
Obstacle Avoiding Real-Time Trajectory Generation and Control of
Omnidirectional Vehicles

Ji-wung Choi, Renwick E. Curry and Gabriel Hugh Elkaim

Abstract— In this paper, a computationally effective trajec-
tory generation algorithm of omnidirectional mobile robots
is proposed. The algorithm plans a reference path based on
Bézier curves, which meet obstacle avoidance criteria. Then
the algorithm solves the problem of motion planning for the
robot to track the path in a short travel time while satisfying
dynamic constraints and robustness to noise. Accelerations of
the robot are computed such that they satisfy the time optimal
condition for each sample time interval. The numerical simu-
lation demonstrates the improvement of trajectory generation
in terms of travel time, satisfaction of dynamic constraints and
smooth motion control compared to previous research.

I. INTRODUCTION

Many researchers have worked on vehicle motion plan-
ning. The form of the vehicle includes car-like, differen-
tial drive, omni-directional, and other models. Balkcom [3]
developed the time optimal trajectories for the bounded
velocity model of differential drive robots. Jung [4] and
Moore [5] dealt with omnidirectional vehicles; the control
strategy employed by these papers consists of building a
geometric path and tracking the path by using feedback
control. Huang [6] proposed an approach to vision-guided
local navigation for nonholonomic robot based upon a model
of human navigation. The approach uses the relative headings
to the goal and to obstacles, the distance to the goal, and the
angular width of obstacles, to compute a potential field. The
potential field controls the angular acceleration of the robot,
steering it toward the goal and away from obstacles. Hamner
[7] maneuvered an outdoor mobile robot that learns to avoid
collisions by observing a human driver operate a vehicle
equipped with sensors that continuously produce a map of
the local environment. The paper describes implementation
of steering control that models human behavior in trying
to avoid obstacles while trying to follow a desired path.
Hwang [8] developed the trajectory tracking and obstacle
avoidance of a car-like mobile robot within an intelligent
space via mixed H2/H∞ decentralized control. Two CCD
cameras are used to realize the position of the robot and
the position of the obstacle. A reference command for the
proposed controller of the robot is planned based on the
information from these cameras.

J. Choi is a Ph.D. candidate in Computer Engineering Depart-
ment at the University of California, Santa Cruz, 95064, USA.
jwchoi@soe.ucsc.edu

R. Curry is an Adjunct Professor in Computer Engineering De-
partment at the University of California, Santa Cruz, 95064, USA.
rcurry@ucsc.edu

G. Elkaim is an assistant professor in Computer Engineering De-
partment at the University of California, Santa Cruz, 95064, USA.
elkaim@soe.ucsc.edu

This paper focuses on two papers: Kalmar-Nagy [2] and
Sahraei [1]. Kalmar-Nagy [2] has proposed a minimum time
trajectory generation algorithm for omnidirectional vehicles,
that meets dynamic constraints, but no obstacles are consid-
ered. A near-optimal control strategy is shown to be piece-
wise constant (bang-bang type) in the paper. Sahraei [1] has
presented a motion planning algorithm for omnidirectional
vehicles, based on the result of [2]. The paper has claimed
that the algorithm satisfies obstacle avoidance as well as time
optimality given in discrete time system.

The paper shows that Sahraei’s algorithm is problematic.
To resolve the problems, a new motion planning algorithm
for omnidirectional vehicles is proposed, which also satisfies
obstacle avoidance and dynamic constraints in a discrete
time system. The numerical simulations provided in this
paper demonstrate a better solution to the problem of motion
planning by the proposed algorithm than Sahraei’s.

The paper is organized as follows. Section II describes
dynamic constraints of the robots based on the result of
[2]. In section III, Sahraei’s algorithm [1] is introduced.
Section IV proposes the new algorithm. Finally, a numerical
simulation is presented in Section V.

II. DYNAMIC CONSTRAINTS OF THE OMNIDIRECTIONAL
VEHICLE

Fig. 1(a) shows the bottom view of an omnidirectional
vehicle that consists of three wheels. This type of vehicle is
able to move in any direction and spin as it moves. Kalmar-
Nagy described a model that relates the amount of torque
available for acceleration to the speed of the three wheeled
omnidirectional vehicle [1]. This section is based on the
results of [2].

