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Abstract— In this paper, we study the second order stabi-
lization problem of Markovian jump linear systems (MJLSs)
with logarithmically quantized state feedbacks. We give explicit
constructions of the stabilizing logarithmic quantizer and con-
troller. We also present a semi-convex way to determine the
coarsest stabilizing quantization density. In addition, we show
that the problem of stabilizing a linear time-invariant (LTI)
system over a lossy channel can be viewed as a special example
of the framework developed here. A contribution of the work
is a simultaneous treatment of finite bandwidth constraints
(logarithmic quantization) and latency in feedback channels.

I. INTRODUCTION

Control over communication networks becomes more im-

portant as more complex and aggressive controls are im-

plemented over networks. To design control systems under

these conditions, we have to incorporate issues such as finite

bandwidth, packet loss, and delays in a systematic way.

Multi-modal systems provide a handy tool to model some

of these issues.

MJLSs are convenient models for mathematically repre-

senting multi-modal stochastic systems, where the structure

of the plant is subject to random changes. This is a commonly

used abstraction for the hybrid automata, where the contin-

uous state of the plant changes according to an underlying

discrete-time stochastic process.

In this paper, we consider the quantized control problem

of MJLSs; more specifically, we investigate the second order

mean square1 stabilization problem of a discrete-time MJLS

subject to logarithmically quantized state feedbacks. We

develop an explicit stabilizing mode-dependent logarithmic

quantizer together with the associated controller. Necessary

and sufficient conditions on the stabilizing quantization den-

sities are given along with the semi-convex programming

method to approach the coarsest stabilizing quantization

density. In addition, it can also be shown (see [2]) that, in

the special case where the system mode is independently

identically distributed (i.i.d.), mean square stabilization is

equivalent to stochastic quadratic stabilization studied in [3].

Second order stabilization of MJLSs have been intensively

studied in [1], [4], and [5] and references therein, where

Lyapunov type convex tests are developed.
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1Second-order stabilities are equivalent to each other for MJLSs, see [1].

Control over communication networks has received much

attention in the control literature recently. Most research

focuses either on the finite bandwidth issue, for example,

[6], [7], [8], [9], and [10]; or on the unreliable transmis-

sion problem, for example, [11], [12], [13], [14], and [15].

Only a few very recent works start to address the more

complicated combined problem (see [3], where the packet

loss is restricted to being i.i.d. at each step). Among these

works, the quadratic stabilization problem of an LTI system

with logarithmically quantized state feedbacks over a reliable

channel is investigated in [10]. In [11] and [16], estimation

and control problems over an unreliable channel with infinite

bandwidth are considered. Real numbers can be transmitted

over the channel but are subject to random packet loss.

It is a formidable task to model the communication chan-

nel precisely. Beyond the single issues investigated previ-

ously in the literature, we consider both finite bandwidth2 and

packet loss constraints in this paper. Intuition says if packets

get dropped more frequently, more information should be

packed in each packet, and vice versa. Mathematically,

we set up this example as a stabilization problem of a

discrete-time LTI system with logarithmically quantized state

feedbacks over a lossy channel, where the packet gets lost

according to a Bernoulli process. This models the situation

where measurements of the system are distorted not only by

quantization due to the finite bandwidth but also by packet

loss due to the unreliability of the communication channel.

We cast this problem into the general framework of

stabilizing Markovian jump linear systems over bandwidth-

limited communication channels developed later in this pa-

per; and use methods developed there to illustrate the trade-

off between the packet loss probability and the quantization

density, which supports our above intuition. We are able to

recover both results in [10] and [11] as extremal cases. This

example also coincides with results in [3], where stochastic

quadratic stabilization is examined via a different approach.

Main contributions of this work are that it (1) develops

a general framework to stabilize MJLSs with quantized

feedbacks; (2) provides a semi-convex algorithm to com-

pute the coarsest quantization density; (3) incorporates the

problem of quadratic stabilization of LTI systems and the

problem of feedback control over unreliable channels into

the MJLS framework; and (4) demonstrates the trade-off be-

tween packet loss and quantization; verifies the information

needed to achieve stability has a lower bound.

2A logarithmically quantized signal still has countably infinitely many
quantization levels (thus requires infinite bandwidth), compare to infinitely

many levels of a real number. Proper truncation can then be introduced.
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II. PROBLEM SETUP

The sets of integers, non-negative integers, natural num-

bers, and real numbers are denoted by Z, N0, N, and R,

respectively. Variables are represented by lower case letters,

such as x. Matrices are denoted in upper case letters such as

A, B, etc.

