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Abstract— Solving optimal control problems by an indirect
method is often abandoned in favor of a direct method due to
hyper-sensitivity with respect to unknown boundary conditions
for the Hamiltonian boundary-value problem that represents
the first-order necessary conditions. Yet the hyper-sensitivity
may imply a manifold structure for the flow in the Hamil-
tonian phase space, structure that provides insight regarding
the optimal solutions and suggests a solution approximation
strategy that avoids the hyper-sensitivity. This paper concerns
the development of a solution approximation method based on
finite-time Lyapunov exponents and vectors. The focus is on
determining the unknown boundary conditions such that the
solution end points lie on certain invariant manifolds. Using
kinematic eigenvalues, a systematic approach to determine the
appropriate finite-time for the Lyapunov analysis is presented.
A simple example is used to illustrate the approximation method
and its implementation.

I. INTRODUCTION

Numerical methods for solving optimal control problems
(OCPs) can be divided into two main categories, direct and
indirect. Indirect methods solve the associated Hamiltonian
boundary value problem (HBVP) constructed from the first-
order necessary conditions. A survey of direct and indirect
methods, noting their advantages and disadvantages, is given
in [6].

An OCP is called hyper-sensitive if the final time is
long relative to some of the contraction and expansion rates
of the Hamiltonian system associated with it [15], [16].
The solution to a hyper-sensitive problem has a “take-off”,
“cruise”, and “landing” structure analogous to the optimal
flight of an aircraft between distant locations. The “cruise”
segment is primarily determined by the cost function and
the state dynamics, whereas the “take-off” and “landing”
segments are determined by the boundary conditions and the
goal of connecting these to the “cruise” segment. As the final
time increases so does the time spent in the cruise segment
which shadows a slow reduced-order manifold. When the
final time is long, the sensitivity of the final state to the
unknown initial conditions makes the HBVP ill-conditioned.
The ill-conditioning can be removed by approximating the
solution with a concatenation of boundary-layer solutions
(take-off/landing segments) with a solution segment on the
slow manifold (cruise segment). The completely hyper-
sensitive case is a degenerate case for which, rather than a
slow manifold, there is an equilibrium point, and the “cruise
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segment” is near-equilibrium motion. The more general case
in which the cruise segment shadows a trajectory on the
slow manifold is called partially hyper-sensitive. In this
paper, we continue the development of a solution strategy
for completely hyper-sensitive problems that is extendable
to the partially hyper-sensitive case.

Solution approximation for completely hyper-sensitive op-
timal control problems, based on the geometric structure of
the associated Hamiltonian dynamics, has been addressed
in [3], [15]. The solution to the HBVP is such that the
solution in the initial boundary-layer is approximated by a
trajectory on the stable manifold of the equilibrium point,
the solution in the final boundary-layer is approximated by
a trajectory on the unstable manifold of the equilibrium, and
the boundary-layer solutions are approximately matched near
the equilibrium point. The focus of the present paper is on
determining the unknown boundary conditions such that the
solution end points lie on the appropriate invariant manifolds
to sufficient accuracy.

Rather than use information related to the equilibrium
point which would not be available in the partially hyper-
sensitive case, our approach uses a dichotomic basis for the
phase space tangent bundle to define conditions satisfied by
points on the stable and unstable manifolds of an equilibrium
point. Dichotomic transformations have been used to solve
boundary-value problems for ordinary differential equations
[4] and to solve fixed end-point optimal control problems
[2], [20]. Chow used dichotomic transformations to solve
nonlinear HBVPs with linear boundary-layer dynamics [8].
For nonlinear HBVPs, a dichotomic basis has been approx-
imated using eigenvalues and eigenvectors (eigen-analysis)
[15], [16] and finite-time Lyapunov exponents and vectors
[18]. The latter information can provide greater accuracy and
is more generally applicable [13], [14]. Finite-time Lyapunov
exponents, and in some cases vectors, have also been used
to analyze fluids [9], [11], [17] and atmospheric circulation,
e.g. [7]. A primary contribution of the present paper, relevant
more generally to the use of finite-time Lyapunov exponents
and vectors, is a systematic approach to determine the ap-
propriate finite-time for Lyapunov analysis, using kinematic
eigenvalues [4], [9], [13], [19].