(a) Bottom view [2] (b) Geometry [2]

Fig. 1. The omnidirectional vehicle

It is shown that the drive velocities are defined as linear
functions of the velocity and the angular velocity of the

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrC10.6

978-1-4244-4524-0/09/$25.00 ©2009 AACC 5510

robot:v1
v2
v3

=

 −sinθ cosθ L
−sin(π

3 −θ) −cos(π

3 −θ) L
−sin(π

3 +θ) −cos(π

3 +θ) L

 ẋ
ẏ
θ̇

 , (1)

where L is the distance of the drive units from the center of
mass of the robot, vi are the individual wheel velocities, θ is
the angle of counterclockwise rotation (See Fig. 1(b)). New
time and length scales are introduced

T =
2m
3β

, Ψ =
4αmUmax

9β 2 , (2)

to normalize x, y, and t to the nondimensional variables

x̄ =
x
Ψ

, ȳ =
y
Ψ

, t̄ =
t
T

. (3)

The constants α and β are determined by the motor charac-
ter. Umax is the maximum value of the voltage applied to the
motor, and m is the mass of the robot. Then the constraint
of the robot (after dropping the bars) becomes

q2
x(t)+q2

y(t)≤ 1, (4)

(see [2] for the full derivation), where the two components
of control qx(t) and qy(t) are

qx(t) = ẍ+ ẋ, (5)
qy(t) = ÿ+ ẏ. (6)

It has been shown that the time-optimal control strategy is
achieved when

q2
x(t)+q2

y(t) = 1, t ∈ [0, t f], (7)

where t f is the final time. Kalmar-Nagy [2] solves the
problem of time-optimal motion trajectory by ensuring the
equality, but no obstacles are considered.

III. SAHRAEI’S ALGORITHM

Sahraei [1] proposed a trajectory generation algorithm
based on the results of [2]. The algorithm is differentiated
from Kalmar-Nagy’s algorithm by two properties: real-time
trajectory generation and obstacle avoidance. The first step
is to construct the Voronoi diagram to find a path that avoids
obstacles. Voronoi diagram is the partitioning of a plane with
n points into n cells. The partitioning is made such that each
cell includes one point and every point in a given cell is
closer to the captured point. After constructing the Voronoi
diagram, the start and target points, s and t are added to it
with corresponding edges which connect these two points to
their cell vertices. Then Dijkstra’s shortest path algorithm is
run. The resulting path is the shortest path whose edges are
in the Voronoi diagram. Two Bézier curves are used to find
a smooth path near the resulting path with regards to initial
and final conditions.

A Bézier Curve of degree n is represented by n+1 control
points P0, . . . ,Pn:

P(λ) =
n

∑
i=0

Bn
i (λ)Pi, λ ∈ [0,1], (8)

Bn
i (λ) =

(
n
i

)
(1−λ)n−i

λ
i, i ∈ {0,1, . . . ,n}. (9)

The curve passes through P0 and Pn and is tangent to P0P1
and Pn−1Pn. Also, it lies within the convex hull of control
points.

Let p0, p1, . . . , pn denote the vertices of the shortest path
and p0, and pn denote s and t, respectively. The first Bézier
curve, Pa(λ) for λ ∈ [0,1], is constructed by p0, q, r,
and p1, where control points q and r are introduced to
satisfy slope of initial velocity constraint and continuity of
curve and its slope in p1. The second Bézier curve Pb(λ)
is constructed by p1, . . . , pn. Following equations describe
boundary conditions:

Ṗa(0)
|Ṗa(0)|

=
v0

|v0|
,

Ṗa(1)
|Ṗa(1)|

=
Ṗb(0)
|Ṗb(0)|

. (10)

Fig. 2 shows an example of the paths.

Fig. 2. A smooth path resulted from two Bezier curves. The first Bezier
curve is illustrated in green and the second one is shown in blue [1].