A. Markovian jump linear systems

Given a number N ∈ N, let the matrix P ∈ R
N×N be

a row stochastic matrix; that is, pij ≥ 0 and
∑N

j=1 pij = 1
for i, j ∈ {1, · · · , N}. Let the vector p be a row stochastic

vector such that pi ≥ 0 and
∑N

i=1 pi = 1.

Denote Θ as a random process with finite state space

{1, · · · , N}, the transition probability matrix P, and the

initial distribution p. Let θ(t), t ≥ 0 be a realization of

Θ. Denote Ω as the sample space of all infinite sequences

{θ(t), t ≥ 0} and define P as the unique consistent measure

on it that satisfies

P{θ(t + 1) = j|θ(t) = i} = pij

P{θ(0) = i} = pi (1)

for all t ≥ 0, and i, j ∈ {1, · · · , N}. Then the process Θ is

called a discrete-time Markovian process.

Define the following finite set:

S = {(A1, B1, C1), · · · , (AN , BN , CN )}

where Ai ∈ R
n×n, Bi ∈ R

n×nu , and Ci = R
ny×n for all

i ∈ {1, · · · , N}.

The discrete-time Markovian jump linear system defined

by the tuple (S ,P, p) has the following state-space repre-

sentation:

x(t + 1) = Aθ(t)x(t) + Bθ(t)u(t), x(0) = x0

y(t) = Cθ(t)x(t) (2)

When θ(t) = i, the system is said to be in mode i at time t.

We assume the initial state x0 is a second-order random

variable and is independent of θ(t) for all t ≥ 0. We also

assume all random variables are on the same probability

space.

When Bi 6= 0 for some i ∈ {1, · · · , N}, the MJLS

(S ,P, p) is called a controlled Markovian jump linear

system (C-MJLS).

Remark 1: In this paper, we restrict ourselves to the

scalar-input system with state feedbacks; that is, Bi ∈ R
n×1,

and Ci = In, the n-dimensional identity matrix, for all

i = 1, · · · , N .

Given the following state feedback controller H ,

u(t) = H(t)x(t)

the closed-loop system Σ(S ,H ,P, p) is given by

x(t + 1) =
(

Aθ(t) + Bθ(t)H(t)
)

x(t), x(0) = x0 (3)

We define an autonomous Markovian jump linear system

(A-MJLS) to be of the following form:

x(t + 1) = Aθ(t)x(t), x(0) = x0 (4)

where the matrix Ai and the transition sequence θ are defined

previously.

Definition 1: A transition sequence θ of an MJLS

(S ,P, p) is admissible if it satisfies

1) pθ(0) > 0
2) pθ(t)θ(t+1) > 0 for any t ≥ 0

Any finite transition sequence (θ(t0), · · · , θ(t)) is admissible

if θ is.

B. Logarithmic quantizers

Definition 2: A logarithmic quantizer with density ρ ∈
(0, 1) is a function Q : R → Z × {−1, 0, 1}, given by

1) If x = 0, Q(0) = (0, 0).
2) If x 6= 0, Q(x) = (n, sgn(x)), when ρn+1 < |x| ≤ ρn,

and n ∈ Z.

When ρ = 1 or ρ = 0 we define Q(x) = x or Q(x) = 0,

respectively, to extend the above definition. The logarithmic

quantizer defined here does not saturate. The second element

of the output identifies the sign of x.

Definition 2 defines a one-dimensional logarithmic quan-

tizer on the real line. We can extend this concept to the n-

dimensional space R
n as well by defining a one-dimensional

logarithmic quantizer in the following way: first choose a

vector Hq ∈ R
n; then, for all x ∈ R

n, define Q(x) =
Q(HT

q x). This is equivalent to quantizing the projection of

x ∈ R
n on the one-dimensional subspace generated by the

vector Hq, which is called the quantization direction.

It is also possible to design higher-order quantizers which

quantize the projection of x ∈ R
n on a higher-order sub-

space. However, we are not interested in such quantizers in

this paper since for a scalar-input system, a one-dimensional

quantizer is sufficient and optimal, [10].

We now define the notion of an exponential decoder.