II. OPTIMAL CONTROL PROBLEM AND ASSOCIATED
HAMILTONIAN BOUNDARY-VALUE PROBLEM

We consider the Lagrangian optimal control problem:
determine the control function u on the time interval [0, tf ]
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that minimizes the cost function

J =
∫ tf

0

L(x(t), u(t))dt (1)

subject to ẋ = f(x, u)
x(0) = x0, x(tf ) = xf

where we assume that the vector field, f(x, u), and L(x, u)
are smooth in both x and u, and that tf is given. The state
vector x(t) ∈ Rn and the control u(t) ∈ Rm. The first-order
necessary conditions for optimality lead to the Hamiltonian
boundary-value problem (HBVP):

ẋ = ∂H∗

∂λ

λ̇ = −∂H∗

∂x

x(0) = x0, and x(tf ) = xf ,

(2)

where λ(t) ∈ Rn is the costate vector and H∗ = L(x, u∗) +
λT f(x, u∗) is the Hamiltonian evaluated at the optimal con-
trol u∗(x(t), λ(t)) = arg minH(x(t), λ(t), u(t)). We assume
u∗ is a smooth function of x and λ. The augmented state
p = (x, λ) is a point in the phase space R2n. In terms of p,
we write the Hamiltonian dynamics in (2) as

ṗ = h(p) (3)

where h(p) is the Hamiltonian vector field. The correspond-
ing Hamiltonian flow is expressed as φ(t, po) where po is the
initial phase and φ(0, po) = po. A Hamiltonian vector field is
divergence free; in other words, the flow preserves volume.
Therefore for every direction in which the Hamiltonian flow
contracts, there is a direction in which it expands.

III. APPROXIMATE SOLUTION STRATEGY FOR A
COMPLETELY HYPER-SENSITIVE PROBLEM

For clarity, we present the approximate solution strategy
for a completely hyper-sensitive optimal control problem
via a simple transparent example. Consider the optimal
control problem [12] to determine the scalar control u∗ and
corresponding trajectory for the scalar state x∗ that minimize
the cost

J =
1
2

∫ tf

0

u2dt (4)

subject to the dynamic constraint

ẋ = sinx+ u (5)

for a given final time tf and boundary conditions x(0) = 1
and x(tf ) = −1. The first-order necessary conditions lead to
the following Hamiltonian boundary value problem (HBVP)

ẋ = sinx− λ
λ̇ = −λ cosx

x(0) = 1, x(tf ) = −1
(6)

Numerical solutions for the OCP were obtained using the
optimization program GESOP c© for different final times; see
Fig. 1. GESOP has several options, of these we used the
direct multiple shooting method. The optimal trajectory and
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Fig. 1. Optimal solutions from GESOP c© for different final times, tf =
1, 5, 10, 15 and 17, where x(0) = 1 and x(tf ) = −1, in the time domain
(left) and in phase space (right).

control are determined. Using the necessary condition, u∗ =
−λ, the solutions are plotted in the (x, λ) phase plane as well
as in the time domain in Fig. 1. As the final time gets longer,
the solution trajectories shadow more closely a branch of the
stable,Ws, and then a branch of the unstable,Wu, invariant
manifolds of the equilibrium point peq at (0, 0). As the final
time increases to tf = 17 the optimal solution spends more
and more time near the equilibrium point. For larger times, it
was increasingly difficult to obtain the solution. In contrast,
as tf increases, the following approximate solution becomes
more and more accurate and no harder to obtain.

For sufficiently large final times, the optimal strategy can
be viewed in phase space as getting on Ws(peq) where
x(0) = 1 and steering along it to the equilibrium point,
waiting at the equilibrium point an appropriate length of
time, and then getting onWu(peq) and steering along it until
x(tf ) = −1 is reached. Consistent with this viewpoint, the
solution to a completely hyper-sensitive OCP, p∗(t), can be
approximated by the composite function

p̂(t) =


p̂s(t) 0 ≤ t ≤ tibl
peq tibl < t ≤ tfbl
p̂u(t) tfbl ≤ t ≤ tf

(7)

where p̂s(t) is the approximate initial boundary-layer so-
lution for t ∈ [0, tibl] with the initial condition on the
stable manifold, i.e., p̂s(0) = (x0, λ0) ∈ Ws(peq); peq is the
equilibrium solution which approximates the slow “cruise”
segment; and p̂u(t) is the approximate final boundary-layer
solution for t ∈ [tfbl, tf ] with the final condition on the
unstable manifold, i.e., p̂u(tf ) = (xtf , λtf ) ∈ Wu(peq).
The solutions in the boundary-layers can be constructed by
integrating, in forward and backward time respectively, the
Hamiltonian dynamics from initial and final phase points
on the corresponding invariant manifolds that satisfy the
boundary conditions. The composite approximate solution is
obtained by concatenating the boundary-layer solutions with
the equilibrium solution. The times, tibl and tfbl, defining the
initial and final boundary-layer durations, are selected such
that p̂s and p̂u reach the equilibrium point up to a specified
accuracy in forward and backward time respectively.

