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Abstract— Practical problems require the synthesis of a set
of stabilizing controllers that guarantee transient performance
specifications such as a bound on the overshoot of its closed loop
step response. A majority of these specifications for Linear Time
Invariant (LTI) systems can be converted to the requirement
of synthesizing a set of stabilizing controllers guaranteeing
the non-negative impulse response of an appropriate transfer
function whose coefficients are functions of the controller pa-
rameters. The main topic of investigation of this paper is to find
a bound for the set of control parameters, K, so that a rational,
proper transfer function, N(z, K)

D(z, K)
has a decaying, non-negative

impulse response. For Single Input Single Output (SISO) LTI
systems, one may assume that the coefficients of the polynomials
N(z, K) and D(z, K) are affine in K. An earlier result by
the authors provides an approximation of the set of stabilizing
controller parameters in terms of unions of polyhedral sets.
In this paper, we provide necessary and sufficient conditions
for a rational proper stable transfer function to have a non-
negative impulse response. For the synthesis problem, we show
that these conditions translate into a sequence of polynomial
matrix inequalities in K using Markov-Lucaks’ theorem. We
propose an outer approximation of the feasible set of matrix
inequalities using Lasserre’s moment method.

I. MOTIVATION

The problem of controlling the transient response is im-

portant in the design of controllers for practical applications.

Despite its importance, very little is known in terms of a

systematic solution technique, even for Single Input Single

Output (SISO) Linear Time Invariant (LTI) systems. A large

class of problems involving transient response can be posed

in this form:

Consider the problem of synthesizing a (stabilizing) first

order controller, C(z) = az+b
z+c , for a plant whose transfer

function is

Hp(z) =
Np(z)
Dp(z)

.

The feedback system corresponding to this controller is

shown in Fig. 1.

Suppose sl(k) and su(k) be the lower and upper bounds

for the step response of the closed loop system and let Nl

Dl
(z)

and Nu

Du
(z) be the Z transforms of sl(k) and su(k). Then this

problem may be posed as requiring the impulse response of

the following two transfer function

H1(z) =
z

z − 1
(az + b)Np(z)

(az + b)Np(z) + (z + c)Dp(z)
− Nl

Dl
(z),
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Fig. 1. Feedback control system.

and

H2(s) =
Nu

Du
(z)− z

z − 1
(az + b)Np(z)

(az + b)Np(z) + (z + c)Dp(z)

to be non-negative.

The problem of synthesizing a system with a desired un-

dershoot and overshoot can be solved by specifying sl(k) =
−εu and su(k) = (1 + εo), where εu and εo is the tolerable

undershoot and overshoot respectively for the step response

of the closed loop system. Similarly, one may specify the

speed of response by setting sl(k) = 1 − λk, where λ > 0
is chosen appropriately to reflect the desired speed of the

closed loop response.

A major difficulty with designing controllers guaranteeing

transient specification for LTI system is that the currently

available techniques only deal with techniques that alter the

frequency response of the closed loop system and hence are

indirect. A part of the problem lies in the unavailability of

a characterization of the non-negativity of impulse response

of a transfer function that can be used for synthesis. The

work of S. N. Bernstein and the generalization of this

result by Widder [1] provide us with a characterization of

non-negative impulse response of a rational, proper transfer

function through the complete monotonicity of the transfer

function. A similar characterization for discrete-time LTI

systems is lacking and will be provided in this paper.

The problem of synthesizing a controller which renders

the step response of an LTI system was considered ear-

lier in [2], [3], [4]. These results point to the existence

of a 2-parameter stabilizing compensator of a sufficiently
high order that can achieve a monotonically increasing step

response. Non-overshooting step response is possible only

if the LTI plant has no real, non-minimum phase zeros.

