2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

WeC13.2

Control of many robots moving in the same direction
with different speeds: a decoupling approach

David DeVon and Timothy Bretl

Abstract— This paper considers the problem of controlling a
group of microrobots that can move at different speeds but
that must all move in the same direction. To simplify this
problem, the movement direction is made a periodic function
of time. Although the resulting control policy is suboptimal
for an infinite-horizon quadratic cost, a bound is provided on
how suboptimal it is. This bound is extended to show that, in
theory, the design compromise making all robots move in the
same direction only increases the expected cost by a factor of
at most /2. Results are shown in simulation.

I. INTRODUCTION

The past two decades have seen rapid progress in the
development and deployment of microscale and nanoscale
robotic systems [1]. These systems are intended for a
wide range of applications that include microfabrication,
minimally-invasive medical diagnosis and treatment, adap-
tive optics, regenerative electronics, and biosensing for en-
vironmental monitoring and toxin detection [2]. Some of
these systems are mechanical, consisting for example of
nickel nanowires that can be used to assemble scaffolding
for opto-electronic devices [3]-[7]. Other systems are bi-
ological, consisting for example of magnetotactic bacteria
that can be used as carriers for targeted therapy [8]-[12]. In
either case, two aspects of microscale and nanoscale robotic
systems present key control challenges. First, these systems
involve hundreds or millions of robots, entire ensembles
that have to be steered from one configuration to another.
Second, these systems involve actuation mechanisms that
apply global inputs to all robots at once, programmable force
fields that are created by electromagnetic or acoustic fields,
optical or chemical gradients, or fluid flow. Recent work has
begun to address the resulting control challenges, both for
ensembles that are homogenous [13], [14] and for those that
are inhomogenous [15]-[20].

As a case study, in this paper we consider a particular
microscale robotic system, the “Magmite,” that was devel-
oped recently by researchers at the Institute of Robotics and
Intelligent Systems (ETH-Zurich) [21], [22]. It is controlled
by an external magnetic field: rotating the field rotates the
robot, while oscillating the field drives the robot to resonance
and propels it forward. Many robots can be driven at the same
time, as long as each one has a different resonant frequency.
However, although it is possible for each robot to move at a
different speed, all robots must move in the same direction.

Our goal is to design a control policy for a group of
these microrobots that achieves closed-loop stability and
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that minimizes an infinite-horizon quadratic cost function
(Section III). It is clearly possible to move the robots
from any initial configuration to any final configuration, for
example, by moving them one at a time. But, because all
robots must move in the same direction, the dynamic system
is both nonlinear and coupled, so the cost function is not
easily minimized.

To simplify this problem, we make the direction of move-
ment a periodic function of time (Section IV). This choice
both decouples and linearizes the dynamic system, allowing
us to apply a standard linear quadratic control approach to
minimize the expected cost and to prove stability for the
closed-loop system (Section V). The resulting control policy
is easy to implement and, although our choice of movement
direction makes this policy suboptimal, we can give a bound
on how suboptimal it is. We show the expected results of
this approach in simulation (Section VI).

One interesting aspect of our approach is that it allows us
to comment on the microrobot design. In particular, it was
a design compromise to restrict the movement of all robots
to the same direction while allowing different speeds [21],
[22]. We can say exactly what the expected cost would be if
this constraint were lifted. So by providing an upper bound
on the cost function when the movement direction rotates
at a fixed rate w, we are in fact providing an upper bound
on the cost of coupling in general. We show in Section V-D
that, in theory, the expected cost for a group of these coupled
microrobots is no higher than /2 times what the expected
cost would be if they were not coupled. This exact bound
holds only in the limit as w — oo, but convergence is rapid
and it is possible to achieve a bound arbitrarily close to /2
even with small w.

II. RELATED WORK

Recent work in areas as diverse as integrated circuit
design, micro-electro-mechanical systems, structural dynam-
ics [23], autonomous digital agent modeling for computer
graphics [24], and microscale robotics, have led to a con-
siderable interest in the analysis and synthesis of coupled
dynamical systems. However, there are few general tech-
niques, either analytical or numerical, for addressing these
problems. Direct methods of numerical integration have
been proposed, but convergence of these methods is not
guaranteed and the time for deriving the numerical solution
may be unacceptable [23]. An alternative approach uses
feedback linearization to transform the coupled differential
equations into sets of decoupled linear differential equations,
for which a stabilizing time-varying control scheme can
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be implemented [25]. We take a similar approach in this
paper, transforming a coupled nonlinear system into a linear
periodic one.