Definition 3: An exponential decoder with density ρ ∈
(0, 1) is a function x̂ : Z × {−1, 0, 1} → R, which satisfies

1) x̂(0, 0) = 0
2) x̂(n,±1) = ∓ρn, for n ∈ Z

By combining a logarithmic quantizer Q with density ρ,

an exponential decoder with the same ρ, and a constant gain

βu, we define the log-controller as follows:

Definition 4: A static log-controller with density ρ ∈
(0, 1) and constant gain βu > 0 is a function u : R → R,

such that

u(x) = −sgn(x)βuρ⌊logρ |x|⌋

where ⌊·⌋ is the standard floor function, rounding down to

the closest smaller integer.

Figure 1 provides a schematic view of a log-controller.

Exp DQ
x Q(x) x̂

βu

u

Fig. 1. A Log-controller

Remark 2: In later sections, we make the constant gain

βu a function of the quantization density ρ, in which case

the parameter ρ completely specifies the log-controller.
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III. QUADRATIC STABILIZATION OF

SINGLE-MODE LINEAR SYSTEMS

The quadratic stabilization problem of a scalar-input LTI

system with logarithmically quantized state feedbacks is

studied in [10]. The coarsest quantization density is obtained

by solving an optimization problem associated with an

algebraic Riccati equation (ARE). In this section, we show

that this can also be achieved by solving a linear matrix

inequality (LMI) powered optimization problem. This is the

cornerstone of the semi-convex optimization in later sections.

Consider the following discrete-time LTI system

x(t + 1) = Ax(t) + Bu(t), x(0) = x0 (5)

where x ∈ R
n is the state variable, and u ∈ R is the scalar

control. Matrices A, B are of compatible dimensions and

(A,B) is controllable. State feedback is assumed. Initial state

x0 ∈ R
n is assumed unknown but deterministic. This is a

special C-MJLS where there is only a single mode, and the

initial state is deterministic.

Definition 5: A dynamical system x(t + 1) = f(x(t))
with the origin as the equilibrium point is quadratically

stable if there exists a positive definite matrix P such that

the quadratic function V (x) = xT Px is a valid Lyapunov

function for the system; that is, for all x 6= 0, V (x) > 0,

and

(∆V )(x) = V (f(x)) − V (x) < 0
Definition 6: Given a feedback control system x(t+1) =

f(x(t), u(t)) with the origin as the equilibrium point, where

u is the feedback control; a function V (x) is a control

Lyapunov function (CLF) for this system if and only if for

all x 6= 0, V (x) > 0, and

inf
u

(∆V )(x, u) < 0

where (∆V )(x, u) = V (f(x, u)) − V (x), and u is an

admissible control.

A CLF is a Lyapunov function for the closed-loop system.

For a linear system, it is well known that stabilizability

is equivalent to quadratic stabilizability; thus we have the

following lemma on stabilizing system (5),

Lemma 1: Suppose system (5) is stabilizable. There exists

a log-controller with density ρ ∈ (0, 1) that quadratically

stabilizes system (5) if and only if there exists a positive

definite matrix P ∈ R
n×n such that

P − AT PA + λAT PB(BT PB)−1BT PA > 0 (6)

where 0 < λ = 4ρ
(1+ρ)2 < 1.

Proof: (⇐=) Suppose there exists a positive definite
matrix P ∈ R

n×n such that Riccati inequality (6) is satisfied.
Then consider the following log-controller with density ρ

u =







−βuρℓ ρℓ+1 < Hx ≤ ρℓ

0 Hx = 0
βuρℓ −ρℓ ≤ Hx < −ρℓ+1

(7)

where βu = 2ρ
1+ρ

, and H = BT PA
BT PB

.

It is sufficient to show that the function V (x) = xT Px is

a CLF for system (5) with controls defined in Equation (7).

Clearly for all x 6= 0 and all t ≥ 0, we have V (x(t)) >

0; therefore, we only need to show (∆V )(x(t), u(t)) =
V (x(t + 1)) − V (x(t)) < 0.

The difference (∆V )(x(t), u(t)) can be computed as

(∆V )(x(t), u(t))

= x(t)T (AT
PA − P )x(t) + 2x(t)T

A
T
PBu(t)

+ u(t)T
B

T
PBu(t) (8)

< λx(t)T
A

T
PB(BT

PB)−1
B

T
PAx(t)

+ 2x(t)T
A

T
PBu(t) + u(t)T

B
T
PBu(t) (9)

where the last inequality comes from by adding and sub-

tracting the term λx(t)T AT PB(BT PB)−1BT PAx(t) to

the right-hand side (RHS) of Equation (8) and then applying

Riccati inequality (6).

