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Computation of Uncertainty Distributions in Complex Dynamical Systems

Thordur Runolfsson, Chenxi Lin

Abstract—The computation of the stationary distribution
of an uncertain nonlinear dynamical system is an important
tool in analysis of the long term behavior of the system.
One common approach is to use a Monte Carlo type method.
However, that type of method requires many simulations runs
to achieve a reasonable accuracy and can be computationally
excessive. In this paper we formulate an alternative approach
based on the theory of Random Dynamical Systems to solve
this problem. Using the properties of the invariant measure of
the Perron-Frobenius operator for the dynamical systems we
obtain a simple characterization of the stationary distribution.
The state space is discretized to obtain a finite dimensional
approximation for the infinite dimensional Perron-Frobenius
operator. Furthermore, an efficient subdivision algorithm for
state space partition is discussed. The approach is demonstrated
through a catalytic reactor system.

I. INTRODUCTION

In this paper we consider an uncertain discrete time
dynamical system

Tit1 T(x:,€) (D
yi = f(z)

where the state z; € X C R", the uncertainty £ is a random
variable defined on some probability space (€2, f,P) and
taking values in a set N C R", and y; is real valued
scalar output. The initial state zp = x« is assumed to
be a random variable independent of . Assume that for
each fixed ¢ and each fixed initial state x the average
limit g (z,&) = 1151010% ZZJ.V:BI y; exists. Then 7 (x,€) is a
random variable. The basic problem we are interested in is
characterizing the distribution of 7 (z, £) . We note that if £ is
a fixed parameter and system (1) has the appropriate ergodic
properties then the distribution of 7 (z,£) is characterized
by the stationary or invariant distribution s, of (1). Similar
results are true for the random parameter case as well.
Therefore, the characterization of the invariant measure is
an important tool in characterizing the long term behavior
of the uncertain dynamical system (1). In particular, it
gives valuable information about the global dynamics and
qualitative behavior of the system.

Obviously, the invariant measure i, is dependent on the
value §. Our goal is to compute the invariant measure /i,
under the assumption the i, exists for any §. One common
approach is a Monte Carlo type method, that samples the
distribution of initial state and random parameter and then
simulates the system until it reaches stationarity (steady
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state). Unfortunately, in order to achieve reasonable accuracy
one needs many simulation runs and for complex dynamical
systems the computational effort may be excessive. Conse-
quently, there is a strong need for efficient alternatives. In
this paper we introduce an alternative approach that is based
on the fact that the invariant measure is a fixed point of
the so-called Perron-Frobenius operator for the dynamical
systems.

II. MATHEMATICAL SETUP - RANDOM DYNAMICAL
SYSTEMS

Consider again the dynamical system (1). In order to
simplify the discussion we assume that X is a compact
subset of R™ and IV is a compact subset of R". The random
parameter £ can be very general and is specified in more
detail later. We assume that T'(x,&) is C* k > 1 in x for
every £ € N and assume that f : X — R satisfies f €
L'(X). Denote Tg(x) = T¢o...oT; where T¢(z) = T'(z, ).

Definition 1: Let M(X) be the vector space of real value
measures on X. For a fixed value of ¢ the Perron-Frobenius
(P-F) operator P: : M(X) — M(X) corresponding to the
dynamical system T¢ : X — X is defined as

&MB)télwﬂuu@?WBD

for all sets B € Bx.

We remark that the P-F operator characterizes the evolu-
tion of the distribution of the state x;, i.e. if the initial state
has distribution v € M (X)) the distribution of z; is Pgu(B).

Definition 2: A measure 1, € M(X) is said to be a T
invariant measure if

e(B) = Peig(B) = e (T7'(B))

for all sets B € Bx.

Thus, pe € M(X) is invariant if and only if it is a fixed
point of the Perron-Frobenius operator Px.

Let P = X x N be the state-uncertainty product space and
endow it with the product o-algebra P in the usual way, i.e.
if Bx is the Borel c—algebra on X and Fy is the o —algebra
on N, then P = Bx x Fy.

Definition 3: A probability measure 1 on P is called an
input measure.