The primary challenge in developing this approach is to
determine the unknown boundary conditions such that the
initial and final phase points are sufficiently close toWs(peq)
and Wu(peq) respectively. The choice to base our approach
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on finite-time Lyapunov exponents and vectors (FTLE/Vs),
rather than to exploit the local structure near the equilibrium
point, is driven by the goal of extending the approach to the
partially hyper-sensitive case.

IV. FINITE-TIME LYAPUNOV ANALYSIS
AND DICHOTOMIC BASIS

In [14] it was shown that finite-time Lyapunov analysis
(FTLA) can be used to diagnose multiple timescale behavior
in dynamical system models. In the present context, the goal
of FTLA is to determine if the nonlinear Hamiltonian system,
ṗ = h(p), has a dichotomy in the phase space region of
interest, and if so, to find a dichotomic basis for the tangent
space, TpR2n, at each point p, with which to represent the
splitting TpR2n(p) = Es(p)⊕ Eu(p), where all the vectors
in the stable subspace Es(p) contract exponentially fast in
forward time and all the vectors in the unstable subspace
Eu(p) contract exponentially fast in backward time, under
the linearized Hamiltonian flow. In the asymptotic theory
of hyperbolic systems, the stable and unstable subspaces
are invariant subspaces, however, when defined in terms of
FTLE/Vs, they only approximate invariant subspaces.

A tangent vector evolves according to the linearized dy-
namics, v̇ = Dh(p) v, where Dh = ∂h/∂p. A vector
v ∈ TpR2n, propagated t units of time along the trajectory,
φ(t, p), evolves into a vector v(t) = Φ(t, p)v where v(t) ∈
Tφ(t,p)R2n and Φ(t, p), with Φ(0, p) = I , is the state transi-
tion matrix of the linearized dynamics along the trajectory.
A multiplier, σ, which is the ratio of the norms of the
final vector and the initial one, σ(T, p, v) = ||v(T )||/||v||,
characterizes the net expansion (resp. contraction) rate if
σ(T, p, v) > 1 (resp. σ(T, p, v) < 1) over the time interval
[0, T ]. Here we take ‖ · ‖ to be the Euclidean norm. Finite-
time Lyapunov exponents (FTLEs) in forward and backward
time are defined as follows1.

µ+(T, p, v) = 1
T log σ+(T, p, v) = 1

T ln ||Φ(T,p)v||
||v|| (8)

µ−(T, p, v) = 1
T log σ−(T, p, v) = 1

T ln ||Φ(−T,p)v||
||v|| (9)

where p is the base point in phase space and v is a vector
in tangent space at p, i.e, v ∈ TpR2n. If v = 0, both
µ+(T, p, v) and µ−(T, p, v) are defined to be −∞. The
multiplier corresponding to an FTLE can be interpreted as an
average exponential rate of a tangent vector, i.e., σ(T, p, v) =
exp(µ(T, p, v)T ), over the averaging time T .

A set of basis vectors, l+i (T, p), i = 1, . . . , 2n, for
TpR2n, is called normal, if the sum,

∑2n
i=1 µ

+
i (T, p), where

µi is the FTLE associated with li, is smallest relative to
the sum for any other basis. One way to obtain such a
set of vectors, referred to as finite-time Lyapunov vectors
(FTLVs), is by computing a singular value decomposition
(SVD) of the state transition matrix Φ(T, p). Let the SVD
be given by Φ(T, p) = N+(T, p)Σ+(T, p)L+(T, p)T , where
the matrix Σ+(T, p) = diagonal(σ+

1 (T, p), ..., σ+
2n(T, p))

contains the singular values in an ascending order, i.e.,

1Throughout this paper the superscripts + and − will denote forward and
backward time respectively.

