆ N i,l , of the measurement noise (obvious) 

but (interestingly) inversely proportional to the Fourier 

transform of the interstory acceleration. Because the 

frequency-dependent weighting functions Wjk,l(j�) (which 

are themselves dependent on the parameters of the top story 

substructure [8]) are large only in the vicinity of the 

substructure natural frequency �n0 = kn mn , the estimation 

errors in the top story are strongly influenced by the 

interstory acceleration only near that frequency. For non-top 

stories, the error is a little more complicated with additional 

terms related to the error in the estimation of the story above 


��i � Re
U11,l U12,l U13,l

U21,l U22,l U23,l

� 

� 
� 

� 

� 
� 

ˆ N i�1,l
� 	 	 X i,l � 	 	 X i�1,l( )

�

ˆ N i,l
� 	 	 X i,l � 	 	 X i�1,l( )

�

ˆ N i+1,l
� 	 	 X i,l � 	 	 X i�1,l( )

�

� 

� 

� 
� 
� 
� 

� 

� 

� 
� 
� 
� 

� 

� 

� 
� 

� 

� 
� 

� 

� 

� 
� 

� 

� 
� 

l =1

N

	

+  Re
U14,l U15,l

U24,l U25,l

� 

� 
� 

� 

� 
� �

	 	 X i+1,l � 	 	 X i,l( )
�

	 	 X i,l � 	 	 X i�1,l( )
�


ki+1

ki+1

	 	 X i+1,l � 	 	 X i,l( )
�

	 	 X i,l � 	 	 X i�1,l( )
�


ci+1

ci+1

� 

� 

� 
� 
� 
� 
� 
� 

� 

� 

� 
� 
� 
� 
� 
� 

� 

� 

� 
� 
� 

 

� 
� 
� 

� 

� 

� 
� 
� 

� 

� 
� 
� 

l =1

N

	  (9) 

Weighting functions Ujk,l(j�) are also large only near �i0.

Thus, the relative errors in estimates of both ki and ci can 

be expressed in terms of two kinds of errors: error related to 

the noise of measured floor acceleration, and error due to the 

uncertainty of the parameter estimates in the story above 

(which, of course, does not appear in the error terms for the 

top story parameter estimation). Moreover, amplifying the 

interstory acceleration of the story to be identified near its 

substructure natural frequency �i0 = ki mi  can 

significantly reduce the identification errors. 

III. CONTROL ALGORITHM DESIGN FOR

SUBSTRUCTURE IDENTIFICATION 

Based on the identification error analysis in the previous 

section, the goal of new identification-focused control 

algorithms for a VSDD control system is to amplify the 

interstory acceleration near the substructure natural 

frequency. Two kinds of control strategies to design VSDD 

system are studied herein. First, an on-off passive strategy 
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uses the VSDD in active and inactive modes, the former 

acting as a passive element that adds fixed stiffness and 

damping to the structure, and the latter exerting no forces. 

Second, in a semiactive strategy, the VSDD device tries to 

mimic, as closely as possible, the control force trajectory of 

an optimally designed active control system.  It is worth 

emphasizing that the designed identification-focused control 

algorithms will be implemented with a fail-safe mechanism: 

if excessive excitation is detected, the control system will 

immediately switch back to the original control algorithm 

that is designed to mitigate structural motion and damage. 

Therefore, the new algorithm will not weaken the main 

function of the control system, response mitigation, but add 

extra value to the installed control system. 

For simplicity in designing the new control algorithms, 

two assumptions are made: 

1. Beside control forces, the structure is only excited 

by the ground motion, which is modeled by a 

filtered band limited Gaussian white noise process. 

2. The control system is ideal and no control system 

errors, such as feedback measurement noise, 

actuator time delay and so forth, exist. 

Based on the above assumptions, it can be shown that the 

frequency responses of the interstory accelerations of the 

close-loop controlled structure are zero-mean Gaussian 

random variables. Hence, instead of trying to directly 

amplify the frequency responses of the interstory 

acceleration, which are random in nature due to the 

stochastic excitation, the control system is designed to 

maximize the variances of these responses with frequency 

weighting as shown below in (10) and (12). 