We are interested in the question of how does the uncer-
tainty in the "output" of the process depend on the input
measure. For the observable defined by f : X — R, the
"initial" uncertainty is described by a probabilistic measure
w; on R (endowed with the Borel o-algebra ) defined by

@i(E) = n((f)" (),
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where FE € B. This measure evolves in time, becoming

@'(B) = n((foT¢) ' (E))
= n((T) " fHE) = Pen(fH(E)),

We call w™ an output measure. It describes the uncertainty
of the system output at the n-th step of the process given the
input measure 7).

Frequently we are mostly interested in the long term
behavior of the solution of the system. In this case the
uncertainty in the system output is best studied in terms of
the uncertainty in the asymptotic properties of the system.
In particular, define the time-average

n—1
£, = im = 3" f(T(w:,€)) @
=0

and the asymptotic output measure w,

@a(E) = 1((f)7(E)). ©)

Next we discuss methods for characterizing the asymptotic
output (2) in terms of the invariant measures of the random
dynamical system. In particular, we are interested in situa-
tions when the system has a physical measure p in the sense
that for almost all (z,£) € X x N

f*@z£>::[; fdy 4

We begin by rewriting system (1) so that it can be
studied within the framework of Discrete Random Dynam-
ical System (DRDS) [1]. We are particularly interested in
characterizing invariant measures for (1). For the purpose
of presenting the formulation in [1] in full generality we
allow the uncertainty to vary as a function of time. Let
) = N” be the space of all sequences taking values in
N, denote an element of €} as w and let F be the Borel
o—algebra on €. Let S (k) be the shift transformation on §2,
ie. S (k)w; = witk, define the map 7 : Q — N by

7 (w) = w(0)
and the coordinate process

§i=w() =7 (S()w) = (roS (i) (w).

Let P be any S invariant (probability) measure. Then
§; = w (i) is a stochastic process on the probability space
(Q,F,P). Now we let T'(x,w) = T(x,w (0)) and get

Tip1 = T(xi,&;) = T(wi,w (1) = T(z;, S (Dw) (5
yi = flzi)
Let ¢ (w) : X — X be the operator defined by ¢ (w)x =

T'(x,w). Then the solution of (5) can be represented as z; =
¢ (i,w) x where

@(i,w)z{ ¥ (Simiw) o0 (W)

idx

1>1
1=0
where idx is the identity operator on X. The mapping

(W, ) — (Siw, ¢ (i, w) ) = O (i) (w, )

is called the skew product of S; and ¢ (4,-) and is measur-
able dynamical system on (2 x X, F x Bx) . Let 7o denote
the projection of 7q (w, ) = w.

Definition 4: A probability measure I on
(Qx X, FxBx) is said to be an invariant measure
of the DRDS defined by (5) if it satisfies (i) O (1) u =
and (i) mou = P.

Note that any measure that is invariant with respect to
© has a marginal mqu that is invariant with respect to S.
Furthermore, the second condition in the above definition
is imposed since the measure P is an a-priori specified
invariant measure for S . Now let P (Q x X) be the set
of all probability measures on 2 x X and define

Pr(QxM)={rePQxX):mquv="P}
Ip ={p € Pp(Q x X) : p is invariant for (5)}

Assume 1 € Pp(2x X). A function p (1) : Q X
Bx—[0,1] is called a factorization of p with respect to
P if

1) for all A € Bx, u.(A) is F measurable,

2) u, (-) is a probability measure on (X,Bx) for P

almost all w,
3) for all C' € F x Bx we have

1(C) = /Q /X xe (@,) p, (dz) P (do)

where - is the indicator function for C'.
Note that it follows that for » € L' (1) we have

Axxhd“:AAh(waw)uw (dz) P (dw)

It can be shown that under the assumptions we have
made about X the factorization exists and is [P almost surely
unique.

Return now back to the uncertain system (1), i.e. assume
that for all 7 we have £, = £ where £ is a random parameter
that has distribution p on N. Then the invariant measure of
S (1) is a (random) measure concentrated at £ and if p is a
physical measure,

f*<x,e>=/Qxxfdu=/Q/Xf<z>uw<dz>6<w—e>dw
= /X F () e (d2)

We note that the through the factorization of the physical
measure the time average f* (x, ) is an explicit function of
the random parameter £. The dependence on the (random)
initial state can be characterized in terms of the ergodic
properties of the system.

