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Abstract— The description of a nonlinear control system as
an exterior differential system suggests an interesting connec-
tion between locally accessible control systems and the existence
of a natural geometry associated to the control system. The
classification of single-input locally accessible control systems
leads to a canonical construction of a (pseudo-) Riemannian
metric on the state space. Conditions for the existence of such
a metric are derived and the construction is illustrated in a
simple example.

I. INTRODUCTION

In this paper, we explore different equivalence classes for
local accessible systems using exterior differential calculus.
The tools used are taken from geometric control theory,
which is a well-established field. One area of geometric
control is the study of control systems whose state mani-
folds are equipped with additional structure which describes
inherent properties of these classes of systems, e.g., me-
chanical systems [1] or port-Hamiltonian systems [16]. The
additional structures are used for efficient controller synthesis
for nonlinear systems and have found a wide range of
applications. Another area of geometric control research
focuses on determining if a nonlinear system is equivalent to
a linear system, and if so, how to obtain a linear controllable
description through a change of coordinates and feedback
[9]. This approach has been extended to include a state-
dependent time scaling such that the system described in
the new time scale has a linear controllable representation,
this is known as orbital feedback linearization [15], [7].
Orbital feedback linearization has been applied successfully
in control problems where a state of the system can be
identified with the natural time of the system. Examples
of this include batch cooling crystallization processes [17]
and spray dryer plants [8], and it has been used as a design
methodology for tracking controller in car parking problems
[11].

The present work is motivated by the following question:
In what cases can we canonically construct a geometric
structure on the state manifold determined by the control
system? We answer this question for the special case of
single-input control-affine systems under some integrability
assumption. We develop a normal form in the original time
scale for the class of orbital feedback linearizable systems.
This normal form consists of a two-dimensional control
system and a chain of n − 2 integrators. The classification
of the system can be reduced to the classification of the
two dimensional subsystem. The classification of single-input

Kai Höffner and Martin Guay are with the Department of Chemi-
cal Engineering, Queen’s University, Kingston, ON, Canada, K7L 3N6.
martin.guay@chee.queensu.ca

planar control systems by some normal forms allows us to
give conditions for the existence of a (pseudo-) Riemannian
metric on the state space. We conjecture that it is possible
to extend this result to the case of m controls since the
tools used in the development rely on a generalized version
of the Brunovsky normal form. In an example we consider
one possible use of the Riemannian metric to design a path
following controller for a simple car model. We consider
single-input control-affine systems

ẋ = f(x) + g(x)u (1)

where x ∈ Rn, u ∈ R, and f and g are assumed to be
sufficiently smooth.

The paper is structured as follows. In Section II, we
introduce some basic notation for geometric control theory
and state some basic results. In Section III we develop the
contribution of this paper in three stages. First, we find
a normal form for orbital feedback linearizable systems,
then we analyze a two-dimensional subsystem of the control
system, and finally show that the classification found for the
subsystem gives a classification of the original system. Next,
we consider the case in which a (pseudo-) Riemannian metric
can be canonically constructed. We compute this metric for
a simple example in Section IV and design a path following
controller based on this metric. In the last section we give a
short conclusion and future directions for development.

II. MATHEMATICAL PRELIMINARIES

In this section, we introduce notation and state some basic
results to develop the necessary setup for the remainder of
the paper. We give a short introduction to exterior differential
systems, Pfaffian systems, the method of equivalence and
their applications in control theory. References will be given
for each subject.

A. Exterior Differential Systems

Let M be a smooth manifold. Denote by Ωk(M) the space
of differential k-forms on M , where Ω0(M) = C∞(M)
is the space of smooth functions on M . Then Ω(M) =⊕n

k=1 Ωk(M) denotes the space of all differential forms on
M . There are two operations defined on Ωk(M) for all k,
an associative but non-commutative product called the wedge
product of two differential forms ∧ : Ωk(M) × Ωl(M) →
Ωk+l(M) and the map d : Ωk(M) → Ωk+1(M) for all k
called the exterior derivative.