Divide the RHS of Equation (9) by BT PB (which is a

scalar due to the scalar input assumption) and let q(t) =

Hx(t) = BT PA
BT PB

x(t); we now only need to show:

λq(t)2 + 2q(t)u(t) + u(t)2 ≤ 0 (10)

The left-hand side (LHS) of inequality (10) defines an

upwards parabola and control values defined in Equation (7)

make it non-positive for any q(t), t ≥ 0. This makes V (x) a

legitimate CLF with the log-controller (7). Therefore, system

(5) is quadratically stabilizable.

(=⇒) If system (5) is quadratically stabilizable, then there

exists a positive definite matrix P ∈ R
n×n such that V (x) =

xT Px is a CLF when linear state feedback is allowed. From

[10], we know that if we restrict the admissible controls to

those generated by static log-controllers with quantization

density ρ > γ−1
γ+1 with γ =

√

BT PAQ−1AT PB
BT PB

and Q := P−

AT PA + AT PB(BT PB)−1BT PA > 0, then the function

V (x) = xT Px is still a valid CLF. Thus quadratic stability

of the closed-loop system is preserved. The constraints on

ρ is equivalent to Riccati inequality (6) by some arithmetic

manipulations. See [10] for details.

Remark 3: Notice that ρ is strictly greater than γ−1
γ+1 since

we need the function V (x) to strictly decrease. The infimum

itself is not achievable.
Lemma 2: Riccati inequality (6) is solvable for some

positive definite matrix P ∈ R
n×n with 0 < λ < 1 if and

only if the following linear matrix inequality is feasible for
some positive definite matrix Y ∈ R

n×n and some matrix
Z ∈ R

nu×n





Y
√

1 − λY AT
√

λ(Y AT + ZT BT )
(⋆) Y 0
(⋆) 0 Y



 > 0 (11)

where (⋆) denotes the conjugate transpose of the correspond-

ing term.

This follows directly from [11, Theorem 5].

Now, by combining the previous two lemmas, we state the

first result of this paper. It states that the existence problem

of quadratically stabilizing log-controllers for the LTI system

(5) is equivalent to the feasibility problem of the LMI (11).

Theorem 1: Suppose system (5) is stabilizable. There ex-

ists a log-controller with density ρ ∈ (0, 1), that quadratically

stabilizes system (5) if and only if there exist a positive
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definite matrix Y ∈ R
n×n and a matrix Z ∈ R

nu×n such

that the LMI (11) is feasible with 0 < λ = 4ρ
(1+ρ)2 < 1.

In order to find the coarsest quantization density, we can

solve the following semi-convex optimization problem:

inf ρ ∈ (0, 1)
subject to LMI (11)

The optimal value of ρ can then be approached via
bi-section to any degree of desired precision. From [10],
we know the closed-form solution of the infimum of the
quadratically stabilizing quantization density is given by

ρinf =

∏

eigu(A) − 1
∏

eigu(A) + 1
(12)

where eigu(A) denotes all unstable eigenvalues of A.

Example 1: Figure 2 shows the infimum of the quadrati-

cally stabilizing quantization density for a scalar system

x(t + 1) = Ax(t) + u(t)

where 1.1 ≤ A ≤ 5. The circles represent the infimum

solved via the LMI approach developed in this section (using

SeDuMi LMI solver). The 45 degree line is given by the

closed-form solution. Clearly, they coincide with each other.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

(A−1)/(A+1)

ρ

Coarsest ρ for 1−D Systems

Fig. 2. Coarsest Quantization Density for 1-D Systems

IV. SECOND-ORDER STABILIZATION OF

MARKOVIAN JUMP LINEAR SYSTEMS

In this section, we consider the mean square stabiliza-

tion problem of MJLSs with a mode-dependent static log-

controller (defined later). Necessary and sufficient conditions

on the stabilizing quantization densities are given along with

the semi-convex algorithm to approach the optimal value.

Definition 7: An A-MJLS (S ,P, p) is mean square sta-

ble (MSS) if for any θ(0) ∈ {1, · · · , N} and vector x(0) ∈
R

n we have

E[||x(t)||2|x(0)] → 0 as t → ∞
Definition 8: Given a set of matrices Hi ∈ R

ny×nu ,

where i = 1, · · · , N , the zeroth-order time varying controller

H defined by

H(t) = Hθ(t)

is called a mode-dependent static gain controller.

The corresponding mean square stabilizability of a C-

MJLS is defined as follows,

Definition 9: A C-MJLS (S ,P, p) is mean square stabi-

lizable if there exists a mode-dependent controller H such

that the closed-loop A-MJLS Σ(S ,H ,P, p) is mean square

stable.