Definition 5: Let ¢ be an a-priori fixed measure on X.
System (1) is said to be B,-regular if for each fixed £ there
exists a finite a set of ergodic measures ug, i=1,..., K¢
such that for ¢ almost all z € M and every g € C (X)) there
exists a j € {1,..., K¢} such that the time average satisfies

g (2,6) = /M 9(2) pl (d2)
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Furthermore, there exists an ergodic partition, i.e. disjoint
(random) sets Df, . ,D%ﬁ such that o (M - UinlDf) =0
and

pf={seulr@o= [ s voecm)}

The following proposition,X that is easily proven using
the methods in [2], characterizes the calculation of the
asymptotic output measure in terms of the ergodic invariant
measure.

Proposition 1: Assume that (1) is parametric B,-regular
and the family of measures ,uf,z' =1, ..., K¢ has the property
that each u?(B) is continuous as a function of ¢ for any
B € Bx. Assume that the initial measure v is absolutely
continuous with respect to the a-priori measure p. Then the
cumulative distribution function F,, for w, is piecewise
continuous with a finite number of steps.

If we define i (A) = SR 1t (Aﬂ Df) then p¢ (A)
is the invariant measure for T and factorization of of the
invariant measure y for (1).

The following result proven in [1] provides further insight
into the conditions under which the invariant measure of (5)
is a physical measure in the sense of (4). The DRDS is said
to be continuous if for each fixed w the mapping ¢ (-, w) - :
ZxX — X is continuous. We note that by Theorem 1.5.10
in [1] if X is a compact metric space and the DRDS is
continuous then Zp is a non-empty convex compact subset of
Pp (2 x X). Forameasure v € P (2 x X) and f € L; (v)
define v (f) = [ fdv.

Theorem 2: Assume that DRDS is continuous. For v €
Pp (2 x X) define

1 N-1 1 N—-1
() =5 > 0mr() =5 D v(foom)
n=0 n=0

Then as N — oo every limit point of pp converges weakly
to some p € ZIp and every p € Zp arises in this way.
Finally we have the following general result taken from
[1] that further characterizes the factorization of the invariant
measure.
Theorem 3: Let p € Pp (2 x X). Then (i) p € Zp if and
only if for all i € N

B ((p(i,) p. | S@)T'F), = Bsie

(i) If S is measurably invertible then S(i)~!F = F for all
1 € Z, and p € Zp if and only if for all ¢ € Z

P—a.s.

SO(Z}W)MM = HS(i)w P-a.s.

Consider now the special case of an uncertain system (1),
ie. & = & for all ¢ where £ has the distribution p on N.
In this case, if 4 € Zp then ¢(i,§)pe = p1e. Thus, since
©(1,6)x = T¢(x), for each fixed value of & € N the
marginal i = 7 p is the invariant measure of (1) on (X,
Bx ). Furthermore, if the dynamical system T is ergodic for
each { € N, then the p-invariant measure p, is called a
random Dirac measure, i.e. there exists a map h: N — X

Our primary interest is in characterizing the output distri-
bution w, which in turn implies that we want to characterize
the factorization measure i for all { € N. The most
direct way for characterizing f is to use Monte Carlo
simulation which we discuss next. We then present the main
contribution of the paper, i.e. an operator based approach
for characterizing p, that is much more efficient than Monte
Carlo based methods for most systems.

IIT. MONTE CARLO SIMULATION

The most straightforward method for obtaining the sta-
tionary distribution (invariant measure) for the uncertain
dynamical system (1) is Monte Carlo Simulation. We assume
that the probability distributions of the uncertain parameter £
and the initial state =y are known and want to find the output
distribution w, for (1). As we indicated in the previous
section this is most easily achieved through the intermediate
determination of the invariant distribution . for each fixed
£EN.

We assume the system is B,-regular and note that in
this case the distribution of x,,, characterized by the Perron
Frobenius operator P{'v/(A), converges to e (A) as n — oo.
Thus pe (A) is the distribution of the limiting state.

We propose the following nested Monte Carlo algorithm
for calculating the invariant distribution. As before we as-
sume that the parameter £ has distribution p and the initial
state has distribution v and let n = v x p. We sample K
points &, . . ., & from the distribution p and for each sample
& we carry out a Monte Carlo simulation for characterizing
the distribution /i, (A). In particular we sample N points
x4 from the distribution v and for each of the N samples
we simulate the system equation until it reaches steady
state T (xf),f) . Let x4 be the indicator function for the set
A C M and define random variables z; (€) = x 4 (T (z,€)).
Then compute % Zfil z; (§) as an approximation to jz¢(A).