σ+
1 (T, p) ≤ ... ≤ σ+

2n(T, p). The FTLEs are evaluated
by µ+

i (T, p) = 1
T log σ+

i (T, p). Then the column vectors
of L+(T, p), l+i (T, p), i = 1, . . . , 2n, constitute the normal
basis for TpR2n. Due to the SVD properties, the basis vectors
are also mutually orthogonal and unit length. The geometric
view is that when a unit 2n−sphere in TpR2n is propagated
along the trajectory forward in time, it becomes an ellipsoid
in Tφ(T,p)R2n. The principal axes are aligned in the direction
of the vectors n+

i , i = 1, . . . , 2n, the column vectors of
the N+ matrix, with corresponding lengths exp(µ+

i T ). We
can define the backward FTLE/Vs in the same way. The
backward exponents are assumed to be in descending order,
µ−1 ≥ ... ≥ µ−2n. Analogous to the asymptotic theory [5], we
construct finite-time subspaces

L+
i (T, p) = span{l+1 (T, p), ..., l+i (T, p)}
L−i (T, p) = span{l−i (T, p), ..., l−2n(T, p)}

Hamiltonian systems have the property that the FTLEs are
always symmetrically distributed on the real line with respect
to the origin. We say that the Hamiltonian system ṗ = h(p)
has a stable/unstable dichotomy on a neighborhood of the
optimal trajectory p∗, denoted N (p∗), if there exist positive
constants µ, T , and T with T < T such that µ+

n+1(T, p) ≥ µ
and µ−n (T, p) ≥ µ for T ∈ [T , T ] for all p ∈ N (p∗). If there
is a dichotomy and the time constant µ−1 is a small fraction
of both tf and T , then the optimal control problem and the
associated HBVP are completely hyper-sensitive. If there
exists a dichotomy, then a stable/unstable splitting can be
defined using Es(p) = L+

n (T , p) and Eu(p) = L−n+1(T , p)
for any p ∈ N (p∗). Equivalently, we can determine a
dichotomic basis using l+1 , . . . , l

+
n as the columns of the

matrix Ds(p) and l−n+1, . . . , l
−
2n as the columns of the matrix

Du(p). Further, the vector field, h(p), can be expressed in
terms of the dichotomic basis

ṗ = h(p) = hs(p) + hu(p) = Ds(p)ws(p) +Du(p)wu(p)

where hs(p), and hu(p) are the stable and the unstable
components of h at p. A point p ∈ Ws(peq) (resp. p ∈ Wu)
satisfies the partial equilibrium condition wu(p) = 0 (resp.
ws(p) = 0). The partial equilibrium conditions wu(p) = 0
at t = 0 and ws(p) = 0 at t = tf can be used to determine
the unknown boundary conditions such that the initial and
final phase points lie on the appropriate invariant manifolds
within some level of accuracy [18].

A related method, referred to as maxFTLE, was developed
in [9], [11], [17], to identify invariant manifolds of interest
(Lagrangian coherent structures), from the maximal level
contours of the maximum FTLE field, called the ridges. One
could use the maxFTLE method to get an estimate of the
location ofWs. Phase points closer to the invariant manifolds
will have the largest maximum FTLE for longer times T
than points farther away from the invariant manifolds as
will be shown in Fig. 4 to be described later. Therefore
the ridges indicate the invariant manifolds. Both methods
maxFTLE and FTLA require the selection of the averaging
time T . One of the contributions of the paper regards this
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issue. We show how kinematic eigenvalues provide guiding
information. Also with the primary tools in FTLA being the
FTLVs and the understanding of their convergence rate from
our previous work [14], we can further clarify how to choose
T .

A kinematic eigenvalue (KE) quantifies the instantaneous
exponential rate of change of a tangent vector under the
linearized flow [9], [13], [19]. The kinematic eigenvalue of
a tangent vector, v(t), evolving according to the linearized
Hamiltonian dynamics, v̇ = Dh(p)v, is evaluated as follows.
Define a unit vector e(t) = v(t)/||v(t)||, where v(t) ∈
TpR2n. The differential equation governing the dynamics of
e(t) is ė = [Dh−ρ(t) · I]e where ρ(t) = 1

2e
T (DhT +Dh)e

is the KE associated with the tangent vector e and defines
the local expansion/contraction rate in the e direction. When
the normalized tangent vectors, ei(t), i = 1, ..., 2n are
initialized with the li(T, x) vectors, the time average of ρi(t),
ρ̄i(t) := 1

T

∫ T
0
ρi(τ)dτ = µi(T, p), the corresponding FTLE.