From [1] and [5], we have the following lemma on the

mean square stabilizability of a C-MJLS,
Lemma 3: A C-MJLS is mean square stabilizable if and

only if there exist positive definite matrices Pi ∈ R
n×n,

and matrices Hi ∈ R
nu×ny , i = 1, · · · , N , such that for all

i = 1, · · · , N , we have

(Ai − BiHi)
T

(

N
∑

j=1

pijPj

)

(Ai − BiHi) − Pi < 0 (13)

Clearly, if Bi = 0 for all i = 1, · · · , N , Lemma 3 provides

a Lyapunov test on the mean square stability of an A-MJLS.

We define the following stochastic version Lyapunov func-

tion for a switched dynamical system:

Definition 10: For a switched dynamical system x(t +
1) = f(x(t), θ(t)) with the origin as the equilibrium point,

where θ ∈ {1, · · · , N} is the mode of the system; A process

V (x, θ) is a stochastic Lyapunov function (SLF) if it is a

positive super-Martingale; that is, for all x 6= 0 and all

θ ∈ {1, · · · , N}, we have V (x, θ) > 0, and

(∆V )(x, θ) = E[V (f(x, θ), θ+) − V (x, θ)|x, θ] < 0

where θ+ is the system mode at the next step.

Notice that since the system is Markovian, instead of

conditioning on the filtration,3 we only need to condition

on random variables of the current time.

Definition 11: For a switched feedback control system

x(t + 1) = f(x(t), θ(t), u(t))

with the origin as the equilibrium point, where θ ∈
{1, · · · , N} is the mode of the system, and u is the feedback

control; A process V (x, θ) is a stochastic control Lyapunov

function (SCLF) if for all x 6= 0 and θ ∈ {1, · · · , N}, we

have V (x, θ) > 0, and

inf
u

(∆V )(x, θ, u) < 0

where (∆V )(x, θ, u) = E[V (f(x, θ, u), θ+) − V (x, θ)|x, θ],
θ+ is as defined previously; and u is an admissible control.

In short, it is an SLF for the closed-loop system.

The following lemma connects the mean square stabiliz-

ability of a C-MJLS to the existence of an SCLF:

Lemma 4: A C-MJLS (S ,P, p) is mean square stabi-

lizable if and only if there exist positive definite matrices

Pi ∈ R
n×n, i = 1, · · · , N such that the follwoing quadratic

process (14) is an SCLF for this C-MJLS

V (x(t), θ(t)) = x(t)T Pθ(t)x(t) (14)

where Pθ(t) = Pi when θ(t) = i.
Proof: (=⇒) From Lemma 3, we know that if the

system is mean square stabilizable, then there exist positive
definite matrices Pi ∈ R

n×n, and matrices Hi ∈ R
nu×ny ,

i = 1, · · · , N , such that LMIs (13) are satisfied. For all x 6=
0, θ ∈ {1, · · · , N}, and t ≥ 0, the process V (x(t), θ(t)) > 0.
We only need to show it is a super-Martingale; that is,

E[V (x(t + 1), θ(t + 1)) − V (x(t), θ(t))|x(t), θ(t)] < 0 (15)

3Simply put, the union of algebras generated by random variables up to
the current time.
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By using Pi and Hi given in Lemma 3, we can check the
point-wise property,

E[V (x(t + 1), θ(t + 1)) − V (x(t), θ(t))|x(t) = xt, θ(t) = i]

= x
T
t

{

(Ai − BiHi)
T

E[Pθ(t+1)|θ(t) = i](Ai − BiHi) − Pi

}

xt

= x
T
t (LHS of (13))xt < 0

Therefore, Equation (15) is valid, which means the process

(14) is a legitimate SCLF.

(⇐=) If there exist positive definite matrices Pi ∈ R
n×n,

i = 1, · · · , N such that the process (14) is an SCLF, then

from the definition of SCLF, we know

E
[

(Aθ(t)x(t) + Bθ(t)u(t))T Pθ(t+1)(Aθ(t)x(t) + Bθ(t)u(t))

− x(t)T Pθ(t)x(t)|x(t), θ(t)
]

< 0 (16)

Given x(t) = xt and θ(t) = i, the control that makes the

difference ∆V (x, θ) most negative is ui(t) = −Hixt with

Hi =
BT

i P̃iAi

BT
i

P̃iBi

and P̃i =
∑N

j=1 pijPj .