The accuracy of this method is determined by the number
of the samples we pick from the distribution v. In order to
evaluate the error in the Monte Carlo approximation scheme
we compare simulation result with the true value p(A).
Consider the independent samples Z(z}), £), i = 1,..., N and
assume that the distribution of the Z(z},&) is identical to
that of the steady state T (z,£), i.e. each simulation had
reached the steady state. Then it follows that E[z; (§)] =
Elx 4 (T(xf,€))] = pe(A) and by the central limit theorem

27\ 3

o= (B || 2@ -] | | =2
KN N 2 i He JN
where v (§) is the standard deviation of the z; (£). We note
that the variance depends on the uncertain parameter.

We note that the mean square error between the approx-
imate and true value is proportional to LN Therefore, in
order to achieve a mean square error of € we need of the
order of % simulations, ie. N = o(Z%). In many real
applications, particularly for complex dynamical systems,
each simulation run can be computationally expensive as well
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as very time-consuming. Although there exist methods (such
as variance reduction schemes) for improving the computa-
tional efficiency of Monte Carlo methods as well as modified
Monte Carlo methods (such as quasi Monte Carlo method)
these methods only result in marginal improvements or are
only applicable to a limited class of dynamical systems.
Thus, there is a considerable need for efficient alternatives.
In the following sections, we introduce a new approach to
solve this problem using some recently developed results
from Random Dynamical Systems.

IV. COMPUTATION OF INVARIANT MEASURE

In this section we discuss an approach for calculating
the invariant distribution for (1) using the theory of random
dynamical systems in Section II. In particular we note that
under the appropriate conditions the system has an ergodic
invariant measure that is characterized as a fixed point of the
Perron Frobenius operator P for T¢.

We note that the invariant measure may not be unique.
However, it can be shown that, under mild conditions on
the dynamical system, by adding small (localized) noise,
the resulting system possesses an unique invariant measure
[3] that converges to the true ergodic measure as the noise
intensity converges to zero. The computational approach
relies on the discretization of the P-F operator that we discuss
next.

A. Discretization

In order to obtain a finite-dimensional (discrete) approxi-
mation of the P-F operator, we consider a finite partition of
the state space X, denoted as By Bs, ... By, where B;NB; =
¢ and U;B; = X. Corresponding to each partition element
we associate a positive number p; € [0, 1] with Z?Zl p; =
Lie pp= () € R¥ is a probability vector. Define a
probability measure on X as

u m(dx
lde) = 3 i, (@),
i=1 ¢

where m is the Lebesgue measure and xp, is the indicator
function for B;. Then, the action of the Perron Frobenius
operator P: on 7 on the element B; is

~

(6)

~—

.
P(By) =7 (T¢ ' (B))) = Py (&)

where the k x k matrix with entries

. m(T; (B;) N B;)
Pl =)

is a stochastic transition matrix (to simplify notation we drop
the ¢ dependency of P). We will see below that the operator
P is a "good" approximation of P and the invariant measure
for P can be approximated by a measure 1z defined by (6)
where the coefficients of 7z are invariant for P, i.e. satisfy
71; = (), where 7 = 7, P. We note that the computation
of the entries of P is much more efficient than the Monte
Carlo method.

(7

The basic justification for using a finite dimensional
approximation for the calculation of the invariant measure
lies in the theory of finite dimensional approximations for
compact operators [4], [5]. For the Perron Frobenius oper-
ator P we will define an approximate compact operator
P. : Ly(X) — L3 (X) and then use finite dimensional
approximations for compact operators to obtain the finite
dimensional approximation for P¢. Here Ly (X) denotes the
space of functions that are square integrable on X. Define a
kernel

1 z—y
€ ) - ) ) X
ke (y,2) E"m(B)XB< . ) T,z €

where B C X is the ball of radius one and center at zero.
We note that k. (7t (x),z) is a transition density for the
transition function

mwm=Am@uwwmw

It can be shown that p. (z,-) — 07, (s) (+) as€ — 0in a weak
sense, i.e. p. is the transition function for a Markov process
that is a small random perturbation of a discrete dynamical
system defined by T [6]. We note that the evolution of the
distribution for the Markov process is given by the operator
P.v(A) = [y pe (x,A) v (dz) . If the initial measure v has
density g with respect to m then P. can be viewed as an
operator mapping Lo (X) — Lo (X), i.e. the density evolves
according to

a<w:/maumemmww

Next note that

m (X)
/ / e (Te (2).2) m (da) m (d2) < 2

Therefore, the transition operator P. is a compact operator
on Ly (X) [7].