The analysis and control of linear periodic systems, and
of more general time-varying systems, has a rich history.
In particular, Floquet theory is often used to analyze linear
periodic systems [26]-[30]. Unlike time-invariant systems,
the time-varying eigenvalues of the closed-loop system do
not determine stability [26], [27]. Moreover, with time-
varying systems, the use of a Lyapunov stability argument
becomes more difficult as LaSalle’s theorem for ordinary
differential equations is not applicable [31]. So, one approach
for controlling linear periodic systems is to convert them
to a time-invariant form, either with a Lyapunov-Floquet
transformation [26] or with feedback linearization [25],
[32]. A linear periodic state feedback approach has been
proposed for the placement of the closed-loop poles of an
equivalent time-invariant system [33], [34]. More recently,
integral quadratic constraints have been used for not only
the analysis but also the control synthesis of linear time-
varying systems [28], [35]. In addition, robust H., methods
have been proposed for the analysis and control of linear
time-varying systems [36] and for state estimation of linear
periodic systems [37]. We use an approach based on optimal
linear quadratic control [38], [39], with closed-loop stability
shown by a Lyapunov argument.

III. PROBLEM STATEMENT

Consider a group of n robots moving in a plane with the
following dynamics:

1 (t) = u(t)v ()
: (1)
G (t) = u(t)vn(t).

The position of each robot is z;(t) € R? for i = 1,...,n.
All robots must move in the same direction u(t) € R?
where |ju(t)|]2 =1, but each can move at a different
speed v;(t) € R for i=1,...,n. We are given an ini-
tial configuration x1(tg),...,z,(to) and assume without
loss of generality that the desired final configuration
is zfinl = ... = pfinl — 0 Then, our goal is to select the
inputs u(t) and vy (t),...,v,(t) that minimize the infinite-
horizon quadratic cost function

J&>:LKGDE:(waTQxAﬂ—+r@%ﬂ)dt )

i=1
where () > 0 penalizes errors in position and r > 0 penalizes

speed (or control effort).

IV. SOLUTION APPROACH

Because all robots must move in the same direction w(t),
the system (1) is both nonlinear and coupled, and so the
quadratic cost (2) is not easily minimized. To simplify the

problem, we make the movement direction wu(t) rotate at a

fixed rate, defining
_ |cos(wt)
u(t) = Lin(wt)]
for some w > 0. The advantage of this choice is that it both

decouples and linearizes the dynamic system (1), which we
can now write as

a0 et o
inlt) =[50 wnt)

In fact, we can now consider each robot separately, and our
problem becomes minimizing the quadratic cost

Joo = /OO [z(t)T Qu(t) + rv*(t)] dt (3)

to

for the single linear-periodic dynamic system

i) = |G| o0 @

sin(wt)

As we will show, the resulting control policy v(t) is
simple and easy to implement. The only disadvantage of this
approach is that it is not optimal—there are choices of u(t)
and vy (t), .. .,v,(t) that will result in a smaller total cost (2).
In particular, our approach may perform much worse relative
to optimal as the frequency w decreases, and in practice it
is a good idea to keep w as small as possible. Nonetheless,
we will prove an explicit bound on the cost of our control
policy in the following section.

V. CONTROL POLICY
A. Design of the controller

For the linear-periodic system (4), we will derive an opti-
mal state feedback linear quadratic regulator that minimizes
the cost function (3) and that is closed-loop stable. Linear
quadratic optimal control is a standard technique that can be
derived, for example, from a variational approach or dynamic
programming [38], [39].

It is easy to show that the input v(¢) minimizing the
quadratic cost (3) for the linear periodic system (4) has the
form

u(t) = —% [cos(wt) sin(wt)] S(t)x(t) 3)

where S(t) > 0 is a limiting, periodic solution of the matrix
differential Riccati equation

Z?;((Z:))] % [cos(wt) sin(wt)] S(t).

S(t) = —Q + S(t) [
6)

Let
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where ¢ > 0 so position errors in any direction are penalized
equally. Then we can show

S(t) = [Si(t) Sa(t)]
is a solution to (6) where

Si(t) = ¢+ asin(2wt) + bcos(2wt)
YWY d + bsin(2wt) — a cos(2uwt)

and
Sa(t) = d + bsin(2wt) — a cos(2wt)
2T e — asin(2wt) — beos(2wt)

by solving directly for the coefficients

a=—wr—+\/w2r?+qr
b= ;\/2qr—a2

wr
c=—b+/2qr — a?
d=0.

We can also show that
2qr — a® = 2rwa + qr

so, by inspection, we have a > 0, b < 0, and ¢ > 0. The
eigenvalues of S(t) are given by

AS)=ct Vb2 +a?>0, @)

which are strictly positive and also invariant over time.
Hence, the periodic Riccati solution S(¢) is positive definite,
or in other words z7S(t)z >0 for all x € R? such
that = # 0. We will use this property in the following section
to show that the control policy is closed-loop stable.

