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Abstract—This paper addresses the problem of long
run average cost for linear systems with non-observed
Markov jump parameters. We present an algorithm
that relies on the approximation of the (infinite hori-
zon) cost via its finite horizon version and uses an
evolutionary-based algorithm for the finite horizon
cost. A numerical example illustrates the proposed
algorithm.

I. Introduction

There has been a great deal of attention to linear sys-
tems with Markov jump parameters (LSMJP). LSMJP
constitutes a well known class of system that can be
successfully employed in applications featuring random
failures, environmental changes and other phenomena
that lead to random, abrupt changes of behaviour. There
exist numerous results, spanning from notions of stability
[13], stabilization [16], [9], basic features such as stabiliz-
ability and detectability [3], to optimal solution to finite
and infinite quadratic costs [14], [7], [8] and filtering [10].

The available results for LSMJP are strong enough to
allow for parallels with standard linear systems, mainly
in scenarios with complete state observation (which in-
cludes the observation of the Markov state), and we men-
tion as illustration the existence of generalized Riccati
equations that characterize the optimal solution to the
long run average cost (LRAC), even in the presence of
additive Gaussian noise, see [6]. However, the parallel
with standard linear systems is weaker when dealing with
incomplete or no observation of the Markov state. For
instance, in [11] authors need to consider a variational-
like approach to the finite horizon quadratic cost problem
with partial observation.

In the context of LRAC that we are interested in
this paper, there only exists a result on bounds for the
cost [19], which allows to study existence of the LRAC
and convergence of the finite horizon average cost to the
LRAC, assuming controls in static state feedback form.
Direct extension of the above mentioned variational-
like approach seems not to be viable, as it typically
provides non-stationary controls, whereas the LRAC, as
an infinite horizon problem, requires stationary controls.
In fact, the LRAC problem for LSMJP with unobserved
Markov state can be interpreted in simple terms as how
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to obtain a static gain that is not a function of the
Markov state and minimizes the average cost incurred by
the controlled Markov jump system. Such controls can be
implemented when the Markov variable is not accessible
and are easier to implement than non-stationary con-
trols, and they are stable (in a certain stochastic sense)
provided some mild detectability-like conditions hold,
making them of much appeal for applications. However,
to the extent of our knowledge there is no available
study on methods for providing solutions to the LRAC
problem.

In this paper, we present a simple algorithm, based
on the idea of approximation via the finite horizon cost
(FHC). The FHC problem with horizon is dealt with a
genetic algorithm, aiming at a suboptimal static gain in
the form uk = Kxk, where xk is the so-called continuous
state and u is the control. Next, we employ the algorithm
for the FHC with increasing horizon T , for approximating
the LRAC. The LRAC is more complex as it involves
issues of stability and sensitivity to the initial condition
of the system. To handle these difficulties, we employ
a modified cost (by including a parameter ε > 0), and
analyse the impact on the original cost. We also show
that stabilizing gains K are associated to finite LRAC
with ε > 0. These contributions are presented in a quite
simple and comprehensive manner, and are fundamental
for the approximation of the LRAC via the FHC and,
hence, for our algorithm to provide a solution to the
LRAC. Apart from these theoretical results, we employ
some new strategies in the genetic algorithm for the
FHC problem: (i) use of solutions given by coupled
Riccati equations from the LSMJP theory to initialize
the population and (ii) representation of each element of
the gain in a polynomial form to increase the number of
genes of each element of the population, as detailed in
Section III.

The paper is organized as follows. In Section II we
formalize the LRAC and FHC problems for LSMJP. The
algorithm for the FHC is detailed in Section III, and
in Section IV we obtain some results that allow us to
use this algorithm to approximate the LRAC. Section
V presents an illustrative example. We finish with some
concluding remarks.