It is now straightforward to verify that state feedbacks Hi

together with matrices Pi satisfy Equation (13). Thus the

system is mean square stabilizable.

We denote Hi =
BT

i P̃iAi

BT
i

P̃iBi

with P̃i =
∑N

j=1 pijPj as the

average gradient descendent direction for mode i.

Similar to the mode-dependent controller, we define the

mode-dependent logarithmic quantizer as follows,

Definition 12: Let Q1, · · · ,QN be a set of logarithmic

quantizers; then the time varying quantizer Q defined by

Q(t) = Qθ(t)

is called a mode-dependent logarithmic quantizer.

Notice that for a mode-dependent quantizer, both the quan-

tization density and the quantization direction can change

from mode to mode.

Similarly, we define the mode-dependent static log-

controller (with density ρi and gain βi) as the combination of

the mode-dependent quantizer with density ρi, the obviously

defined exponential decoder, and the constant gain βi.

Now consider the stabilization problem of a C-MJLS with

a mode-dependent static log-controller. Suppose the system

is mean square stabilizable with a linear feedback mode-

dependent static gain controller; then we have the following

lemma on stabilizing the C-MJLS subject to logarithmically

quantized state feedbacks.

Lemma 5: Suppose an N -mode C-MJLS (S ,P, p) is

mean square stabilizable. There exists a mode-dependent

log-controller with density ρi ∈ (0, 1), i = 1, · · · , N , that

mean square stabilizes the C-MJLS if and only if there exist

positive definite matrices Pi ∈ R
n×n, i = 1, · · · , N such

that

Pi − AT
i P̃iAi + λiA

T
i P̃iBi(B

T
i P̃iBi)

−1BT
i P̃iAi > 0 (17)

where 0 < λi = 4ρi

(1+ρi)2
< 1 and P̃i =

∑N
j=1 pijPj for all

i = 1, · · · , N .

Proof: The proof is an extension of the single-mode

case. The SCLF introduced in Definition 11 plays a signifi-

cant role.

(⇐=) Suppose Riccati inequalities (17) are solvable.
Define the following mode-dependent log-controller with
density ρi ∈ (0, 1) and constant gain βi = 2ρi

1+ρi

ui(x) =







−βiρ
ℓ
i ρℓ+1

i < Hix ≤ ρℓ
i

0 Hix = 0
βiρ

ℓ
i −ρℓ

i ≤ Hix < −ρℓ+1
i

(18)

where Hi =
BT

i P̃iAi

BT
i

P̃iBi

is the average gradient descendant

direction for mode i.
Consider the stochastic process defined by Equation (14).

It is obvious that V (x(t), θ(t)) > 0 for all x(t) 6= 0, θ(t) ∈
{1, · · · , N}, and t ≥ 0. We only need to show

E[V (x(t + 1), θ(t + 1)) − V (x(t), θ(t))|x(t), θ(t)] < 0

By using same techniques as in the proof of Lemma 1, it is
easy to verify that

E[V (x(t + 1), θ(t + 1)) − V (x(t), θ(t))|x(t) = xt, θ(t) = i] < 0

Thus, V (x(t), θ(t)) is a valid SCLF; and therefore the C-

MJLS is mean square stabilizable with log-controller (18).
(=⇒) Now assume the C-MJLS is stabilizable in the

mean square sense by a mode-dependent linear feedback
controller H , then by Lemma 4 there exists a legitimate
SCLF V (x(t), θ(t)) = x(t)T Pθ(t)x(t) such that

E[V (x(t + 1), θ(t + 1)) − V (x(t), θ(t))|x(t) = xt, θ(t) = i]

= x
T
t (AT

i P̃iAi − Pi)xt + 2x
T
t A

T
i P̃iBiu(t) + u(t)T

B
T
i P̃iBiu(t)

< 0 (19)

The only difference here from the single-mode case is

instead of P̃i, we have Pi in the first term of Equation

(19). However, this does not affect the choice of the optimal

control ui. We can again follow the proof of Lemma 1 to

reach Riccati inequalities (17). See [2] for details.

We now show that the feasibility of the coupled Riccati

inequalities (17) can be converted to an equivalent convex

problem.