The space Ω(M) also forms a graded algebra under the
wedge product. A subspace I ⊂ Ω(M) is an algebraic
ideal if it is a direct sum of homogeneous subspaces Ik ⊂
Ωk(M) and is closed under wedge product with arbitrary
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differential forms. An algebraic ideal is a differential ideal
if it is closed under exterior differentiation, dI ⊆ I. A
Pfaffian system I is a submodule of one-forms over C∞(M)
generated by a set of one-forms {ω1, . . . , ωk}, i.e. , I =
{
∑
fkωk | fk ∈ C∞(M)}. A Pfaffian system I generates

a differential ideal I = 〈{dI, I}〉 of differential one-forms
on M , where 〈·〉 denotes the R-linear span of elements
in Ω1(M). Furthermore, a differential form dt determined
up to multiplication by an arbitrary function is called an
independence condition for I, if dt is nowhere vanishing on
any integral manifold of I.

A solution of an exterior differential system is a smooth
curve c : [a, b] ⊂ R→M ×R such that ωc(s)(c′(s)) = 0 for
all ω ∈ I and all s ∈ [a, b].

For of exterior differential systems, the well-known Frobe-
nius theorem takes the following form.

Proposition 2.1 ([10]): A Pfaffian system I is completely
integrable if and only if dαi ≡ 0 mod I, ∀αi ∈ I.

Let I be a Pfaffian system on M . A submanifold N of
M is called an integral manifold of I if TxN ⊂ 〈I(x)〉⊥
for every x ∈ N . A curve smooth c : [a, b] ⊂ R → M is
called an integral curve of I if c′(t) ∈ 〈I(c(t))〉⊥ for every
t ∈ [a, b].

Given a Pfaffian system I , one might ask: What is the
smallest integrable subsystem contained in I? This leads to
the definition of the derived flag. Set I(0) = I and

I(i) = {ω ∈ I(i−1) | dω ≡ 0 mod I(i−1)}

This definition gives rise to a filtration

I(0) ⊃ I(1) ⊃ · · · ⊃ I(i) ⊃ · · ·

called the derived flag. The filtration stabilizes for some
integer N , i.e. , I(N) = I(N+1) called the derived length,
the system I(N) is then called the bottom derived system.
A derived system is called trivial if it only contains the
null element. The derived length is an integer invariant
associated to the derived flag. Another set of integer in-
variants are the Kronecker indices κ1, . . . , κn defined by
κi = dim(I(i)/I(i+1)).

For further information on the subject of exterior differ-
ential systems the reader is refered to [3].

B. Local Accessibility

We turn our attention to control systems. For ease of
notation, we consider a control system in the form ẋ =
f(x, u), x ∈ Rn and u ∈ R. Consider the Pfaffian system

I = {dx1−f1(x, u)dt,

dx2−f2(x, u)dt,
...

dxn−fn(x, u)dt}

on Rn ×R×R with independence condition dt where f =
[f1, f2, . . . , fn]T . Then it is easy to show that (c, u), with
c : [0, T ] ⊂ R→ M and u ∈ R, is a solution to the control
system if and only if it is a solution to the Pfaffian system

I . From now on we will revert back to control systems in
control affine form (1).

We can formulate accessibility [16] in terms of the derived
flag.

Proposition 2.2 ([12]): A control-affine system is:
• Strongly locally accessible if and only if I(N) = {0},

and
• Locally accessible if and only if rank(I(N)) ≤ 1 and

the integral manifolds of the bottom derived system are
time-dependent.

A control-affine system is called weakly locally accessible
if it is locally accessible but not strongly locally accessible,
in which case the bottom derived system has rank one and
depends on time. We will assume that all systems are locally
accessible.

C. Method of Equivalence

In Section III we use results on equivalence of control
systems based on the method of equivalence developed by
Élie Cartan [2]. We give a short overview and refer the
reader to the treatment of the subject in [5], [14], [10], [3].
In connection to control theory the equivalence method has
found application as a tool for studying equivalence to linear
systems [6].

The method of equivalence is the study of equivalence
between mathematical objects described in a basis, called
coframe, of the cotangent bundle of some manifold. Given
two control systems ẋ = f(x, u) on M and Ẋ = F (X,U)
on N , we say that the systems are feedback equivalent if
there exists a local diffeomorphism Φ : M → N such
that Φ(x, u) = (φ(x), ψ(x, u)), where φ is a coordinate
transformation on the state space and ψ is a static state
feedback. The primary object of study in this framework is
the pullback of the diffeomorphism Φ as a linear map that is
pulling a coframe on N back to a coframe on M up to the
action of some group. The data of the specific problem, in
our case the feedback equivalence, is completely contained
in the coframe and the group action.