Finally Sahraei assigned a velocity magnitude to each
point on the generated curve P(λ) =

(
X(λ),Y (λ)

)
. To

implement this, the paper tried to find a function α : t ∈
{0,h,2h, . . .} → λ ∈ [0,1] such that X(α(t)) and Y (α(t))
satisfy the following dynamic constraint

(Ẋ + Ẍ)2 +(Ẏ + Ÿ)2 ≤ 1, (11)

where h ∈ R+ is the sample time interval. Note that the
variables X , Y , and t for (11) are normalized values by
(2). For the sake of optimality α(t) was calculated such
that the left side of the inequality constraint (11) approaches
1. To find λn , α(nh) for all n’s Sahraei used derivative
approximations to define the function f :

f (λ) =
(

X(λ)−X(λn−2)
2h + X(λ)+X(λn−2)−2X(λn−1)

h2

)2

+
(

Y (λ)−Y (λn−2)
2h + Y (λ)+Y (λn−2)−2Y (λn−1)

h2

)2
−1+ ε.

(12)

λn is calculated by solving the equation

f (λ) = 0 (13)

based on λn−1 and λn−2 by Newton’s method. ε ∈ R+ in
(12) guarantees that the result of Newton’s method makes
the left side of inequality (11) less than but close to 1. Since
λn relies on two previous values of λ , at the first step λ0 and

5511

λ1 should be calculated. It is straightforward that λ0 = 0. To
calculate λ1, a hypothetical λ−1 is introduced to approximate
the position of the robot before initial time, X(λ−1) defined
by

X(λ0)−X(λ−1)
h

≈ vx0 , (14)

and so forth for Y .
One of major drawbacks of this approach is the fact that

there is no guarantee of existence of λn for all n’s to satisfy
(13) with small enough value of error, | f (λ)|. That is mainly
because X(λ) and Y (λ) are constrained by the polynomial
of P(λ). This drawback will result in a violation of dynamic
constraint of (4).

IV. PROPOSED ALGORITHM

This section proposes a new algorithm for obstacle avoid-
ing real-time trajectory generation of omnidirectional ve-
hicles. To describe this method, let an = (axn ,ayn), vn =
(vxn ,vyn), zn = (xn,yn) denote the acceleration, velocity, and
position of the vehicle, respectively, at sample time nh. All
of the variables used in this section are nondimensional
variables scaled by (2).

The new algorithm uses a Voronoi’s diagram and a Bézier
curve to generate the reference trajectory as Sahraei did.
A problem of Sahraei’s algorithm is that it did not do
any calculation to ensure that the Bézier curves miss the
obstacles. To resolve this problem, this paper ensures that the
convex hull constructed by the control points of the Bézier
curve do not contain any obstacles.

The algorithm also deals with velocities and accelera-
tions of the robot in a discrete time system sampled at
t = {0,h,2h, . . .}. However, it computes accelerations an
that meet optimal condition (7) as opposed to that Sahraei
computes positions zn. The set of all such accelerations An
is represented as

An = {(axn ,ayn)| (axn + vxn)
2 +(ayn + vyn)

2 = 1}. (15)

If vn is given, (15) can be rewritten as

An = {(−vxn + cosθn,−vyn + sinθn)| θn ∈ [0,2π)}. (16)

The beauty of (16) is that it guarantees satisfaction of (7)
while Sahraei’s algorithm only has the left side of the
equation approaching 1. It also simplifies the value of the
accelerations to one variable θn. Geometrically, An is the
circle that has center at (−vxn ,−vyn) and radius of 1.

In this algorithm, the robot is assumed to follow the
constant acceleration equations of motion with an for time
interval t ∈

[
nh,(n+1)h

)
. Once an is determined, the velocity

and the position at next sample time are calculated by
applying the constant acceleration equations with an:

vn+1 = vn +han, an ∈ An, (17)

zn+1 = zn +hvn +
h2

2
an, an ∈ An. (18)

In the problems that we consider, v0 and z0 are initially
given. So a0 is solely determined by selecting θ0 in (16).

Once a0 is determined, v1 and z1 are obtained by applying
(17) and (18) and using a0, and so on. Thus we only need
to find θn for all n’s in order to fulfill motion planning of
the robot, represented by a set of zn. We also can generalize
that vn and zn are give when we calculate θn at t = nh.