Note that our control policy is easy to implement and
that its complexity is constant as the number of microrobots
increases, although the problem of measuring the state of
each microrobot may get more difficult.

B. Closed-loop stability

Under the optimal control policy v(t) given by (5), the
closed-loop system is

o(t) = A(t)z(t), (8)
where
At) = _% {ijgﬁﬂ [cos(wt) sin(wt)] S(t).

The stability of the closed-loop system can be demonstrated
using a variety of different approaches, for example Flo-
quet theory [26]-[30] or the method of integral quadratic
constraints [35], [40]. For time-varying systems, the state
transistion matrix characterizes the uniform asymptotic sta-
bility of the system, but requires solving the differential
equation (8). For linear systems, uniform asymptotic stability
is equivalent to exponential stability [27]. However, the time-
varying eigenvalues of A(t) do not determine stability of the
system [26], [27]. Therefore, we use a Lyapunov approach
to characterize the stability of the closed-loop system.

In general, we can only guarantee that the solution S(t) of
the periodic Riccati differential equation (6) is semi-definite
and so could not use it as a Lyapunov function [41]. But in
this case, as we showed in the previous section, the periodic
Riccati solution S(t) is indeed positive definite. This fact can
be used to prove the following proposition:

Proposition 5.1: Under the control policy (5), the closed-
loop system (8) is exponentially stable about the origin.

Proof: Consider the candidate Lyapunov function

V(t,z) =27 S(t)x

which satisfies V (¢, 2) > 0 for all t and 2 # 0. The derivative
along the trajectories is given by

V(z,t) =T S(t)x + 2T S(t)x + 2T S(t)d

= 2T Qz — %:cTMx,
where
M = 5(t) [Zﬁ?ﬁfjf?] [cos(wt) sin(wt)] S(b).

Hence, since S(t) is symmetric, we can write M = NN,
where
N = [cos(wt) sin(wt)] S(t)

as in [42]. Therefore, we have
Viz,t) = —27Qx — |[Nz||2 <0

for all x # 0. Since V (¢, x) is radially unbounded, the system
is globally exponentially stable about the origin [27], [30].
|
C. Expected cost as the parameter w varies
Under the optimal control policy v(¢), the expected cost
is given by
T3 (w, z(t)) = x(to) " S(to)z(to), )

where S(tg) is an explicit function of w as well as the control
parameters ¢ and r. Hence, we have both
5w, 2(to))ll2 _ [lz(to)” S(to)2(to) |2
l[(to)ll2 ll(t0)l]2

and

[l (t0) ™S (to)x(t0)]]2
(E1P

)\min(S) S

< Amax(S)-

Since (7) tells us that

Amin(S) = ¢ — Vb2 + a?
Amax (S) = ¢+ Vb2 + a2,

then we can bound the expected cost for any initial condi-
tion z(to) as a function of w by

lato)lz (e = VB +a?) < T (w.a(to))

Tio(w,w(to)) < llz(to)z (e + Vo2 + a?)

and
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3 )5 optimal for z(¢p) = (0.28,0.96)
g bounds for any ||z ()| = 1
Q
/
0 ! ! ! ! ! ! ! ! !
0 5 10
Parameter w
Fig. 1. The optimal cost as a function of w. The cases w = 0.5 and w =

5.0, corresponding to Figs. 2-3, are also indicated.

Note that for fixed parameters ¢ and r, this bound con-
verges as w increases, as shown in Fig. 1. In particular,
as w — 0o, the solution S(¢) converges to the constant matrix

50~ Yo" e

which can be determined directly from the coefficient equa-
tions. Similarly, the eigenvalues converge to A(S) = /2qr
(with multiplicity 2). So in theory, increasing w lowers the
worst-case expected cost, but may cause problems in practice
due to high-frequency changes in the movement direction
(and consequent high-frequency changes in the commanded
speed). For real systems, the choice of w will be a balance
between minimizing the expected cost and avoiding high-
frequency noise. Fortunately, as shown in Fig. 1, the value
of w does not have to be large—choosing w = 5 (in other
words, rotating the movement direction u(t) at a frequency
of slightly less than 1 Hz) already significantly lowers the
worst-case cost. Furthermore, for the robotic system of
interest that we described in Section I [21], [22], w = 5
is several orders of magnitude smaller than the resonant
frequencies used to drive the microrobots.

D. Expected cost for uncoupled robots

We can also compute exactly what the expected cost would
be if the group of microrobots could move in different
directions as well as at different speeds. In this case, the
dynamics of each robot would be given by

z(t) = w(t)

where w(t) € R?, resulting in the optimal control policy

and the total cost

T (2(t0)) = v/qr (x(to) " z(to)) -

Fig. 1 compares this cost to the one we computed in the
previous section, for any z(tp) such that ||z(¢g)|| = 1. In
particular, as w — oo, we see that the expected cost for
a group of coupled microrobots is no higher than /2 times
what the expected cost would be if they were not coupled. So
in theory, the design compromise that restricts the movement
of all robots to the same direction does not significantly
impact system performance.