III. MAIN RESULT

The development in this section can be divided into
three parts. First, we divide a n-dimensional control system
into a two-dimensional system and a chain of integrators.
Next, we summarize the complete classification of two-
dimensional control systems from [4]. Finally, we show how
this classification can be used to classify the original system.

A. Reduction

In the case of a locally accessible control system with a
single input it is easy to see that κ1 = κ2 = · · · = κn−1 = 1,
• κn = 1 and I(n) = I(N), depends on time if the system

is weakly locally accessible or
• κn = 0, in which case the system is strongly locally

accessible.
Since local accessibility only determines the structure of the
derived flag but not the integrability of the derived systems,
we require additional assumptions on I(n−2). Furthermore,
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integrability of I(n−2) implies integrability of the remain-
ing derived systems, this property allows us to reduce the
analysis of the system to I(n−2). We make the following
observation: The derived flag of a locally accessible system
takes the form (2) if the I(n−2) derived system is integrable.

dωn ≡ dt ∧ du mod I
dωi ≡ dt ∧ ωi+1 mod I(n−i), 3 ≤ i ≤ n− 1
dω2 ≡ dt ∧ α2

dω1 ≡ dt ∧ α1
mod I(n−2), (2)

where α1 can vanish in which case

dω1 ≡ 0 mod ω1

defines the bottom derived system for which the integral
manifold depends on time. It is easy to see that for α1 = 0
the system is weakly locally accessible. Note that this is
also the derived flag of an orbital feedback linearizable [15]
system. Next, we find a normal form for this type of systems.
Consider the system

ẋ1 = f1(x1, x2, v)

ẋ2 = f2(x1, x2, v)
v̇ = ẏ3 = y4
...

ẏn = u, (3)

then we can make the following statement.
Lemma 3.1: The system (1) fulfills the congruence (2) if

and only if it is feedback equivalent to (3).
Proof: Straight forward computations show sufficiency.

For the necessary part, assume that (1) fulfills the congruence
(2), we can write each generator ωi = ηi−bidt, i = 1, . . . , n,
where ηi are one-forms on Rn and bi are functions on Rn

independent of time. Considering the {ω1, ω2} subsystem we
see that the integrability condition

dω1 ∧ ω1 ∧ ω2 ∧ dt = 0
dω2 ∧ ω2 ∧ ω1 ∧ dt = 0

are satisfied, which implies the following integrability con-
dition on η1, η2

dη1 ∧ η1 ∧ η2 = 0
dη2 ∧ η2 ∧ η1 = 0.

Hence, we can find functions y1, y2 such that 〈dy1, dy2〉 =
〈η1, η2〉 and determine a new set of generators for I(n−2)

given by ω̄i = dyi − b̄idt, i = 1, 2. Next, we want to
find a set of exact generators for I(n−3) since ω1 and ω2

are integrable we can generate a integrable form ω3 by
exterior differentiation, repeating this integration yields a set
of coordinates and a feedback such that (1) takes the form
of (3).
Hence, the classification of systems given by (1) can be
reduced to the classification of a two dimensional control
system with a single input. The drawback of this reduction

is that the obtained two dimensional system is not necessarily
in control-affine form.

From a control perspective, we separated the system into
two subsystems, the first one being a feedback linearizable
part, which was transformed into a Brunovsky normal form,
resulting in a simple integrator chain. The second part is a
two dimensional subsystem for which the linearizing output
of the first system served as a ”virtual input”.

B. Local equivalence of systems with two states and one
control

The complete problem of equivalence for control systems
with two states and one input has been solved by Gard-
ner and Shadwick [4]. We summarize this result. Given a
general control system ẋ = f(x, u) with x ∈ R2, u ∈ R
and an equivalence relation defined by state and feedback
transformation, there are two sets of equivalence classes. The
first equivalence classes can be summarized as the class of
linear systems, since they can be represented in the form
ẋ = Ax+ bu. They are describe by their normal forms:

(I) ẋ1 = 1, ẋ2 = 0
(II) ẋ1 = u, ẋ2 = 0
(III) ẋ1 = u, ẋ2 = x2

(IV) ẋ1 = u, ẋ2 = x1.
It should be noted that a sufficient condition for a system to
be within one of these classes is given by

∂f2
∂u

∂2f1
∂u2

=
∂f1
∂u

∂2f2
∂u2

. (4)