Given an MJLS (S ,P, p) and positive definite matrices

Pi ∈ R
n×n, i = 1, · · · , N with the following relationship:

P[Pθ(t+1) = Pj |θ(t) = i] = pij (20)

P[Pθ(0) = Pi] = pi (21)

We introduce the following auxiliary functions for conve-
nience:

gi(P, P1, · · · , PN ) = A
T
i P̃iAi − λiA

T
i P̃Bi(B

T
i P̃iBi)

−1
B

T
i P̃iAi

φi(P, Hi, P1, · · · , PN ) = (1 − λi)A
T
i P̃iAi + λiF

T
i P̃iFi

where λi ∈ (0, 1) are constants, matrices Fi = Ai − BiHi

for some Hi ∈ R
nu×n, and P̃i :=

∑N
j=1 pijPj for i =

1, · · · , N .

Lemma 6: There exist positive definite matrices Pi ∈
R

n×n, such that Pi > gi is feasible for all i = 1, · · · , N if

and only if there exist positive definite matrices Pi ∈ R
n×n,

and matrices Hi ∈ R
nu×n, such that Pi > φi is feasible for

all i = 1, · · · , N .

The proof is an extension of that of [11, Theorem 1].

Interested readers can refer to [2] for details.

Using this result, we are able to convert Riccati inequali-

ties (17) into a set of computable LMIs.
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Lemma 7: There exist positive definite matrices Pi ∈
R

n×n, i = 1, · · · , N , such that the coupled Riccati in-
equalities (17) are satisfied if and only if the following
coupled LMIs are feasible for some positive definite matrices
Yi ∈ R

n×n, and matrices Zi ∈ R
nu×n, i = 1, · · · , N ,

























Yi L
1
i · · · L

N
i M

1
i · · · M

N
i

(⋆) Y1

...
. . .

(⋆) YN

(⋆) Y1

...
. . .

(⋆) YN

























> 0 (22)

where for i, j = 1, · · · , N ,

L
j
i =

√

(1 − λi)pijYiA
T
i

M
j
i =

√

λipij(YiA
T
i + ZT

i BT
i )

Notation (⋆) denotes the conjugate transpose of the corre-

sponding term.
Proof: The coupled Riccati inequalities (17) are sat-

isfied for some positive definite matrices Pi ∈ R
n×n, i =

1, · · · , N is equivalent to Pi > gi(P, P1, · · · , PN ) with gi

defined in Lemma 6. From the same lemma, we know this
is equivalent to the existence of positive definite matrices
Pi ∈ R

n×n, and matrices Hi ∈ R
nu×n, i = 1, · · · , N such

that

Pi > φi(P, Hi, P1, · · · , PN ) (23)

= (1 − λi)A
T
i P̃iAi + λiF

T
i P̃iFi

=

N
∑

j=1

{

(1 − λi)pijA
T
i PjAi + λiF

T
i PjFi

}

(24)

Apply Schur complement to the last inequality; then pre-

and post-multiply

[

P−1
i

I

]T

and its conjugate transpose.

Then define Yi = P−1
i and Zi = YiH

T
i , the last inequality

is feasible if and only if LMIs (22) are feasible.

Lemmas 5 and 7 can now be combined to give a complete

convex solution to determine the mean square stabilizability

of a C-MJLS (S ,P, p) with logarithmically quantized state

feedbacks.

Theorem 2: Suppose an N -mode C-MJLS (S ,P, p) is

mean square stabilizable. There exists a mode-dependent

log-controller with density ρi ∈ (0, 1), i = 1, · · · , N , that

mean square stabilizes the C-MJLS if and only if there

exist positive definite matrices Yi ∈ R
n×n, and matrices

Zi ∈ R
nu×n, i = 1, · · · , N , such that the coupled LMIs

(22) are feasible with 0 < λi = 4ρi

(1+ρi)2
< 1.

In general, the coarsest quantizer may not exist for the

MJLS due to the lack of a proper definition of total ordering

for sets (ρ1, · · · , ρN ). However, one reasonable approach is

to solve the following min-max problem, which gives the

infimum of the upper bound of the quantization density of

stabilizing mode-dependent quantizers.

inf ρ ∈ (0, 1)
subject to ρi ≤ ρ and LMI (22)

This is a semi-convex problem. The optimal value can be

found to any desired degree of accuracy via bi-section.

The stabilizing mode-dependent log-controller can be de-

signed as follows:

1) Choose any ρ ∈ (ρinf , 1).
2) Solve the coupled LMIs (22) for Yi. Let Pi = Y −1

i .

3) The quantization direction is given by Hi =
BT

i P̃iAi

BT
i

P̃iBi

.

4) The log-controller can be then designed according to

the definition in Section II-B.