Other approaches that have been adopted for this problem

especially for discrete-time LTI systems is to place the poles

at zero and use additional freedom in parameters to ensure

that the numerator polynomial is non-negative [5]. Fixed

order and PID controller synthesis for satisfying transient

specifications in continuous time LTI systems was considered

by the authors in an earlier conference paper [6].
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Controllers of fixed structure such as PID controllers and

first order controllers have been employed successfully in

many industrial control applications. This paper builds on

an earlier paper of the authors [7], where a technique has

been presented to approximate the set of fixed order/structure

controllers for SISO systems through polyhedral sets in the

space of controller parameters. The specific problem we ad-

dress is as follows: Let N(z, K) := N0(z)+
∑l

i=1 KiNi(z)
and similarly let D(z, K) := D0(z) +

∑l
i=1 KiDi(z). Here

Ni(z), Di(z), i = 0, 1, 2, . . . , l are given polynomials (part

of the data) and the degree of N(z, K) is always at most

the degree of the polynomial D(z, K). Given a bounded
polyhedral set F = {K : FK ≤ g} where F, g are

appropriate matrices of finite dimension and K is the vector

of controller parameters that render D(z, K) Schur, find a

non-trivial approximate set Fa ⊂ F that contains Fb :=
{K ∈ F : N(z,K)

D(z,K) has a non-negative impulse response}.
The primary motivation to approximate the sets of con-

trollers is that it provides flexibility to the control engineer to

incorporate additional specifications without having to start

from scratch. An immediate application of the characteri-

zation result we develop along the lines of the results of

Bernstein and Widder [1] leads to a sequence of numerator

polynomials (whose coefficients depend polynomially on

the controller parameters) that must have no real, positive

non-minimum phase zeros. The Markov-Lucaks theorem [8]

guarantees a sum-of-squares representation for univariate

polynomials that are non-negative on any interval of the

real axis. Using such a representation, one can obtain a

sequence of polynomial matrix inequalities, the first of

which is a Linear Matrix Inequality (LMI), the second one

being a Quadratic Matrix Inequality(QMI) and so on. If one

considers the feasible set of the LMI and intersects it with the

polyhedral set F , one readily obtains an outer approximation

Fa. If Fa is non-empty, one may consider the QMI and use

it to generate a cut if possible to obtain a refinement of Fa;

in such a case, one may pick a K0 ∈ Fa and if such a

K0 does not satisfy the QMI. Say the QMI is Q(K) ≥ 0,

while for some v, vT Q(K0)v < 0. The vector v may just

be the eigen-vector corresponding to a negative eigenvalue

of Q(K0). To eliminate K0 from the outer approximation,

one may enforce the cut constraint vT Q(K)v ≥ 0, which

is a quadratic inequality constraint. Since Fa is bounded by

virtue of F being bounded, for some large enough M , one

has M2 − ‖K‖2 ≥ 0, another quadratic inequality. From

the results of Lasserre, the convex hull of the feasible set

of two quadratic inequalities can be representable by the

feasible set of a Linear Matrix Inequality. This provides a

semi-definite constraint. It will be a proper cut if K0 is

eliminated. Nevertheless, the addition of this semi-definite

constraint provides a refinement of the outer approximation.

Further advances in approximating semi-algebraic sets can be

utilized for the refinement of the outer approximation Fa.

This paper is organized as follows: In section II, we

provide the main results. In section III, we provide some

corroborating numerical results.

II. MAIN RESULTS

A. Discrete-time LTI systems with a non-negative response

We will begin with a characterization of a discrete-time

LTI system with a non-negative impulse response. Let H(z)
be the z-transformation of the impulse response, h(k), of a

discrete-time causal, LTI system. Since H(z) is analytic in

|z| > R for sufficiently large R, the series

∞∑
l=0

h(l)z−l

converges to H(z). Let us define inductively the following

sequence of transfer functions {Hk(z)}∞k=0 associated with

H(z) as follows:

H0(z) := H(z),

Hk+1(z) := −z
dHk(z)

dz
, ∀k ≥ 0.

The following well-known result is useful in characteriza-

tion:

Lemma 1. Let G(z) be a rational, proper transfer function
with a decaying impulse response, g(k). If G(z0) = 0 for
some z0 ≥ 1, then g(k) changes sign at least once.

Proof. Since z0 > 1 and g(k) is decaying, the series

∞∑
k=0

g(k)z−k
0

converges and from the definition of Z-transform, it equals

G(z0). If g(k) does not change sign, then G(z0) �= 0 since

zk
0 is always positive. But G(z0) = 0 by the hypothesis.