A. Passive Control Algorithm Design 
Let �  = [�1 … �p ]

T
 be a vector composed of the stiffness 

and damping that the VSDD system will add to the structure. 

The following optimization problem is posed to maximize 

the frequency weighted i-th interstory acceleration 

  

argmax
�

 J �( ) = argmax
�

 E W j�( ) 
 
 X i � 
 
 X i�1( )
2� 

� � 
� 

�  
d�

0

�

	

       subject to  � k
max 
� k 
 0,  k = 1,2,�, p

 (10) 

where ����X i � ����X i��  is the Fourier transform of the i-th
closed-loop interstory acceleration; the � k

max  are the upper 

limit of the corresponding stiffness or damping parameter of 

the brace; all design variables �k should be non-negative due 

to the passive nature of the devices; W(j�) is the frequency 

weighting function 

W j�( ) =
ki

mi�( )2 1 � jci mi�( ) � ki mi� 2( )[ ]
2  (11) 

As shown in Fig. 2, the magnitude of W(j�) peaks around 

frequency �i0 and quickly vanishes further away. The role of 

this weighting function is to implicitly force the control 

system to focus on maximizing the target interstory 

acceleration only around the frequency �i0, so that the 

identification error can be greatly reduced. 

Fig. 2. Magnitude of frequency weighting function. 

B. Semiactive Control Algorithm Design 
A clipped optimal control strategy [1,10] is used to design 

the new semiactive algorithm to enhance the identification 

accuracy. The clipped optimal control is composed of two 

controllers in series: the primary controller is designed by a 

linear state feedback control algorithm assuming that the 

actuators are fully active, and a clipping algorithm is used as 

a secondary controller to make the VSDD mimic the control 

force close to that computed by the primary controller.  

Due to the dissipative nature of VSDDs, a VSDD cannot 

always provide the exact control force as calculated by the 

primary controller. The performance of the clipped optimal 

control system, compared with the corresponding fully 

active system, is largely dependent on the dissipativity of the 

control forces from the primary controller [11]. Therefore, a 

dissipativity constraint for the primary controller is 

integrated into the optimization procedure of the algorithm 

design (12) to assure that the control forces applied to the 

structure are dissipative during most of the time history, so 

that the semiactive system effectively tracks the active 

system. 

Let L be the state feedback gain matrix of the primary 

controller in a clipped optimal semiactive control system. An 

approximate optimal semiactive strategy can be found by 

solving for an active primary controller state feedback gain 

subject to a constraint that it be dissipative much of the time 

  

argmax
L

 J L( ) = W j�( ) 
 � � X i � � � X i�1( )
2
d�

0

�

�

subject to �ulvl � � < 0,  l = 1,2,�, p
 (12) 

where �ulvl is the correlation coefficient between the control 

force ul and the velocity vl across the l-th VSDD brace. � is a 

negative number between 0 and –1, with smaller � requiring 

the control force be more dissipative; � is chosen to be –0.5 

in the numerical examples herein. The weighting function 

W(j�) is the same as given in (11). 

After the primary controller is designed, a secondary 

clipped optimal controller is concatenated afterward to form 

the full controller, where desired control force ul(t) is exerted 

at time t if ul(t)·vl(t) � 0 (i.e., if it is dissipative), and zero 

force otherwise. 

�� � ��

��
�

��
�

��
�

������������������!"�#�$�
i�

%

�
�&

��
'�

��
��

��
��

��
��

�!
"�

(
��

&)
'��

&�
��

�!
'��

�

4578



IV. THE EFFECT OF FEEDBACK MEASUREMENT NOISE ON 

THE CONTROLLED IDENTIFICATION PERFORMANCE

The control algorithms in the previous section are 

designed assuming an ideal control system. However, some 

control system error always exists and will inevitably affect, 

more or less, the performance of the designed control system 

for improving identification accuracy. In this section, an 

analysis is made to examine how one common control 

system error, feedback measurement noise, will affect the 

performance of the control system. Since the identification 

accuracy of substructure identification is directly dependent, 

not on the control force, but on the closed-loop substructure 

responses (the interstory acceleration in a critical frequency 

range), the effect of feedback measurement noise on the 

accuracy of the substructure identification can be analyzed 

by examining how the noise will change the interstory 

acceleration response from that originally designed. 