II. Problem Formulation and Preliminary
Results

One simple way to describe the discrete-time LSMJP
considered in this paper is to take into account, initially,
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a standard time-varying linear system in the form

xk+1 = Skxk + Fkuk + wk, k ≥ 0,

the initial condition x0 ∈ Rn, where x ∈ Rn is the state,
u ∈ Rr is the input and wk is a zero-mean independent
Gaussian random variable with covariance matrix E.
Consider the cost function

W T =
T

∑
k=0

x′kQxk + u′kRuk,

with Q = Q′ ≥ 0 and R = R′ > 0. However, instead
of the standard hypothesis that the values of Sk and
Fk are known a-priori for all time instants k ≥ 0, we
consider that they assume values from the collections
A = {A1, . . . ,AS} B = {B1, . . . ,BS} respectively, accordingly
to a Markov chain {θ0,θ1, . . .}:

Sk = Aθk
, Fk = Bθk

, k ≥ 0.

The transition probabilities are

P(θk+1 = j|θk = i) = pi j

with i, j ∈ S = {1, . . . ,S}, and the initial distribution is π =
[P(θ0 = 1), . . . ,P(θ0 = S)] = [π1, . . . ,πS]. We assume that
the matrix P = [pi j] and the vector π are known. In this
situation, the system is inherently stochastic and xk forms
a stochastic process, in such a manner that W as defined
above is a random variable, and we consider its expected
value for optimization purposes,

Y T = E {W T}.

It is a well known fact in the LSMJP literature that Y T

can be represented in terms of certain linear operators
(denoted here by T) involving the conditional second
moment matrices of the system, as we present in the
sequel. Let Mr,s denote the linear space formed by a
number S of r × s-dimensional matrices, Mr,s = {U =
(U1, . . . ,US)}. Also, Mr ≡ Mr,r. For U,V ∈ Mr, U ≥ V

signifies that Ui −Vi ∈ Rr0 for each i ∈ N , and similarly
for other mathematical relations. Consider tr{·} as the
trace operator. It is known that Mr,s equipped with the
inner product

〈U,V 〉 =
S

∑
i=1

tr{U ′
iVi}

forms a Hilbert space. Following the notation of [3] we
define, for U ∈ Mn, V ∈ Mn, the operator TU : Mn → Mn

by

TU,i(V ) :=
S

∑
j=1

p jiU jV jU
′
j, ∀i ∈ N , (1)

and we define for convenience T0(V ) = V , and for t ≥ 1,
Tt(V ) = T(Tt−1(V )). It is simple to check that T is linear.

The next result is an adaptation of the results in [6,
ch 3], see also [19].

Proposition 1. Let X ∈ Mn, Q ∈ Mn and Σ ∈ Mn be
defined by Xi = x0x′0πi, Qi = Q and Σi = E, ∀i ∈ S. Then,

Y T =
T

∑
k=0

〈

T
k
A(X)+

k−1

∑
l=0

T
l
A(Σ) , Q

〉

. (2)

The collection of matrices X in Proposition 1 rep-
resents the conditional second moment of the initial
condition, Xi = E {x0x′0|θ0 = i}P(θ0 = i). We write Y (X)
to emphasize the dependence of Y on X .

Observation and Control Structures

We assume that only the quantity xk is available to the
controller at each time instant k. θk is not observed. In
connection, we consider a linear state feedback control in
the form

uk = Kxk. (3)

K is referred to as a static gain (in opposition to time-
dependent gains of the form Kk). Static gains are among
the simplest to implement controls, thus being of interest
for many applications.

For the complete observation case (xk and θk observed),
with controls in the form

uk = Kθk
xk, (4)

there are strong results in LSMJP literature, parallelling
the deterministic linear systems theory. One result that
shall be useful to us is the solution of finite horizon
quadratic cost problems via coupled algebraic Riccati
equations, allowing to compute optimal gains Ki in a
simple way, as presented in the Appendix.