Hence, g(k) must change sign at least once.

Remark 1. It is sufficient for the impulse response to change

sign if a real, positive zero of G(z), namely z0, lies outside

the disk containing all its poles. To see this, one can see

that g(k)z−k
0 will be decaying exponentially and hence the

series
∑∞

k=0 g(k)z−k
0 converges to G(z0). The rest of the

proof carries through.

Theorem 1. Suppose H(z) is analytic in |z| ≥ 1. The
impulse response h(k) is non-negative if and only if the
sequence of transfer function Hk(z) do not have a real
positive zero outside the unit disk |z| ≥ 1.

Proof. (Necessity) We note by induction that for all |z| ≥ 1

Hk(z) =
∞∑

l=0

lkh(l)z−l.

Clearly, for k = 0, the above holds. Suppose it holds for

k = 0, 1, 2, . . . , m. Consider

−z
dHm(z)

dz
= −z

d

dz
[
∞∑

l=0

lmh(l)z−l]

=
∞∑

l=0

lm+1h(l)z−l = Hm+1(z).
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We further note that Hm(z) is also analytic in |z| ≥ 1 and its

impulse response {lmh(l)}∞l=0 decays to zero asymptotically.

From the earlier lemma, if Hm(z) has at least one real,

positive zero outside the unit disk for any m, its impulse

response lmh(l) will change sign implying that the impulse

response, h(l), of H(z) will also change sign.

(Sufficiency) Associated with every natural number t, one can

define for every k,

Dk,t(H(z)) := (
e

t
)kHk(e

k
t ),

and further define

Dt(H(z)) := lim
k→∞

Dk,t(H(z)).

Clearly,

Dk,t((H(z)) =
∞∑

l=0

h(l)lke−
lk
t (

e

t
)k

=
∞∑

l=0

h(l)(
le

t
e−

l
t )k.

Let y = l
t and consider the sequence of functions φk(y) :=

(ye−(y−1))k, k = 0, 1, . . . It is clear that φk(y) = φ0(y)k.

It is easy to notice that φ0(y) is monotonically increasing in

[0, 1] and monotonically decreasing in [1,∞) and has exactly

one maximum at y = 1. The corresponding maximum value

of φ0(y) is 1. Hence, as k → ∞, the function φk(y)
approaches the Kronecker delta function δ(y − 1) (which

equals one if y = 1 and equals 0 otherwise).

With this observation, it is easy to see that Dt(H(z))
approaches

∑∞
l=0 h(l)δ( l

t − 1) =
∑∞

l=0 h(l)δ(l − t) = h(t)
for every natural number t. Suppose there is a sign change in

the impulse response; then there must exist a t1 and t2 > t1
such that h(t1)h(t2) < 0. Clearly, for a sufficiently large k,

it must be the case that Hk(e
k
t1 )Hk(e

k
t2 ) < 0; otherwise, the

limit will not hold. Hence, for all sufficiently large k, there

will be a change in sign of Hk(z) for some real positive z

lying between e
k
t2 and e

k
t1 .

B. Results concerning controlling the overshoot of a
discrete-time LTI system

The problem of achieving non-overshooting step response

is important in control systems and several results have been

reported [9], [2], [10], [11], [12]. The question of whether

overshoot can be eliminated or not was first was answered

by Deodhare and Vidyasagar [13]. They established that, for

discrete-time LTI systems, there is a deadbeat closed loop

system that can be synthesized which has a non-overshooting

step response. Techniques from l1 optimal control were

applied to arrive at this result, since their focus was primarily

on minimizing the l1 norm of the error response to a step

input. The continuous-time counterpart of their results for

discrete-time LTI systems was established by the authors

in [14] directly. This approach is used in this paper to

establish directly the discrete-time counterpart of the result.

Given any plant P (z) = Np(z)
Dp(z) ; consider a 2-parameter

compensator as shown in Fig. 2. To avoid trivially unsolvable

Prefilter Controller Plant

R(s) Y (s)+

−
Nf (s)

Df (s)
Nc(s)
Dc(s)

Np(s)
Dp(s)

Fig. 2. Block diagram of the compensation scheme

problems, we only consider plants that satisfy the following

conditions:

1) Are stabilizable by feedback controllers, and

2) Do not have a zero at unity.