The second class is described by the structure equations

dω1 = εω1 ∧ ω2

dω2 = ω3 ∧ ω1 + Iω3 ∧ ω2

dω3 = Jω3 ∧ ω2 −Kω1 ∧ ω2 (5)

where ε = ±1 and I, J,K are the torsion coefficients of
the e-structure [5] and {ω1, ω2} are part of the adapted
coframe and only depend on f(x, u). These quantities are
invariants of the system. Note that these are also the structure
equations for Lagrangian particle in the plane developed by
Cartan [2]. Here all remaining non-zero invariance of the
lifted coframe {ω1, ω2, ω3} depend only on f(x, u) and its
partial derivatives. Define the generalized derivatives of h
with respect to {ω1, . . . , ωi} by dh =

∑
hωi

ωi. With this
notation, the following integrability conditions on the torsion
coefficients are obtained:

J = −Iω1 , Jω1 = −Kω3 −KI

which allow, following [5], to decide on two different case
based only on the invariance I , assuming that the torsion
coefficients are constant. Here we want to focus on the case
where I = 0, implying J = 0 this structure equations are
the same as the one of (pseudo)-Riemannian metric

ds2 = (ω1)2 + ε(ω2)2. (6)
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on the state space with Gauss curvature K. Hence the
curvature of the system and ε are the only remaining non
zero invariants of the system.

For completeness, we note that in the case I = constant 6=
0, implying J = 0 and K = 0 the equations (5) are the
structure equations of a generalized geometry, which we will
not discuss at this point.

Another interpretation in terms of centro-affine geometry
can be found in [18], where the invariants are connected to
invariance of curves in the plane under actions of GL(2,R)
giving a more geometric interpretation. Also some normal
forms have been developed for the different cases contained
in the second class.

Another interesting case is considered in [18], where the
torsion coefficient I is constant on each fiber, meaning that
I varies smoothly only with the states of the reduced system
but is independent of the control. In this case, one can show
that J gives the rate of change under which the curvature K
changes while the system moves along the direction of the
input on the state space.

In summary we have the following two cases
(a) The system is feedback linearizable corresponding

to one of the cases (I)− (IV )
(b) The final structure equation are given by (5).

We refer to [4] for complete discussion on this subject.

C. Classification of a control system with n states and one
control

So , we have seen in the last two sections that we can
write a control affine system in the normal form (3) and
classify any two dimensional system by either being linear
represented by the class (a) above or not linear represented
by the class (b). The next step is to combine these two results.

A system (1) is said to belong to the class (A), written in
normal form (3) if the f1, f2 subsystem with control input
v belongs to one of the classes (III)− (IV ).

A system (1) is said to belong to the class (B), written in
normal form (3) if the f1, f2 subsystem with control input
v belongs to the equivalence class (b). Furthermore, there
exists a (pseudo-) Riemannian metric if the system is in the
equivalence class (B) and the torsion is constant with I = 0
as given in (5) then a normal form is given by

ẏ1 =
cos y3

1 +K(y2
1 + y2

2)

ẏ2 =
sin y3

1 +K(y2
1 + y2

2)
ẏ3 = y4

...
ẏn = u.

The main proposition of this note is the following.
Proposition 3.2: A locally accessible control affine sys-

tem with n states and one control satisfying the congruence
(2) is equivalent to either of the following:
(A) The system is feedback linearizable.

(B) The final structure equation are given by (5) and a chain
of integrators.
Proof: As noted above, the generators of the com-

plement of I(n−2) in I(0) are canonically constructed by
differentiation with respect to time. Furthermore, we can
choose a set of exact generators {dy3, dy4, . . . , dyn} for this
complement. Define v = y3 as control for the implicit control
system defined by the I(n−2) derived system. Let {ω1, ω2}
be a set of generators for I(n−2) and let dv the generator
of I(n−3) in the complement of I(n−2) in I(n−3). Following
[4], we get the two equivalence classes (a) and (b) for this
system. Then a feedback transformation to a normal form
amounts to change of coordinates such v′ = u(x1, x2) − v
is the fiber coordinate on the (x1, x2)-plane.

Remark 3.3: The equation (6) is defined in terms of the
lifted coframe and therefore defines the (pseudo)-Riemannian
metric uniquely on the reduced space. In order to have a
metric defined on the complete state space, we can always
construct a Riemannian metric on the state space such that
its restriction agrees with the (pseudo)-Riemannian metric on
the reduced space [13].