For a given gain K (or a collection of gains K = {Ki, i ∈
S} in the complete observation case), we have a closed
loop form xk+1 = (Sk + FkK) (respectively, xk+1 = (Sk +
FkKk)), giving rise to collections of “closed loop”matrices
AK = (A1 + B1K, . . . ,AS + BSK) (respectively, AK = (A1 +
B1K1, . . . ,AS + BSKS)), operators TAK

and costs given by
(2). We denote Y T

K and Y T
K (X) to emphasize the depen-

dence on K and on X ,

Y T
K (X) =

T

∑
k=0

〈

T
k
AK

(X)+
k−1

∑
l=0

T
l
AK

(Σ),Q
〉

. (5)

Problem Formulation

We are interested in the optimization problems

P1 : minGY T
G (X),

in the scenario with T < ∞, and

P2 : minGZG,

when T = ∞, where

ZG = lim
T→∞

sup
T

Y T
G (X)/T.

P2 is referred to as the LRAC problem. The scenario with
T = ∞ is more complex in the sense that finite Z does not
ensure that the controlled system is stable, as we shall
see later.

4435



TABLE I

Genetic Algorithm for the FHC problem P1

1) Set the GA and system parameters
2) Initialize the population Kℓ as in (6) and (7)
3) Perform genetic and evolutionary operators

to obtain a new population and the gains Kℓ (7)
4) For each Kℓ, calculate Y ℓ(X) via (5)
5) If the stop criterion is not satisfied, return to (3)

III. A Genetic Algorithm for the Problem P1

One important issue that arises when dealing with GAs
is how to create an adequate initial population. In prin-
ciple, one could simply take randomly generated gains
K1, . . .. However, we have observed in many numerical
examples that the cost associated to many of these gains
are extremely high, leading to a high probability of being
excluded in the selection process. As a result, the“genetic
variety” of the the second generation of the population
decays, and the algorithm performance is poor, see e.g.
[18], [15], [17]. In order to overcome this difficulty, we
initially solve the optimization problem within the class
of controls in the form (4) via the recursive coupled
algebraic Riccati equations described in the Appendix,
leading to a collection of gains L1, . . . ,LS that are optimal
for the complete state observation problem, and then we
use these gains to obtain the initial population as follows:

Kℓ = α1L1 + . . .+ αSLS, ℓ = 1, . . . ,q (6)

where L1, . . . ,LS are given by (14) (or by (15) in the
context of the LRAC problem P2), q is the size of the
initial population and αi, i ∈ S, are zero-mean indepen-
dent Gaussian variables with some arbitrary covariance
matrix P.

The static gain K (or, in the complete observation
case, each element the collection of static gains K)
may be low dimensional, as in Example 1, where K =
[K(1,1) K(1,2) K(1,3)]. In these situations, if we simply
identify each element of K as one gene of each element
of the population, we will have a few genes, and we have
observed a poor performance of the GA. We employ
the polynomial representation for each element of K =
[K(i, j)],

K(i, j) = β1(i, j)1 + β2(i, j)2 + . . .+ βp(i, j)p. (7)

For the initialization of each element of the population,
Kℓ, we employ randomly generated β ℓ

1(i, j), . . . ,β ℓ
p−1(i, j)

and define β ℓ
p(i, j) = Kℓ(i, j)−β ℓ

1(i, j)1 + . . .+β ℓ
p−1(i, j)p−1;

the GA will determine the β ’s of the following genera-
tions. The Algorithm is presented in Table I.

IV. An Algorithm for the Problem P2 (LRAC)

The problem P2 (LRAC problem for LSMJP) is far
more complex than the finite horizon problem P1 because

the infinite horizon scenario involves the question of sta-
bility and related issues of sensitivity to the initial condi-
tion. For instance, we may have limT→∞(1/T )Y T

G (X) < ∞
and limT→∞(1/T )Y T

G (X) = ∞, W 6= X . Moreover, lack of
positiveness of Σ and Q may lead to finite cost controls
that are not stabilizable, provided certain conditions of
detectability and stabilizability are not satisfied. In order
to overcome these difficulties, we consider the standard
hypothesis that the Markov chain is ergodic, in such a
manner that the limiting distribution P

∞π is unique [1].
We also consider the modified cost

Y ε
K (X) =

T

∑
k=0

〈

T
k
AK

(X)+
k−1

∑
l=0

T
l
AK

(Σ+ εI),Q+ εI
〉

,

where I = (I, . . . , I) ∈Mn, and the related LRAC Zε
G, with

the property that Zε
K is stabilizing if and only if the gain K

is stabilizing, and we evaluate the impact on the original
costs. Let us start formalizing the stabilizability notion.