Remark 4: Of course, we can choose other optimization

objective functions; for example, we can minimize the

weighted average quantization density
∑

piρi if the system

mode is i.i.d.; this is in some sense trying to minimize the

average bandwidth requirement.

V. EXAMPLE: CONTROL OVER BANDWIDTH

LIMITED UNRELIABLE CHANNELS

Now, let us go back to our motivating example: control

of an LTI system with logarithmically quantized state feed-

backs transmitted over an unreliable communication channel,

which is depicted in Figure 3.

Plant

E
ra

su
re

Exp D

u(t)

x(t)

Q

βu

Fig. 3. An LTI System over an Unreliable Channel with Logarithmically
Quantized State Feedbacks

The system is a discrete-time LTI system with scalar input;

it has the following state space representation:

x(t + 1) = Ax(t) + Bu(t) (25)

The state feedback is first quantized by a logarithmic

quantizer with density ρ and then transmitted over a lossy

channel. The packet loss is modeled as a Bernoulli process

with dropping probability 0 ≤ α ≤ 1. Other types of

Markovian processes can be modeled similarly.

It is clear that this problem can be modeled as a C-

MJLS with logarithmically quantized state feedback, where

the system mode is i.i.d. with transition probability matrix

P =

[

α 1 − α

α 1 − α

]

(26)

Suppose system (25) is stabilizable when measurements

can be transmitted to the controller with no distortion;

Theorem 2 can be applied directly to solve the second order

stabilization problem when logarithmically quantized feed-

backs are transmitted over a lossy communication channel.

Remark 5: A special feature of this packet dropping prob-

lem is that when the packet is lost, the direction and density

of the quantizer become irrelevant, since the control value
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is set to 0 then. Therefore, we only need to implement the

logarithmic quantizer designed for the case when the packet

is delivered successfully, and there is no need to switch

depending on the system mode. Then this time-invariant

static logarithmic quantizer is sufficient for stabilization

purposes. In other words, the min-max optimization problem

in Section IV degenerates to a minimizing problem.

In order to find the trade-off between the quantization

density and the packet dropping probability, we solve the

following semi-convex problem for a fixed packet dropping

probability α via bi-section,

inf ρ ∈ (0, 1)
subject to LMI (22) and P in (26)

We can then grid the dropping probability α from 0 to 1.

We can still adopt the controller design method as in

Section IV. However, under this special i.i.d. setup, following

the same logic as in Remark 5, we can simply use the

controller designed for mode 2 to handle both cases.

The following numerical examples illustrate the trade-

off between the packet dropping probability α and the

quantization density ρ.
Example 2: Consider the following 2-D systems with

state space representation given in Equation (25)

A1 =

[

4 0
0 1

2

]

, A2 =

[

4
5

0
0 4

]

, A3 =

[

4 1
0 1

2

]

, A4 =

[

1
4

1
0 4

]

A5 =

[

4 1
0 4

]

, A6 =

[

2 0
0 3

]

, B1 =

[

0
1

]

, B2 =

[

1
1

]

The region above the curve in Figure 4 is second-order stable.
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0.55
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2D α vs ρ

A1B1

A2B1

A3B2

A4B2

A5B2

A6B2

α=1/16

α=1/36

α=1/256

Fig. 4. Trade-off between α and ρ for 2-D Systems

From the figure, we observe that:

1) A minimum amount of information is required to

stabilize the system; thus, if the packet dropping probability

is high, one needs to include more information in each packet

by quantizing finer, and vice versa. This observation supports

our intuition.

2) It is clear that unstable eigenvalues are the only decisive

factor on the trade-off between the packet dropping proba-

bility and the quantization density. The value of B does not

matter as long as (A,B) is controllable.

3) When α = 0, we get the result in [10]; whereas

when ρ explodes (basically no quantization), results in [11]

are recovered. Thus our framework solves both problems

as special cases. Furthermore, these examples also coincide

with results in [3]. This supports our proof that for switched

systems with i.i.d. modes, mean square stability is equivalent

to stochastic quadratic stability [2].

VI. CONCLUSIONS

In this paper, we investigated the quantized second order

stabilization problem of MJLSs. We provided explicit con-

structions of stabilizing mode-dependent logarithmic quan-

tizers and controllers. The coarsest quantization density is

approached via a semi-convex algorithm. In addition, by

using tools developed here, we show that the quadratic

stabilization problem of an LTI system and the stabilization

problem over bandwidth-limited unreliable channels can be

solved as special cases. One of our main contributions is to

provide a general framework to integrate several issues on

communication networks of interest to control engineers.
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