The instantaneous rate of change of the distance between
neighboring points on the same trajectory can be monitored
by computing the KE for the vector field, h(p), given by

ρh(p) =
1
2
hT (p)(DhT (p) +Dh(p))h(p) (10)

Near an equilibrium point, neighboring points on a trajectory
that shadows a branch of the stable (resp. unstable) invariant
manifold become closer to (resp. farther apart from) each
other with time. On a trajectory shadowing a heteroclinic
invariant manifold, ρh will cross zero.

V. DETERMINING BOUNDARY CONDITIONS ON STABLE
AND UNSTABLE MANIFOLDS USING FINITE-TIME

LYAPUNOV ANALYSIS

We use a method based on FTLA to identify the unknown
boundary conditions such that the initial and final phase
points will lie on the appropriate invariant manifolds. In
particular, we describe how to determine the phase point on
Ws that is also on the line x = x0. The same approach
can be applied to determine the final boundary condition on
Wu. FTLA starts with computing the finite-time Lyapunov
exponents (FTLEs) over a set, Y = {(x, λ) ∈ R2n | x =
x0, λ ∈ Rn} in the Hamiltonian phase space. All points in
Y satisfy the initial boundary condition. Initially we assume
we do not have any information on the optimal solution.
We solve the HBVP for several shorter final times using
GESOP c©[1], which allows us to identify a subset of Y ,
P = {(x, λ) ∈ R2n | x = x0, λ ∈ Rn}, expected to contain
the optimal initial phase point p0 = (x0, λ0) and to determine
the equilibrium point peq that the optimal solution stays near
for large tf . The FTLE/Vs are computed on a grid on P . If
p lies on Ws(peq), then h(p) ∈ Es(p), where Es(p) is the
stable subspace at TpP as illustrated in Fig. 3. Then a point
on Ws would satisfy

< h(p), v >= 0, ∀v ∈ (Es)⊥(p). (11)

Using FTLA [14] we can get approximations of the invariant
stable and the unstable spaces at point p, Ês(T, p), and

p1 = (x0, λ1)

h(p1)

Es(Es)⊥

p2 = (x0, λ2)

h(p2)

Es(Es)⊥

p3 = (x0, λ3)

h(p3)

Es
(Es)⊥

Ws(peq)

peq

x = x0

1

Fig. 3. Illustrating subspaces and orthogonality conditions.

Êu(T, p) respectively, in a neighborhood of Ws. Starting
from an initial guess p we apply the orthogonality condition
in (11) to get an estimate p̂ of a point on Ws. Then
we re-initialize the FTLA method at p̂ and repeat. It was
demonstrated in [14] that FTLA can accurately identify
points on Ws.

Consider the HBVP given in (6). There are multiple
equilibria at p = (nπ, 0), n ∈ Z, p = (π/2 + 2nπ, 1),
n ∈ Z and p = (−π/2 + 2nπ,−1), n ∈ Z. The equilibria at
p = (nπ, 0), n ∈ Z are connected by heteroclinic invariant
manifolds. The phase portrait emphasizing the connections
and neighboring trajectories is shown in Fig. 2. The tra-
jectories with initial conditions inside the loops are closed
curves (periodic orbits), whereas the ones outside the loops
are unbounded as t → ∞ with x → −∞ if λ > 0 and
x→ +∞ if λ < 0.

Analyzing the linearized dynamics, the asymptotic Lya-
punov exponents are zero almost everywhere except on the
heteroclinic connections. On the other hand FTLA can reveal
the manifold structure around an equilibrium point. Fig. 2
shows the ‘lines of ambiguity’ at x = −π/2 and x = π/2.
At these values of x, the orthogonality condition (11) is
satisfied for all values of λ and cannot be used to identify the
particular value of λ that would place p on the appropriate
invariant manifold. For all other values of x in this range,
there are isolated solutions to the orthogonality condition
corresponding to the desired manifolds.