Definition 1. We say that a static feedback gain K

(respectively, a collection of gains K ∈Mr,n in the complete
observation scenario) is mean square (MS) stabilizing
when, for each Σ ∈ Mn satisfying Σ = Σ′ ≥ 0, there exists
Γ ∈ Mn, Γ = Γ′ ≥ 0, such that

T
k
AK

(X)+
k−1

∑
l=0

T
l
AK

(Σ) < Γ (8)

for each X ∈ Mn, X = X ′ ≥ 0, provided k ≥ k̄ for some k̄

(possibly dependent on X).

Remark 1. MS-stabilizability as defined above and the
related notion of MS-stability are equivalent to the stan-
dard MS notions in the LSMJP literature, e.g. K is MS-
stabilizing if and only if

k

∑
l=0

T
l
AK

(X) < ∞, ∀X = X ′ ≥ 0. (9)

For the equivalences, we refer to [6].

Proposition 2. If K is not MS-stabilizing, then for each
M ∈ Mn, M = M′ ≥ 0, there exists a sufficiently large
integer T̄ such that ∑T̄

k=0 Tk
AK

(I) ≥ M.

Proof: From (9), if K is not stabilizable we have
that there exists X such that, for each Γ, ∑k

l=0 Tk
AK

(X) ≥
Γ for some k. The linearity of T and the fact that
υI ≥ X for some υ ≥ 0, allow to write ∑k

l=0 Tl
AK

(I) ≥
υ−1 ∑k

l=0 Tl
AK

(X) ≥ υ−1Γ.

Lemma 1. K is MS-stabilizing if and only if Zε
K < ∞.

Proof: Necessity. Replacing Σ by Σ+εI in Definition
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1 and employing Proposition 1 we write

Y
ε,T
K (X)

T
=

1

T

T−1

∑
k=0

〈

T
k
AK

(X)+
k−1

∑
l=0

T
l
AK

(Σ+ εI) , Q+ εI
〉

=
1

T

k̄−1

∑
k=0

〈

T
k
AK

(X)+
k−1

∑
l=0

T
l
AK

(Σ+ εI) , Q+ εI

〉

+
1

T

T−1

∑
k=k̄

〈

T
k
AK

(X)+
k−1

∑
l=0

T
l
AK

(Σ+ εI) , Q+ εI
〉

≤ ∆

T
+

1

T

T−1

∑
k=k̄

〈

Γ, QεI
〉

=
∆

T
+

T − k̄

T

〈

Γ, Q+ εI
〉

,

(10)

where we set ∆ = ∑k̄−1
k=0

〈

Tk
AK

(X) + ∑k−1
l=0 Tl

AK
(Σ + εI) , Q +

εI
〉

. This leads to

limsup
T→∞

Y
ε,T
K (X)

T
≤

〈

Γ, Q+ εI
〉

Sufficiency. Let Γ = Zε
K < ∞. Let us deny the statement

by assuming that K is not stabilizing. In Proposition 2,
set M = ε−2(ΓI + 1) and consider the corresponding T̄ .
We can write