Next we describe how to construct the finite dimensional
approximation (7) for the compact operator P. that (for small
€) gives a finite dimensional approximation for P as well
[4]. Let Vi, be a k—dimensional approximation of Ly (X),
e.g. Vi = span{pq,...,p,} for some "independent" func-
tions ¢q,...,¢, € La(X). Let Qx : La(X) — Vi, be a
projection such that (); converges pointwise to the identity
in Ly (X) as kK — oo. Define an approximate operator
P., = QP. where P. is the compact operator defined
previously. Then ||P., — P.||, — 0 as & — oco. We use
the finite dimensional operator P, ;, as an approximation of
the Perron-Frobenius operator Px.

Let V}, be defined by ¢; (y) = x, (y) where the sets B;
form the partition of X discussed earlier. Define the Galerkin
projection Q of g € Lo (X) by

<ng7(pl>:<g7(pl>7 221,,]€ (8)

where (-,-) is the inner product on L (X). Since ¢; (y) =
X, (y) we have

/ ng:/g7 Zil,,k
Bi Bi
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For g € Vi = span{pq,..., ) we write g(y) =
Zle ©; (y) g;- Tt is easy to see that for any such g we
have <g,<pj> = gj. Now for any g € Ly (X) we have by
definition P g = QP-g. Therefore, we get from (8) with
P_g replacing g

<P€g7501> = <Qkp€g7soz> = <P€,kg750i>7 7’: 17"'7k (9)

Since P; g € Vi we know that there exist constants m;, i =
1,...,k such that P g = Zle ©; (y) m;. Furthermore,
for j =1,...,k we get from (9)

m; = <Ps,kgv<)0j> = <P€g7<)0j>
Now if in addition g € Vj; then

k k
Porg=Pr Y 0, W) g =D Perp; (v) gj
j=1 j=1

Note that if g = ¢, then P xp, (y) = Zle @i (y) mj;
where mfj = <Pa,k-90ja§0i> = <QkPa<Pja<Pz‘> = <Pa<Pja<Pz'>'

Thus
ko k
P rg = Z Z ©i (y) mi;9;

j=11i=1
We note that when restricted to the finite dimensional sub-
space V}, the action of the the operator P is fully represented
by the kX k matrix M* with coefficients mn;;. We finally note
that in the limit € — 0 we have m§; — m(Tgl(Bi) N B;)
which after renormalization to a stochastic matrix agrees with
(7). Furthermore, it follows from the results in [3], [4] that
when the invariant measure of (1) is an ergodic invariant
measure in the sense of Definition 5 then the approximate
invariant measure 7, converges to e as k — oo.

B. Subdivision

The principal factor affecting the computational complex-
ity in the calculation of the approximate invariant measure is
the discretization level on the state space. If the requirement
for computational accuracy is not very high we can use a
standard subdivision algorithm. As before we assume that
the dynamical system is defined on a compact subset of
R™. We start by specifying one box in R™ that contains
X. For a fixed integer L we interactively define 2% boxes,
By, ..., Bor, of equal size by a bisection algorithm. The size
of the approximate stochastic transition matrix P is then
2L % 2L 'We note that if the requirement for computational
accuracy is stringent then L will be large and the resulting P
will be huge requiring excessive storage and computational
effort.

The standard subdivision algorithm described above leads
to a partition with boxes of equal size. We note that the
subdivision is done without utilizing any information about
the system dynamics or the invariant measure. However,
frequently there exist subsets in the state space that have a
very small invariant measure. Consequently, the subdivision
of these subsets is not necessary for the computational
determination of the invariant measure and their subdivision
will lead to unnecessary computation effort. By incorporating

information about the invariant measure it is possible to
produce more efficient partitioning schemes that result in an
adaptive subdivision into boxes of unequal sizes. Here, we
introduce an adaptive subdivision algorithm that is a variant
of the algorithm developed in [8].