The classes (I) − (II) correspond to cases in which the
original system is not locally accessible and the case (III)
corresponds to the case where the system is weakly locally
accessible, hence the only linear case in which the system
is strongly accessible is the case (IV ), which represents the
feedback linearizable case. Also, note that the conditions in
Proposition 3.2 are the same as for orbital feedback lineariz-
able and within this class we have the case for which we can
find a Riemannian metric and the remaining cases also define
a more general geometry. Orbital feedback linearization is
used to construct a state-dependent time transformation to
obtain a linear system representation in the new time scale.
Instead of changing time to get a linear system, we can use
the existence of some geometric structures to apply other
control techniques. We consider one possible application of
this in the next section.

IV. EXAMPLE

We study a simple car model presented in [15] to show
some implications of the results. The system dynamics are
given by

ẋ = cos θ
ẏ = sin θ

θ̇ = u

where (x, y) ∈ R2/{0} and θ ∈ S1. We will only consider an
open neighborhood U ⊂ R2/{0} × S1 around an arbitrary
point x0. The derived flag is I(0) = {dx − cos θdt, dy −
sin θdt, dθ−udt}, I(1) = {dx−cos θdt, dy−sin θdt}, hence
has the required form (2). We also see that θ = v is our
control input for the two dimensional subsystem and that the
system is not feedback linearizable since f2

v f
1
vv − f1

v f
2
vv =

−1 6= 0, where f1 = cos θ and f2 = sin θ. Hence, the system
falls into the second equivalence class (b). We can readily
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calculate the torsion coefficient and obtain the following
structure equations

dω1 = −ω3 ∧ ω2

dω2 = ω3 ∧ ω1

dω3 = 0.

where ω1 = dx cos θ + dy sin θ and ω2 = −dy sin θ +
dx cos θ. This guarantees the existence of a Riemannian
metric on the (ω1, ω2) state space with Gauss curvature
K = 0. Also, we see that the system is already in the normal
form suggested by [5]. In the given coordinates (x, y, u), the
Riemannian metric g takes the form

g = (ω1)2 + (ω2)2

= (cos θdx+ sin θdy)2 + (cos θdy − sin θdx)2

= (dx)2 + (dy)2

where (·)2 denotes the tensor product of a one-form with
itself. This is just the euclidian metric given in the adapted
coframe {ω1, ω2}. Note that for any constant heading angle
θ the trajectories of the reduced system agree with the
geodesics of the metric g. Hence, we know that the car will
travel along a straight line in the direction of the heading
angle.

Finally, we consider the path following problem to illus-
trate how the metric can be used for control purposes. We
want to find a feedback that steers the car on the unit circle

S = {(x, y, θ) ∈ U | x2 + y2 − 1 = 0}.

First, we determine a coordinate transformation of the com-
plete state space such that the Jacobian of this transformation
agrees with the change of frames on the reduced system,
i.e. we want to find a coordinate coframe such that the
coordinate forms agree with ω1 and ω3 on the reduced space.
We propose the following transformation:

z1 = x cos θ + y sin θ
z2 = −x sin θ + y cos θ

z3 = x2 + y2 − 1.

It is easy to see that dz1 = ω1 and dz2 = ω2 on the reduced
space. This turns out to be the coordinate transformation
that transforms the system in partial feedback linearization
normal form:

ż1 = 1 + z2u

ż2 = −z1u
ż3 = z1.

The unit circle in the new coordinates is given by S = {z3 =
0} and we can consider the path following problem as an
output regulation problem and we get the following feedback
that steers the system to the unit circle u = −1/z2(−1+z1+
z3), under the assumption that z2 6= 0.

V. CONCLUSIONS
We have considered the classification of accessible

control-affine system with single-input satisfying the con-
gruence (2). A complete list of equivalence classes has been
found by applying the results presented in [5]. The first class
of feedback linearizable systems have been widely studied,
the second class has received less attention. It was shown that
in this case the control systems define a geometric structure
on the state space. Some implications of this result have
been presented in an example. By assuming integrability
conditions on the derived systems we considered a specific
case of locally accessible systems. A next step is to weaken
this assumption by assuming integrability conditions on
I(n−3). This leads to an implicit description of I(n−2) and
a new equivalence problem on the reduced state space for
which Cartan’s method needs to be applied.
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