Γ = lim
T→∞

sup
X

1

T

T−1

∑
ℓ=0

〈

T
ℓ
AK

(X)+
ℓ−1

∑
l=0

T
l
AK

(Σ+ εI) , Q+ εI

〉

≥ ε2 lim
T→∞

sup
X

1

T

T−1

∑
ℓ=0

〈 ℓ−1

∑
l=0

T
l
AK

(I) , I

〉

= ε2 lim
T→∞

1

T

T−1

∑
ℓ=0

〈 ℓ−1

∑
l=0

T
l
AK

(I) , I

〉

≥ ε2 lim
T→∞

1

T

T−1

∑
ℓ=T̄

〈 T̄

∑
l=0

T
l
AK

(I) , I

〉

≥ ε2 lim
T→∞

1

T

T−1

∑
ℓ=T̄

〈

M , I
〉

≥ ε2 lim
T→∞

T − T̄

T

〈

M , I
〉

≥ ε2ε−2
〈

(ΓI+ 1) , I
〉

≥ Γ+ 1,

which is an absurd.
The algorithm we propose in this section seeks for

the LRAC using the approximation via Y ε,T (X)/T . Thus,
it is important to show that this quantity converges to
Zε as T → ∞. This issue was studied and solved in [19,
Corollary 2]; for convenience, we present an adaptation
to the present context, next.

Proposition 3. Assume the Markov chain θ is ergodic
and that K is MS-stabilizing. Then, there exist scalars
α,β ≥ 0 such that

∣

∣

∣
ZK − Y ε,T (X)

T

∣

∣

∣
≤ α‖X(ℓ)‖+ β

T
(11)

Next, the impact of the scalar ε in Zε
K is evaluated

in terms of the original LRAC ZK , showing that Zε
K

converges to ZK as ε tends to zero, provided the gain
K is stabilizing.

Lemma 2. If K is MS-stabilizing, then there exists ξ ≥ 0

such that ZK ≤ Zε
K ≤ ZK + εξ .

Proof: The statement that ZK ≤ Zε
K is trivial. Let us

denote the quantities Γ and k̄ in Definition 1 by ΓΣ and
k̄X to emphasize the dependence on Σ and X respectively.
Let k̃ = max(k̄X , k̄0). It is straightforward to check from
(5) and the linearity of T that

T
k
AK

(0)+
k−1

∑
l=0

T
l
AK

(εI) = ε
k−1

∑
l=0

T
l
AK

(I) ≤ εΓI (12)

for k ≥ k̄0. One can check that

Y
ε,T
K (X)−YT

K (X) =
T−1

∑
k=0

〈 k−1

∑
l=0

T
l
AK

(εI) , Q

〉

+
T−1

∑
k=0

〈

T
k
AK

(X)+
k−1

∑
l=0

T
l
AK

(Σ) , εI

〉

+
T−1

∑
k=0

〈 k−1

∑
l=0

T
l
AK

(εI) , εI

〉

(13)
Now, evaluations similar to the one in (10) for the terms
on the right-hand side of (13) provides

Y
ε,T
K (X)−YT

K (X)

T

≤ ∆

T
+

T − k̃

T

(

ε
〈

ΓΣ, I
〉

+ ε
〈

ΓI, Q
〉

+ ε2
〈

ΓI, I
〉)

,

which leads to

limsup
T→∞

Y
ε,T
K (X)−Y T

K (X)

T
≤ εξ

where we set ξ =
〈

ΓΣ, I
〉

+
〈

ΓI, Q
〉

+ ε
〈

ΓI, I
〉

.
In the algorithm for the LRAC, we use the coupled

algebraic Riccati equation in (15) (in the Appendix) to
initialize the population instead of the coupled recursive
Riccati equations in (14). The solution of (15) with
positive weighting matrices is connected to stabilizing
solutions of the LRAC problem, see e.g. [12], thus pro-
viding stabilizing initial gains Li for (6). We include in
the Appendix a simple method for solving the coupled
algebraic Riccati equation, for ease of reference.

V. Numerical Example

Example 1 (Magnetic suspension system). We take into
account the model of a magnetic suspension system, as
presented in [5]. For ease of reference, next we present
the data of the system,

A1 =





0 1 0

1750 0 −34.07

0 0 −0.0383



 ,B1 =





0

0

1.9231



 .