Plants satisfying the above conditions will be called admis-

sible plants.

Theorem 2. For every admissible plant, there is a two-
parameter compensator, as shown in Fig. 2, that renders the
closed loop step response non-overshooting.

Proof. The proof is by construction. Let Nc

Dc
(z) be a feedback

controller so that Np(z)Nc(z) + Dp(z)Dc(z) is Schur, and

write Np(z)Nc(z) as n0 + n1z + . . . + nqz
q. Choose

Nf (z) = Np(z)Nc(z) + Dp(z)Dc(z),

and Df (z) = (z − α)p, where 1 > α > 0 can be chosen

and the degree, p, of Df (z) is greater than or equal to that

of Nf (z).
This choice results in the following transfer function from

the reference to the output:

Pcl(z) =
Np(z)Nc(z)

Np(z)Nc(z) + Dp(z)Dc(z)
Nf (z)
Df (z)

,

and is stable.

To track a step input, it is necessary to have Nc(1) �= 0,

and this always can be achieved by a small perturbation of

the constant numerator coefficient of the controller, since the

plant satisfies condition 2 above. In essence, one may assume

that n̄0 := n0 + n1 + . . . + nq �= 0.

To determine if the closed loop system has a non-

overshooting step response, it is sufficient to verify that the

response to a step input of magnitude
(1−α)p

n̄0
does not exceed

unity at any instant of time. Therefore, it is sufficient to check

if the following error transfer function has a non-negative

impulse response:

E(z) =
z

z − 1
− n0 + n1z + . . . + nqz

q

(z − α)p

(1− α)p

n̄0

z

z − 1
.

Upon simplification,

E(z) =
z

z − 1
1

(n0 + . . . + nq)(z − 1 + α)p
[

(n0 + n1 + . . . + nq)(z − α)p

−αp(n0 + n1z + . . . + nqz
q)].

Therefore,

E(αz) =
αz

αz − 1
X(z)

(n0 + n1 + . . . + nq)(z − 1)pαp
,
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where

X(z) := (n0 + . . . + nq)(z − 1)pαp

−(1− α)p(n0 + n1αz + . . . + nqα
qzq).

The polynomial X(z) may be simplified as

X(z) = (n0 + . . . + nq)[(αz − α)p − (1− α)p]
+(1− α)p[(n0 + . . . + nq)
−(n0 + n1αz + . . . + nqα

qzq)]
= (αz − 1)[(n0 + . . . + nq)[αp−1(z − 1)p−1 +

αp−2(z − 1)p−2(1− α) + . . . + (1− α)p−1]
−(1− α)pF (α, z), where

F (α, z) = [n1 + n2(αz + 1) + . . .

+nq(αq−1zq−1 + . . . + 1)].

If one writes F (α, z) = F0(α) + F1(α)(z − 1) + . . . +
Fq−1(α)(z − 1)q−1, where Fi = 1

i!
diF
dzi |z=1, the polynomial

X(z) may be expressed as:

X(z) = (αz − 1)
p−1∑
l=0

[(n0 + . . . + nq)αl(1− α)p−1−l

−(1− α)pFl](z − 1)l.

In the above expression, Fl = 0 for every l > q − 1.

In essence, the expression for E(αz) may now be simpli-

fied as:

E(αz) =
αz

n̄0αp

p−1∑
l=0

[(n0 + . . . + nq)αl(1− α)p−1−l

−(1− α)pFl]
1

(z − 1)p−l

:=
p−1∑
l=0

Cl

(z − 1)p−1−l
,

where the coefficients Cl are given by:

Cl =
α

n̄0αp
[n̄0α

l(1− α)p−1−l − (1− α)pFl].

Let e(k) be the inverse Z-transformation of E(z). Since the

Z-transformation of
e(k)
αk is E(αz), it is clear that e(k) will

be non-negative if the coefficients Cl ≥ 0 for all l. From the

formulae for Cl, if one treats the second term on the right

hand side to be a perturbation to the first term, the second

term is of the order (1− α)p or higher, while the first term

is positive and of order less than or equal to (1 − α)p−1.