VI. RESULTS IN SIMULATION

In this section we evaluate our control policy from the
previous section in simulation. First, we compare the trajec-
tory of a single robot moving to the origin for two different
values of w. Then, we show the trajectories of five robots
moving simultaneously from distinct initial configurations.
We use the parameters ¢ = r = 1 in each case.

A. Robot trajectories for two different values of w

First, consider a single robot starting with an arbitrary
initial condition

0.28

2(0) = {0.96]

at the initial time ¢y = 0, which satisfies ||z (to)|| = 1. We
define the movement direction by

u(t) = {cos(wt)]

sin(wt)

where w = 0.5. The simulation is executed for 47 seconds,
with the results shown in Fig. 2. The dashed circle signifies
all initial conditions of unit distance from the origin (the
desired final position). We show the robot’s trajectory x(t),
along with its speed v(t) (given by our control policy (5)) and
movement direction w(t). Since w is small, the movement
direction changes slowly, and the robot’s trajectory deviates
significantly from a straight line to the origin. (It is clear that
if the system were uncoupled, the optimal trajectory would
be this straight line.) The robot’s speed converges to zero as
it approaches the goal position. The time the robot arrives at
the goal is slightly more than 27 seconds. The total cost, as
plotted in Fig. 1, is slightly less than J,, = 2.5.

Similarly, Fig. 3 shows the results of the same simulation
with a higher value of w = 5.0. Since the movement direction
changes more rapidly, the resultant trajectory deviates less
from the straight line to the origin. As shown in Fig. 1,
the total cost in this case is approximately Jo, = v/2. By
inspection of Figures 2 and 3, the increase in w results in
a lower cost (and shorter path), but requires an increase in
speed changes corresponding to faster changes in movement
direction. Therefore, we expect large w may cause problems
if used in practice. Fortunately, as stated in the previous
section, w = 5.0 (slightly less than 1 Hz) is high enough
to significantly reduce the worst-case total cost.

B. Five robots moving at the same time

Finally, we consider the case of n = 5 microrobots, where
we have chosen w = 1.0. Recall that the system is decoupled
by fixing the movement direction u(t), so each robot was
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Fig. 2. The optimal path z(¢) and speed v(t) given the direction u(t) to reach the origin when tg = 0 and ¢ = r = 1 for w = 0.5.
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The optimal path x(¢) and speed v(t) given the direction u(¢) to reach the origin when to = 0 and ¢ = r = 1 for w = 5.0.

Speed v(t)

S

Direction u(t)

37 4

Time

Fig. 4. The optimal path z(¢) and speed v(¢) given the direction u(¢) for five robots when to =0, g =r =1, and w = 1.0.

considered completely independently. Hence, the number
of robots is, in theory, irrelevant to system stability and
performance. The results of the multi-robot simulation are
given in Fig. 4. As with the previous simulations, each robot
asymptotically moves to the corresponding final desired
position (all in about the same time). All robots move in the
same direction, while each robot’s speed is used to control
its trajectory and minimize the cost function. Similar results
could be shown for any number of robots, with arbitrary
initial and final goal positions.

VII. CONCLUSION

As a case study in the control of microscale and nanoscale
robotic systems, this paper considered the problem of con-
trolling a group of microrobots that can move at different
speeds but that must all move in the same direction [21],
[22]. Since all robots must move in the same direction, the
dynamic system is both nonlinear and coupled. To simplify
this problem, we chose to make the movement direction
a periodic function of time. We showed that, although the
resulting control policy is suboptimal for an infinite-horizon
quadratic cost, we could provide a bound on how suboptimal
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it is. In particular, we showed that, in theory, the design
compromise making all robots move in the same direction
only increases the expected cost by a factor of at most /2.

Although the results in this paper were shown entirely
in simulation, we are currently focusing on a hardware
implementation. This implementation raises a number of
issues that were not addressed here: (1) the effects of actuator
and sensor noise as well as of model error; (2) the problem
of state estimation; (3) collision avoidance by a higher-level
motion planner; and (4) limits of performance as the number
of microrobots grows large enough so that the effects of
multiplexing can no longer be ignored.

Several other extensions are also of interest. For example,
we assumed in this paper that the cost function was quadratic
and, further, that the matrix () penalizing state error was
diagonal. If @ is not diagonal, then for a fixed w we may
not get the same bound on performance—with a time-varying
rotation rate, it may be possible to recover this bound. We
would also like to extend our work to time-optimal control,
which may be more appropriate in practice.
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