Let {6} be a sequence of positive real numbers such that
0 — 0 for k — oo and let Bj be a finite collection of
compact subsets of R™ at step k (the partition at step k). Let
7, be invariant measure stochastic matrix P obtained at
step k. Given an initial pair (B, 7o ),one inductively obtains
(Bg, ) from (Bg_1,m—1) for Kk =1,2,... in two steps:

1) Selection and Subdivision: Define

Bkifl {B € Br_1: 7Tk,1(B) < 6k:71} and
BI:-F—l = Br-1\By_4
Construct a new collection B,j such that

U B=
BeB}

U B
BeB} |

where R R
diam(B;") < 0 diam(B;"_,)

for some 0 < 0 < 1.
2) Calculation of the invariant measure: Set

By =B, UBS

For the collection 1), calculate the invariant measure
Tk
In the realization of the algorithm, we typically subdivide
the boxes in the collection B; by bisection and choose the
sequence {dy} as

where N}, is the number of boxes in B;.
We illustrate the efficiency of the adaptive subdivision
algorithm in a catalytic reactor system in the next section.

V. EXAMPLE

In [9], [10], a set of nonlinear partial differential equations,
which describe heat and mass transfer in a spherically shaped
catalytic pellet, was reduced to a dimensionless first-order
ordinary differential equation which we represent in the form

dx/dt = A — g(z, B)

where x is the dimensionless temperature in the reactor, ¢
is time expressed in units of the rise time of the system.
The rise time is defined as the time necessary to reach a
sufficiently small neighborhood of the equilibrium position.
A is the dimensionless external temperature, which is the
random parameter in our example. B is a parameter defined
by the reacting substances viewed as a constant and g(x, B)
is of the form

e P (p1(2)/05(2))

2462



Monte Carlo Simulation
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Fig. 1. Invariant measure by Monte Carlo

where @ (z), s = 1,2 are polynomials in z. In our simula-
tion, we choose B = 5.5 and g(z, B) = (z/(1 — x))e=5-5%.
For initial uncertainty of the system, we assume z has an
uniform initial distribution in [0,1] and A has the same
distribution in [0,0.16]. The discretization step is 0.01.

1) Monte Carlo method: We sample 1000 points both in
state space and parameter space. As we discuss before, the
mean square error is proportional to ﬁ, that is about 0.03
in this example. The results are shown in Figure 1 and the
simulation costs 50.936 sec.

2) P-F method: The standard subdivision is shown in
Figure 2 and the adaptive subdivision is shown in Figure
3. For standard subdivision, we have 4096 boxes to cover
the whole space with 21.573 sec simulation time while we
only have 286 boxes with 8.4858 sec in adaptive subdivision.
Moreover, the adaptive subdivision method have much higher
accuracy than standard method in computation the invariant
measure. The average size of boxes capture the invariant
measure is 2.5 * 1076 in adaptive subdivision while the size
of boxes is 3.9 * 1075 in standard subdivision. The adaptive
subdivision algorithm shows great efficiency in this example.

VI. CONCLUSION

In this paper we discussed methods for computing the
stationary distribution for dynamical systems with random
uncertain parameters. Monte Carlo is the traditional approach
for the solution of this problem but it needs many simulation
runs in order to achieve reasonable error, which is frequently
computationally very expensive as well as time consuming.
We introduced an alternative approach using properties of
the Perron-Frobenius operator within a unified framework
based on measure theoretic concepts from the theory of
Random Dynamical Systems. We discretized the state space
to obtain a finite-dimensional Markov transition matrix to
approximate the infinite-dimensional Perron-Frobenius op-
erator. Two subdivision algorithms to partition the state
space were introduced. Finally, we applied both a Monte
Carlo method and the P-F based method to a catalytic
reactor system for comparison. The simulation result verify

invariant measure

state

0 0.05 0.1 0.15
parameter

Fig. 2. Invariant measure by standard subdivision

adaptive subdivision

state

0 0.05 0.1 0.15
parameter

Fig. 3. Invariant measure by adaptive subdivision

the superiority of the P-F method when combined with an
adaptive subdivision algorithm for discretization.
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