Clearly, by making 1− α sufficiently small but positive, all

the coefficients, Cl, can be made positive. This will ensure

that the error to a step input will always be positive. This

implies that the step response will not overshoot.

Therefore, every admissible continuous-time LTI plant can

be controlled to have a non-overshooting step response.

Remark 2. 1) As can be seen from the proof, choosing a

sufficiently small 1−α > 0 is equivalent to sufficiently

slowing down the speed of the response; this is the

mechanism we have adopted in our constructive proof.

2) The degree of the two parameter stabilizing compen-

sator guaranteeing a non-overshooting step response

can be bounded by 3n−1, where n is the order of the

transfer function of the plant.

The synthesis of a stable, non-overshooting closed loop

step response can be accomplished if one has no restrictions

on slowing down the input or on the order of the compensator

that can be chosen. In the following section, we will deal

with this case.

C. Approximation of the set of controllers guaranteeing a
non-negative impulse response

The problem statement for the synthesis of the set of

stabilizing controllers guaranteeing a non-negative impulse

response is as follows:

PROBLEM: Given a proper, rational transfer function

H(z, K) =
N(z, K)
D(z, K)

,

where the coefficients of N(z, K) and D(z, K) are affine
in the controller parameter vector K, determine the set of
K’s such that the impulse response, h(k), of H(z, K) is
non-negative and decaying.

Through a bilinear transformation, the problem of ren-

dering a polynomial Schur can be converted to some other

polynomial being made Hurwitz. The results of [7] can be

brought to bear to find an approximate set of stabilizing

controllers; recently, using Chebychev polynomials, a direct

method of approximating the set of controllers, K, that ren-

der D(z, K) Schur is presented in [15]. We can approximate

the set of stabilizing controllers as ∪N
i=1Pi, where P〉 is

a polyhedral set with a description FiK ≤ gi for some

appropriate vector gi and an appropriate matrix Fi. With

this as a starting point, we can focus on how to make the

impulse response of h(k) non-negative.

The following lemma is of relevance and is also proved

in [4]:

Lemma 2. If h(k) does not change sign, then there is a real
positive root z0 of D(z, K) of maximum modulus. Moreover,
if there are more than one root that is of maximum modulus,
the multiplicity of the real positive root is maximum.

We will also need the following result of Markov-Lucaks

based on Feijer’s theorem:

Lemma 3. A polynomial N(x) =
∑m

l=0 nlx
l be non-

negative in the interval [1,∞) if and only if there exist
polynomials f1(x) of degree at most m

2 , and f2(x) of degree
at most m−1

2 such that N(x) = f1(x)2 + (x− 1)f2(x)2.

A consequence of the result of Markov-Lucaks theorem

is that the non-negativity of a polynomial on the interval

[1,∞) can be checked using an appropriate semi-definite

program. Let R be the smallest integer greater than or equal

to m
2 and S be the smallest integer greater than or equal to

R−1
2 . Let Ml(x) be a vector of monomials [1 x x2 . . . xl].

Then, for some appropriate semi-definite matrices Y1, Y2 ≥
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0 of dimensions R and S, one may express f1(x)2 =
MR(x)Y1MR(x)T and f2(x)2 = MS(x)Y2MS(x)T . Com-

paring the coefficients of f1(x)2+(x−1)f2(x)2 and equating

them to that of N(x), one arrives at a set of linear equations

relating the coefficients of N(x) to the entries of Y1, Y2. In

essence, one can establish the non-negativity of a polynomial

N(x) on [1,∞) by checking the feasibility of a semi-

definite program Y1 ≥ 0, Y2 ≥ 0 and the linear system of

equations that relate the entries of the matrices Y1, Y2 with

the coefficients of the given polynomial.

We now state a lemma that is useful in computing the

set of stabilizing controllers guaranteeing a non-negative

impulse response:

Lemma 4. Let N(z, K) =
∑n

l=0 al(K)zl. If K is a stabiliz-
ing controller in a polyhedral set Fi such that D(1, K) > 0
for all K ∈ Fi, and K renders the impulse response of
N(z,K)
D(z,K) non-negative, then K is in the feasible set of the
semi-definite program that enforces the requirement that
N(z, K) is non-negative on [1,∞).