Both passive and semiactive control systems can be 

represented by the flowchart in the Fig. 3, where ug is the 

ground excitation; uc is the control system force applied to 

the structure; z represents the structural state response vector, 

containing the displacement and velocity responses of all 

floors; nz is the measurement noise vector of the structural 

state-space response; H1 and H2 are the structure transfer 

functions from ground excitation and control forces to the 

structural state responses, respectively; C is the 

identification-oriented controller; and T is a linear gain that 

transforms the state-space response into the i-th interstory 

acceleration.

Fig. 3. Control system with state feedback measurement noise. 

To analyze the effects of the measurement noise nz, two 

assumptions must be made: 

1. Feedback measurement noises nz can be modeled as 

a band limited white Gaussian process and are 

independent of the ground excitation. 

2. The controller C is a linear controller. 

Clearly the clipped optimal algorithm in the semiactive 

control is a non-linear controller and does not satisfy the 

second assumption above. However, it is known that if the 

primary controller in a clipped optimal controller is designed 

such that the control forces calculated from the primary 

controller are dissipative during most of the time, the clipped 

optimal controller can be approximated by an equivalent 

linear controller that contains the original primary controller 

only. Therefore, in this analysis, this equivalent linear 

controller is adopted to replace the original clipped optimal 

controller in order to analytically calculate the structural 

responses of clipped optimal control system. 

Since both the controllers and the structures are linear 

time invariant (LTI), the whole closed-loop structure is a 

LTI system. By applying the principal of superposition, the 

output of this system in the frequency domain, the Fourier 

transform of the i-th interstory acceleration ����X i � ����X i��( ) , can 

be calculated as 

����X i � ����X i�� = T I�H�C( )
��H� ����U � +T I�H�C( )

��H�CN�  (13) 

where ����X i � j�� , ����X i��� j�� , ����U � � j��  and Nz ( j�)  are the 

Fourier transforms of the corresponding time domain 

responses of ����x i �t� , ����x i���t� , ����u � �t�  and nz (t) , respectively. 

Applying the independence condition in the first assumption, 

the variance of the Fourier transform of the i-th closed-loop 

controlled interstory acceleration can be calculated as 

E . . X i � . . X i�1
2� 

� � 
� 
� � 

= E T I�H2C( )�1H1
. . U g

2� 

� � 
� 

� � 
+

                             E T I�H2C( )�1H2CNz

2� 

� � 
� 

� � 

 (14) 

The variance in (14) contains two parts: the first part, due 

to ground excitation, is just equal to the variance of the 

responses from the ideally controlled system without 

feedback noise; the second part is contributed by the 

feedback noise variance. Since the second part is always 

greater than zero, the variance of the responses from the 

non-ideally controlled system (with feedback noise) will be 

larger than that from the ideally controlled system; this 

indicates that the control system with feedback noise should 

outperform the control system without noise in terms of 

improving the parameter identification accuracy.  Thus, the 

proposed control-identification method should be robust to 

feedback measurement noise. 

V. NUMERICAL EXAMPLE

A 5-story uniform shear structure, with two VSDD braces 

installed, one in each of the first two stories, is used to 

illustrate the effectiveness of the proposed control methods 

to improve identification accuracy. The structure parameters 

are mi = 1�10
5
 kg, ci = 8�10

5
 N·sec/m and ki = 16�10

7
 N/m

(i = 1, …, 5). The ground excitation ����u �  is generated by a 

Gaussian random pulse process passed through a 4-th order 

lowpass Butterworth filter with a 12 Hz cut-off frequency. 

300 second ground and floor acceleration responses, with 

sampling rate 200 Hz, are calculated to carry out the 

identification. It is assumed that the magnitudes of the 

measurement noises of all acceleration responses ����x i  are the 

same, with root-mean-square (RMS) equal to 5% of the 

RMS of the ground excitation. 