Equation (18) can be rewritten as the sum of two vectors:

zn+1 = cn+1 + rn+1, (19)

where

cn+1 =
[

xn
yn

]
+(h− h2

2
)
[

vxn

vyn

]
, (20)

rn+1 =
h2

2

[
cosθn
sinθn

]
. (21)

Since vn and zn are given at t = nh, cn+1 is known, while
rn+1 depends on θn. So the set of all zn+1 corresponding to
An, Zn+1 is given by

Zn+1 = {zn+1| |zn+1− cn+1|= h2

2 }. (22)

Geometrically, Zn+1 can be interpreted as the circle that
has center at cn+1 and radius of h2

2 as shown in Fig.
3(a). The intersections of Zn+1 and the pre-generated Bézier
curve P(λ) satisfy the optimal condition (7). We will select
z∗n+1, the intersection further from current position since that
provides a shorter travel time (See Fig. 3(a)).

(a) Zn+1 on a reference trajectory.

(b) The enlarged Zn+1.

Fig. 3. Geometry of Zn+1 from zn on a reference trajectory. p is defined
by the point on the reference trajectory, which is the closest to cn+1

5512

In reality, the acceleration cannot be constant over the sam-
ple interval because the dynamic constraint (4) operates at all
times. That is, even though an ∈ An guarantees satisfaction
of the optimal condition (7) at t = nh, the velocity changes
due to an over the sample interval t ∈

(
nh,(n+1)h

)
and that

will violate the dynamic constraint. To resolve this problem,
we provide the closed-form analytical solution that obeys the
dynamic constraints at all times as follows.

The constraint operating at t ∈
[
nh,(n+1)h

)
is

a(t) =
dv
dt

(t) =−v(t)+A, (23)

v(t) =
dz
dt

(t), (24)

where

A =
[
cosθn sinθn

]T
. (25)

Assuming θn is constant over the sample interval t ∈
[
nh,(n+

1)h
)
, the velocity and position can be found in closed form

v(t) = e−tvn +(1− e−t)A (26)

z(t) = zn +(1− e−t)vn +
(
t− (1− e−t)

)
A (27)

A second order Taylor series is used for small time intervals,
h, yielding an expression for the position at the end of the
sample interval

z(nh+h) = zn +(h− h2

2)vn +
(
h− (h− h2

2)
)
A, (28)

which is the exact same equation as the expression of
zn+1 ∈ Zn+1 in (22). That is, the exact closed-form solution
is the same, to second order, as the assumption of constant
acceleration.

Assuming that the reference path is planned such that
Zn+1 intersects the path for all n’s, we only need to find
θn corresponding to z∗n+1 for motion planning of the vehicle.
However, noise in a real system and large parh curvatures
may cause Zn+1 to miss the path. For this case, another
path following heuristic is required. The algorithm is divided
into two modes depending on whether Zn+1 intersects the
reference path or not: intersect-reference-trajectory (IR) and
out-of-reference-trajectory (OR).

A. IR mode

In IR mode, θn corresponding to z∗n+1 is calculated in
computationally efficient way. Firstly, we define the point
on the Bézier curve, p which is the closest to cn+1 as shown
in Fig. 3(a). To calculate p, we introduce the function f :

f (λ) = (X(λ)− cxn+1)
2 +(Y (λ)− cyn+1)

2, λ ∈ [0,1].
(29)

Let λ p denote the parameter that minimizes f (λ):

λ
p = arg min

λ∈[0,1]
f (λ). (30)

λ p is computed by the steepest descent or Newton algorithms
using the backtracking line search. Then p is given by

p =
(
X(λ p),Y (λ p)

)
. (31)

In Fig. 3(a), the portion of the Bézier curve inside of the
circle Zn+1 can be considered to be line segment of which the
slope is the slope of tangent at p, given that time interval h is
small enough. So we can approximate z∗n+1 as the intersection
point between the circle and the straight line segment. Let φ

denote the slope of the tangent line:

φ = tan−1 (Ẏ (λ p)
Ẋ(λ p)

)
. (32)

Looking at the geometry of p, z∗n+1, and cn+1 in Fig. 3(b),
θn is given by

θn = φ +ζ , (33)

where ζ can be calculated by applying law of sines for
4z∗n+1 pcn+1:

ζ = sin−1 (2|p− cn+1|
h2 sin(π− γ +φ)

)
. (34)

and γ is the signed angle of direction of the vector −−−→cn+1 p.

B. OR mode
To account for noise present in a real system, an effi-

cient path following heuristic is presented. To describe this
method, we introduce two terms: yerr and ψerr. yerr is defined
by the distance between cn+1 and p. ψerr is defined by the
angle difference from the current heading of the robot, ψn
to the slope of tangent at p (See Fig. 3(a)).