A systematic approach to selecting the averaging time T
such that the FTLEs indicate the local nature of the flow to
sufficient accuracy, for a flow with non-uniform kinematic
eigenvalues is as follows. Fig. 2 shows trajectories that
shadow the invariant manifolds of the equilibria. The KE
for the vector field h(p), given by

ρh(t) =
1
2
hT (p)((Dh(p))T +Dh(p))h(p) (12)

was computed along these trajectories. The red circles mark
points where the ρh is zero; it is positive on one side
of such a point and negative on the other. The positive
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sign indicates that neighboring points on the trajectory are
separating with time, and negative sign indicates that they are
getting closer to each other. Thus the red circles mark the
boundaries separating regions of uniform (in sign) ρh. The
time T should be selected to average as long as possible
over a uniform region. Fig. 4 shows for a grid of λ(0)
values, the trajectories that evolve in forward time from the
corresponding initial phase points. The zero-crossing for ρh
are indicated, as are the times T over which the FTLE/Vs
can be computed to determine the stable subspace. Although
some of the trajectories begin in a different uniform region,
most of the time stated is spent in the uniform region where
the attraction to the equilibrium point is sensed.

It has been shown in [10] that the FTLVs converge to their
limits exponentially as the averaging time increases, so in this
regard we want to averaging time to be as long as possible.
On the other hand, we want to compute the FTLE/Vs along
a trajectory only as long as the KEs are uniform, meaning
here simply that they do not change sign, which determines
the how long the averaging time can be.

VI. APPROXIMATE SOLUTION OF LAM’S PROBLEM

Consider the HBVP given in (6) for final time tf = 15
with boundary conditions x(0) = 1, x(tf ) = −1. Based
on numerical solutions for shorter times, the initial costate
λ(0) is expected to be in the interval [1, 3]. Therefore we
initialize the FTLA method by computing the FTLEs on the
set P = {(x, λ) ∈ R2| x = 1, λ ∈ [1, 3]}. We have chosen
a grid of points on P such that the costate values are equally
spaced with increments of 0.05.

To determine the point on the stable manifold at x = 1,
we need to find an approximation to the stable subspace
at x0, i.e., l+1 (T, p0); therefore only forward integration is
necessary. (Similarly to identify a point on the unstable
manifold at xf = −1, we need to find an approximation
to the unstable subspace at xf , i.e., l−2 .)

Let us denote the initial phase point by φ(0, p(0)
0 ) :=

(x0, λ
(0)
0 ), the 0th iteration at x0. We apply the FTLA

method iteratively to get a point on the stable manifold.
After each iteration the time interval over which the KE is
uniform increases. Once the difference between the last two
approximations to the point on Ws is less than a specified
tolerance we take the last iteration, say it is the kth, value
as the approximation of a point on Ws, φ(0, p(k)

0 ). Ws

can be approximately constructed by integrating the system
dynamics forward in time starting from this initial condition.
FTLA can only compute a point that is approximately onWs

which means the trajectory will deviate from Ws. Therefore
we integrate the system dynamics for t = Treinit, where
Treinit is the time interval selected for re-initialization,
forward in time from φ(0, p(n)

0 ) to φ(Treinit, p
(n)
0 ), and

perform another FTLA iteration at φ(Treinit, p
(n)
0 ) to pull

the trajectory point back to Ws. We continue this process
until we reach the equilibrium point up to the desired
accuracy. The optimal solution constructed in this manner
for the system in (6) is shown in Fig. 5. The error between
the re-initializations is largest at the beginning and can be
decreased by using smaller Treinit values. The largest error
is 0.14 when Treinit = 0.2 and 0.08 when Treinit =
0.1. Comparison with the solution computed direct multiple
shooting in GESOP shows that the maximum error is less
than 1.2 × 10−3 and decreases as the initial and final
boundary layer solutions approach the equilibrium. The error
increases around the equilibrium due to the discontinuity of
the composite solution. The error at the equilibrium can be
deceased by connecting the boundary-layer solutions with a
continuous function.

VII. CONCLUSIONS

A method to solve completely hyper-sensitive optimal
control problems has been described. Finite-time Lyapunov
analysis (FTLA) was used to construct an approximate
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On each trajectory the zero ρh points are noted. The maximum averaging
time is noted for each value of λ(0).
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Fig. 5. Left: Approximation to Lam’s problem using FTLA. The approxi-
mation to the stable invariant manifold is constructed with re-initializations
for every T=0.1. Right: The absolute error between the optimal solution
from GESOP and the approximate solution constructed by FTLA vs x.

dichotomic basis. We have used kinematic eigenvalues to
identify the regions where the instantaneous exponential
behavior is uniform and select the appropriate averaging time
for FTLA. Although we have only considered the completely
hyper-sensitive case in this work, the method developed is
general enough to be extended to partially hyper-sensitive
problems.
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