Proof. If K renders the impulse response of
N(z,K)
D(z,K) non-

negative, clearly, it cannot have any real, positive zeros

greater than 1 and hence must be non-negative. As we

have seen, the non-negativity of N(z, K) can be verified

using a semi-definite program. Since K ∈ Pi, a polyhedral

set, and an Linear Program can always be expressed as a

semi-definite program and furthermore, the intersection of

two semi-definite programs is a semi-definite program, one

can get a first approximation of the set of the stabilizing

controllers guaranteeing the non-negativity of the impulse

response of
N(z,K)
D(z,K) as a union of semi-definite programs

with one obtaining one semi-definite program corresponding

to each Pi.

One may sometimes be able to refine the approxima-

tion by considering the transfer function H1(z, K) =
−z d

dz
N(z,K)
D(z,K) = N1(z,K)

D(z,K)2 . Clearly, the numerator, N1(z, K)
of this transfer function must also be non-negative. How-

ever, the numerator of this transfer function has coefficients

that are quadratic in K leading one to a quadratic matrix

inequality of the form:
∑
β∈I

KβSβ +
∑
ij

TijYij ≥ 0,

where I is the index set of all the monomials of K of degree

at most two, Kβ is a monomial of degree at most two and

Sβ , Tij are symmetric matrices of appropriate dimension and

Yij are the entries of the semi-definite matrices associated

with the semi-definite program obtained by applying the

Markov-Lucaks theorem. The constant term is the zeroth

degree term (i.e., K0).

Suppose Pouter is an outer approximation of the desired

set of controllers. If it is empty, we know that there cannot be

any stabilizing controller that satisfies the desired transient

specification. To make it non-trivial, let Pouter be non-empty.

Pick a K0 ∈ Pouter. If it is such that
∑

β∈I Kβ
0 Sβ +∑

i,j TijYij is not positive semi-definite for any Yij entries,

then there is a semi-definite R ≥ 0 such that∑
β∈I

Kβ
0 Trace(RSβ)︸ ︷︷ ︸

γβ

< 0,

and Trace(RTij) = 0 for all i, j. One can therefore enforce

the constraint ∑
β∈I

Kβγβ ≥ 0,

to eliminate K0 in the approximation thereby refining it.

A characterization of the convex hull of a quadratic

inequality through a semi-definite program was provided by

Lasserre through the use of the theory of moments [16].

Let Pi be bounded, i.e., there is a M > 0 such that

M − ‖K‖2 ≥ 0. Consider the set K ⊂ Pi such that for

all K ∈ K, we have

P1(K) =
∑
β∈I

Kβγβ ≥ 0,

P2(K) = M − ‖K‖2 ≥ 0.

Let y := {yβ , β ∈ I} and let Ly : �[K] → � be the

linear functional that maps a polynomial P =
∑

β pβKβ ∈
�[K] to Ly(P ) = s

∑
β pβyβ . One can then introduce a

moment matrix, Mr(y) with rows and columns also indexed

according to the monomials so that

Mr(y)(i, j) := Ly(Ki+j) = yi+j , 0 ≤ i, j ≤ r.

For example, if one is dealing with inequalities in two

variables,

M1(y) =

⎡
⎣ y00 y10 y01

y10 y20 y11

y01 y11 y02

⎤
⎦ .

Theorem 3. The convex hull of K (given by Ω ⊂ �n ) is
representable as the feasible set of the lifted following semi-
definite program:

Ω = {(x, y) :

M1(y) ≥ 0,
Ly(Pj(K) ≥ 0, j = 1, 2
Ly(Ki) = xi, i = 1, . . . , n,
y00 = 1

}.

One can now refine any outer approximation of the set of

stabilizing controllers guaranteeing the transient performance

by intersecting it with the convex hull of K given by the

semi-definite program above.

To use Lemma 2, we construct a polynomial D̃(s, K) =
(1− s)nD( s+1

1−s , K) and we claim the following:

Lemma 5. Let D(z, K) be Schur and of degree n. If a real,
positive root, ρ, of D(z, K) is of maximum modulus then the
polynomial D̃(s, K) has roots with real parts less than or
equal to ρ−1

ρ+1 .