100 substructure identification tests are performed for the 

structure without control, with passive control and with 

semiactive control, respectively; while there is measurement 

noise in the acceleration measurements, it is assumed first 

����u � H1

H2

T

C

( � � x i � � � x i�1)

nz

z

uc

structure

controller
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that the control systems are ideal with no noise in the 

feedback term. The relative RMS errors (RMSEs) in the 

identified parameters (in percentage) are listed in Table 1. 

From the result, it is clearly seen that both control algorithms 

do greatly improve the parameter identification accuracy: 

taking the third story parameter for example, the RMSEs of 

stiffness and damping parameter estimates are reduced by a 

factor of 4.2 and 8.4, respectively, for the passive control 

method, and by a factor of 3.9 and 6.1, respectively, for 

semiactive control method.

TABLE 1. RELATIVE (PERCENT) RMSE OF IDENTIFIED PARAMETERS 

WITHOUT CONTROL AND WITH IDEAL PASSIVE AND SEMIACTIVE CONTROL.

no control Passive semiactive story

# ki ci ki ci ki ci
1 1.64 5.25 0.50 2.40 0.29 0.99 

2 2.76 7.50 0.47 1.90 0.47 1.41 

3 2.81 32.4 0.66 3.85 0.71 5.33 

4 0.71 10.4 0.22 1.15 0.21 1.17 

5 0.40 4.63 0.19 0.78 0.15 0.63 

In order to verify the analysis conclusion that the 

proposed control-identification methods are robust to the 

feedback measurement noise, 20% Gaussian white noise is 

added into the structural state feedback; that is, the RMS of 

noise nz is equal to 20% of the RMS of the corresponding 

state response. Similarly, 100 identification tests are 

performed with the noise-contaminated passive and 

semiactive control systems; the results of these tests are 

shown in Table 2. 

TABLE 2. RELATIVE (PERCENT) RMSE OF IDENTIFIED PARAMETERS WITH 

PASSIVE AND SEMIACTIVE CONTROL WITH 20% FEEDBACK NOISE.

Passive semiactive story

# ki ci ki ci
1 0.51 1.66 0.31 1.05 

2 0.45 1.43 0.42 1.23 

3 0.65 3.00 0.63 5.46 

4 0.21 1.11 0.21 1.46 

5 0.17 0.86 0.14 0.70 

By comparing the corresponding results between Table 1 

and Table 2, it can be observed that, for the passive control 

method, most identification results with feedback noise are 

indeed more accurate than those without noise, as predicted 

in the analysis herein.  For the semiactive method, however, 

the effect of feedback noise is not uncertain: some results 

improve but others deteriorate. This result may be due to the 

fact that only the primary linear controller is used in the 

analysis for the effects of feedback noise whereas, in reality, 

the true control system is nonlinear. As a result, although the 

estimates of some parameters do not improve with feedback 

noise, both control methods can still provide quite accurate 

identification result under fairly large feedback noise.  This 

verifies the assertion that the proposed control-identification 

methods are quite robust to feedback measurement noise. 

VI. CONCLUSIONS

In this paper, a method is introduced for designing an 

SHM-focused control algorithm for passive and semiactive 

strategies to enhance structural parameter identification 

accuracy for the substructure identification method. A 

previous study [7,8] showed that increasing the interstory 

acceleration response, in a frequency range around the 

substructure natural frequency, can reduce estimation error. 

Thus, an optimization problem is formulated for each control 

strategy to find the optimal control parameters that effect 

this kind of change in structural response.  Since the 

proposed controlled substructure identification has 

identification error dependent on the controlled responses, 

not on the actual feedback forces themselves, the proposed 

method is quite robust to control system errors. An analysis 

shows that the proposed control-identification method is 

quite robust to the inclusion of feedback noise. A numerical 

example of a 5-story shear building is used to demonstrate 

that both passive and semiactive strategies can significantly 

improve the identification accuracy for structural stiffness 

parameters, and both methods can still provide accurate 

identification results in the presence of fairly large feedback 

measurement noise. 
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