Here we consider failures in the control action u. Let the
transition probability matrix P be given by

P =

[

0.9 0.1
0.5 0.5

]

,

and assume that whenever θk = 2 the system is not
affected by the controller, and we set A2 = A1 and B2 = 0

accordingly. We also consider zero-mean additive noise
with covariance matrix GG′, with

G = 1e−6





1 0

1 0

0 1



 .
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Fig. 1. Cost Y ε,T (X)/T with T = 10 versus the number of iterations
t of the GA.

1.2e+008

600

1.1e+008

400300200 700

1.0e+008

8.0e+007

9.0e+007

5001000

7.0e+007

Y
ε
,T

(X
)

T

T

Fig. 2. Y ε,T (X)/T converging to the LRAC as the horizon T

increases.

The weighting matrices are R = 1 and Q = I. We consider
initial condition X = I, and we set ε = 10−3. For the
initialization of the algorithm, we employ the coupled
Riccati equations (15) (solved using the method presented
in the Appendix), which yields

L1 ≈ [2797 66.87 −53.71]; L2 = [0 0 0].

We start with horizon length T = 10. Figure 1 shows the
behaviour of the best average cost Y ε,T (X)/T as a function
of the number of iterations (number of population) of
the method of Table 1. Figure 2 shows how the average
cost evolves as T increases, illustrating the convergence
to the LRAC, Zε(X). The obtained static gain K and the
attained LRAC are given by

K ≈ [2324 57.91 −44.99]; Zε (X) ≈ 117569345.

VI. Conclusions

In this paper we have presented a genetic algorithm
for the problems of finite horizon cost and of long run
average cost, with static feedback controls, for discrete-
time linear systems with Markov jump parameters and
partial state observation. This is a relevant problem for
applications, taking into account the simplicity of the
controller (in the form uk = Kxk) and its implementation,

and the fact that perfect observation of the jump variable
θ may be difficult in many practical situations.

In order to overcome some intrinsic difficulties of the
problem, we have proposed a modification on the original
cost, parameterized by a scalar ε, and we show that
the modified cost Zε

K converges to the original one when
ε tends to zero, provided K is MS-stabilizing. We also
shown that finite Zε

K is strongly connected with MS-
stabilizing K, in such a manner that, when the method
converges, the obtained solution is stabilizing.
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Appendix

Consider the following coupled recursive Riccati equa-
tion, with initial condition X0

i = Qi, i ∈ S,

X k+1
i = A′

iE
k
i Ai − (A′

iE
k
i AiBi)(R + B′

iE
k
i Bi)

−1(B′
iE

k
i Ai)+Qi

(14)
where Ek

i = ∑S
j=1 pi jX

k
j is the coupling term. Consider

the associated coupled algebraic Riccati equation in the
variables Xi = Xi ≥ 0, i ∈ S,

Xi = A′
iEiAi − (A′

iEiAiBi)(R+ B′
iEiBi)

−1(B′
iEiAi)+Qi (15)

where Ei = ∑S
j=1 pi jX j. (14) can be solved recursively. We

present here, for ease of reference, the following algorithm
[2], [4], which converges to the solution of (15) if and only
if a solution exists.

Method for solving (15)
Step 1. Set κi ≤ 1 as the largest integer for which√
κi piiAi is stable.
Step 2. Set X0 = (X0

1 , ...,X0
N) ∈ Mn+.

Step 3. For k = 1,2, .. and i = 1,2, ...,N solve the
standard algebraic Riccati equations:

−X k
i +κipiiA

′
iX

k
i Ai + A′

iẼ
k
i Ai − (κipiiA

′
iX

k
i Bi + A′

iẼ
k
i Bi)

× (R + κipiiB
′
iX

k
i Bi + B′

iẼ
k
i Bi)

−1

× (κipiiB
′
iX

k
i Ai + B′

iẼ
k
i Ai)+Qi = 0

(16)

where

Ẽ
k
i =

i

∑
j=1

pi jX
k
j +(1−κi)piiX

k
i .

4439