The feedback control is designed such that the robot
approaches the reference trajectory while making ψerr small.
So we use a PID steering control given by

δψ = kpyerr + kdψerr + ki

∫
yerrdt, (35)

where δψ is the deflection of the heading of the robot:

δψ = ψn+1−ψn. (36)

The angle θn of the acceleration an that produces the
desired δψ can be calculated in cost efficient way. Fig. 4
shows the relationship of δψ and θn in acceleration frame.
From (16), An is the circle that has center at (−vxn ,−vyn)
and radius of 1. Rewriting (17), the acceleration can be
represented as the sum of two vectors:

an =−1
h

vn +
1
h

vn+1 (37)

The direction of the known vector 1
h vn is ψn. The other vector

1
h vn+1 depends on the value of an. If we choose some point
on the circle as an, then the vector from the tip of − 1

h vn to
an will be 1

h vn+1 whose angle is ψn+1. Since the desired δψ

determines ψn+1, the intersections between the vector 1
h vn+1

and the circle An determine the acceleration at t = nh. When
the number of intersections is two, the longer − 1

h vn+1 is
chosen so that travel time is smaller. |δψ| is bounded within
|δψ|max when the tip of the vector − 1

h vn is outside of the
circle. |δψ|max is defined by the |δψ| when the number of
the intersections is one. So

|δψ|max =

{
sin−1 (1

(1/h−1)|vn|
)
, if (1

h −1)|vn|> 1
π, if (1

h −1)|vn| ≤ 1
(38)

5513

Fig. 4. Geometry of θn and an.

In Fig. 4, θn can be represented as

θn = ψn+1 +φ = ψn +δψ +φ , (39)

where φ can be obtained by using law of sines:

φ = sin−1 ((1
h
−1)|vn|sin(δψ)

)
. (40)

Note that δψ is a signed angle and so φ is determined by
δψ . Equation (35) can be written as (41) by using (38), (39),
and (40).

θn = ψn +φ + kpyerr + kdψerr + ki

∫
yerrdt (41)

subject to

ψn +φ −|δψ|max ≤ θn ≤ ψn +φ + |δψ|max (42)

In order to satisfy obstacle avoidance, the maximum yerr
should be less than the minimum distance from obstacles to
the pre-generated Bézier curve. For computational efficiency,
the minimum distance is measured as minimum distance
from obstacles to control points of the Bézier curve.

V. NUMERICAL SIMULATIONS

Simulations provided in this section demonstrate improve-
ment of trajectory generation and control by the proposed
algorithm in terms of travel time, satisfaction of the dynamic
constraint, and smooth motion control compared to Sahraei’s
algorithm. Also, they show robustness of the proposed algo-
rithm. Fig. 5 shows the course used for the simulation. Red
circles indicate obstacles.

The initial and final conditions are given by:

z0 = (1.75,0.54)[m], (43)
v0 = (0,0)[m/s], (44)
z f = (6.85,3.28)[m]. (45)

The sample time interval h is given by

h = 0.0033[s]. (46)

Characteristic variables are given by

α = 1[N/V], β = 1[kg/s], m = 1[kg], Umax = 3[v]. (47)

Fig. 5. The resulting trajectories by different algorithms over the reference
trajectory (bold black curve).

The reference trajectory is constructed by a Bézier curve
for which the control points are

p0 = (1.75,0.54), p1 = (3.49,2.05), p2 = (3.72,2.14),
p3 = (4.55,2.04), p4 = (5.35,3.24), p5 = (6.85,3.28),

(48)

and illustrated as bold black curve in Fig. 5. The simulation
of Sahraei’s algorithm has been done with the same param-
eters above and ε = 0.01.