Proof. Let rejθ be a root of D(z, K). The roots of D(z, K)
and D̃(s, K) are related through r(cos θ + j sin θ) = s+1

1−s .

Then �(s) = r2−1
r2+2r cos θ+1 ≤ r−1

r+1 . Since r ≤ ρ < 1, the real

part of s is a maximum, when θ = 0. Moreover, for θ = 0,

the real part of s is an increasing function of r. Therefore,
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a real positive root of D(z, K) is of maximum modulus if

and only if �(s) ≤ ρ−1
ρ+1 .

One can now pose the problem of determining the set of

controllers in Fi that have a dominant real pole as a search

for α so that a linear program parameterized in α is feasible.

The following lemma deals with this problem:

Lemma 6. Let Pi be a set of controllers K such that
D̃(s, K) is Hurwitz. If L ⊂ Pi is the set of controllers
such that D̃(s, K) has a generically dominant real root, then
there exists an α < 0 such that any K ∈ L must satisfy
one of the following additional set of linear constraints. Let
Dα(s, K) := D̃(s+α,K) := d0(α,K)+d1(α,K)s+ · · ·+
dn(α,K)sn.
LP1:

d0(α, K) < 0, d1(α, K) > 0, d2(α, K) > 0, · · · , dn(α, K) > 0.

LP2:

d0(α, K) > 0, d1(α, K) < 0, d2(α, K) < 0, · · · , dn(α, K) < 0.

One can determine a union of these polyhedral sets which

will contain the desired set of controllers. Intersecting this

union with the union of feasible sets of the semi-definite

programs constructed earlier, one can find an outer approx-

imation for the set of stabilizing controllers K that render

the impulse response of
N(z,K)
D(z,K) non-negative.

III. RESULTS

Example 1. Consider the plant:

G(z) =
1

z2 − 0.25
.

The controller is considered to be of the following PID

structure:

C(z) =
k3z

2 + k2z + k1

z2 − z
.

The characteristic polynomial is

z4 − z3 + (k3 − 0.25)z2 + (k2 + 0.25)z + k1.

The inner approximation of the set of stabilizing con-

trollers is found using the algorithm developed by the au-

thors in [15]. This approximation of the set of stabilizing

controllers is shown in Fig. 3 in the lighter shade (red color).

Within this set of stabilizing controllers lies the set of

controllers which renders the impulse response of the cor-

responding closed loop system to be non-negative. This set

is generated using the method developed in this paper. It

is shown in Fig. 3 in the darker color (blue). This set of

controllers is an outer approximation of the required set and

can be refined using the results of Theorem 3.

Fig. 3. Set of controllers.

REFERENCES

[1] D. Widder, “The inversion of the Laplace integral and the related
moment problem,” Trans. Amer. Math. Soc, vol. 36, pp. 107–200, 1934.

[2] M. Vidyasagar, “On undershoot and nonminimum phase zeros,” Au-
tomatic Control, IEEE Transactions on, vol. 31, no. 5, pp. 440–440,
1986.

[3] S. Darbha, “On the synthesis of controllers for achieving a non-
negative impulse response in continuous-time lti systems,” Automatica,
vol. 39, no. 1, pp. 159–165, January 2003.

[4] S. Darbha and S. P. Bhattacharyya, “Controller synthesis for a sign
invariant impulse response in discrete time systems,” IEEE Transac-
tions on Automatic Control, vol. 47, no. 8, pp. 1346–1351, August
2002.

[5] D. Henrion, S. Tarbouriech, and V. Kucera, “Control of linear systems
subject to time-domain constraints with polynomial pole placement
and LMIs,” Automatic Control, IEEE Transactions on, vol. 50, no. 9,
pp. 1360–1364, 2005.

[6] W. A. Malik, S. Darbha, and S. P. Bhattacharyya, “On controlling
the transient response of linear time invariant systems,” in 16th
Mathematical Theory of Networks and Systems Conference, Belgium,
2004.

[7] ——, “A linear programming approach to the synthesis of fixed struc-
ture controllers,” IEEE Transactions on Automatic Control, vol. 53,
no. 6, pp. 1341–1352, July 2008.
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