In Fig. 5, two kinds of trajectories are generated depending
on addition of noise. The open loop trajectory without
noise is generated by applying two different algorithms: the
proposed algorithm and Sahraei’s algorithm. The closed loop
trajectory with noise is generated by the proposed algorithm.
The reference trajectory is generated smooth enough that
Zn+1 contains a portion of the trajectory for all n’s. So,
in simulation of the proposed algorithm, only IR logic is
used for the open loop trajectory while combination of IR
and OR is used for the closed loop trajectory. The resulting
closed loop trajectory shows the robustness to noise in Fig.
5. The noise was modeled as white noise with magnitude of
0.05m and added to actual position. The simulation results
are listed in table I. The resulting final times t f by the
proposed algorithm are substantially shorter than the one
by Sahraei’s algorithm. In the table, the cross track error
cerr is defined as the distance of the line normal to the path
and passing through the vehicle position. Sahraei’s algorithm
leads to violation of the dynamic constraint (4). We can see
that q2

x + q2
y exceeds boundary condition 1 in Fig. 6(f). On

the other hand, q2
x + q2

y by the proposed algorithm is 1 at
every sample time interval as shown in Fig. 6(d) and 6(e). In
addition, the proposed algorithm generates smoother controls
qx and qy and velocities vx and vy than Sahraei’s algorithm
as shown in Fig. 6(a), 6(b), 6(g) and 6(h).

VI. CONCLUSIONS

This paper proposes a collision-free real-time motion
planning algorithm for an omnidirectional mobile robot. It
has been shown that planned motion of the robot is a
computationally effective way to satisfy obstacle avoidance
as well as robustness, and the proposed algorithm leads to
short travel times. Numerical simulations demonstrate the

5514

(a) qx and qy by IR. (b) qx and qy by IR and OR (noise). (c) qx and qy by Sahraei.

(d) q2
x +q2

y by IR. (e) q2
x +q2

y by IR and OR (noise). (f) q2
x +q2

y by Sahraei.

(g) vx and vy by IR. (h) vx and vy by IR and OR (noise). (i) vx and vy by Sahraei.

Fig. 6. The results obtained by the proposed algorithm and Sahraei’s algorithm.

TABLE I
RESULTS OF THE SIMULATION

Methods t f [s] Violation of (4) [%]
∫ t f

0 |cerr|dt
IR without noise 3.6667 0 0

IR and OR with noise 3.4667 0 0.0018
Sahraei without noise 13.2667 31.91 0

improvement of the motion planning compared to Sahraei’s
algorithm.

REFERENCES

[1] A. Sahraei, M. T. Manzuri, M. R. Razvan, M. Tajfard and S. Khosh-
bakht, “Real-Time Trajectory Generation for Mobile Robots,” The 10th
Congress of the Italian Association for Artificial Intelligence (AIIA
2007) September 10-13, 2007 .

[2] Kalmar-Nagy T., D’Andrea R., Ganguly P., “Near-optimal dynamic
trajectory generation and control of an omnidirectional vehicle,”
Robotics and Autonomous Systems, Volume 46, Number 1, 31 January
2004 , pp. 47-64(18), Elsevier.

[3] Balkcom, D. and Mason, M. Time Optimal, “Trajectories for Bounded
Velocity Differential Drive Robots,” IEEE International Conference on
Robotics and Automation (ICRA 00), p. 2499 - 2504, 2000.

[4] Jung, M., Shim, H., Kim, H. and Kim, J., “The Miniature Omni-
directional Mobile Robot OmniKity-I (OK-I),” International Confer-
ence on Robotics and Automation, p. 2686-2691, 1999.

[5] Moore, K. L. and Flann, N. S., “Hierarchial Task Decomposition
Approach to Path Planning and Control for an Omni-Directional
Autonomous Mobile Robot,” International Symposium on Intelligent
Control/Intelligent Systems and Semiotics, p. 302-307, 1999.

[6] Huang, W. H., Fajen, B. R., Fink, J. R., Warren, W. H., “Visual
navigation and obstacle avoidance using a steering potential function,”
Robotics and Autonomous Systems, vol. 54, Issue 4, p. 288-299, 28
April 2006.

[7] Hamner, B., Singh, S., Scherer, Se., “Learning Obstacle Avoidance
Parameters from Operator Behavior,” Special Issue on Machine Learn-
ing Based Robotics in Unstructured Environments, Journal of Field
Robotics, vol. 23, 11/12, p. 1037-1058, December 2006.

[8] Hwang, C., Chang, L. “Trajectory Tracking and Obstacle Avoidance of
Car-Like Mobile Robots in an Intelligent Space Using Mixed H2/H∞

Decentralized Control,” Mechatronics, IEEE/ASME Transactions on,
vol. 12, Issue 3, p. 345-352, June 2007

5515

