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Abstract— Recently, we developed a structural decomposition
for multiple input multiple output nonlinear systems that
are affine in control but otherwise general. This structural
decomposition simplifies the conventional backstepping design
and allows a new backstepping design procedure that is able to
stabilize some systems on which the conventional backstepping
is not applicable. In this paper we further exploit the properties
of such a decomposition for the purpose of solving the semi-
global stabilization problem for minimum phase nonlinear
systems without vector relative degrees. By taking advantage of
special structure of the decomposed system, we first apply the

low gain design to the part of system that possesses a linear
dynamics. The low gain design results in an augmented zero
dynamics that is locally stable at the origin with a domain of
attraction that can be made arbitrarily large by lowering the
gain. With this augmented zero dynamics, backstepping design
is then apply to achieve semi-global stabilization of the overall
system.

I. INTRODUCTION AND PROBLEM STATEMENT

In this paper, we consider the problem of semi-globally

stabilizing a nonlinear system of the affine-in-control form
{

ẋ = f(x) + g(x)u,

y = h(x),
(1)

where x ∈ R
n, u ∈ R

m and y ∈ R
p are the state, input and

output, respectively, and the mappings f , g and h are smooth

with f(0) = 0 and h(0) = 0. In a semi-global stabilization

problem, we are to construct, for any given, arbitrarily large,

bounded set of the state space X0, a smooth feedback law, say

u = vX0
(x), with v(0) = 0, such that the closed-loop system

is asymptotically stable at the origin with X0 contained in

the domain of attraction.

The non-local stabilization of nonlinear systems of the

form (1) has been made possible by the structural decom-

position, in the form of various normal forms, of these

systems. Indeed, there is a vast literature on the develop-

ment of the normal forms for affine-in-control nonlinear

systems ([1–13]), which explores the nonlinear analogous of

linear systems structural properties, establishes the nonlinear

equivalence of linear system structures, and identifies more

intricate structural properties that linear systems do not

display. There is also a vast literature on the applications of

the discovered structural properties to solve nonlinear control

problems (see, e.g., [14–23]).

The development of nonlinear system structural decom-

position started with the definition of relative degrees, the

nonlinear equivalence of infinite zeros, and the normal form
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decomposition for the single input single output case, i.e.,

m = p = 1 [4]. This definition of relative degrees was soon

generalized to the case with m = p > 1. In general, the

system (1) with m = p ≥ 1 has a vector relative degree

[6, 14] {r1, r2, · · · , rm} at x = 0 if

Lgj
Lk

fhi(x)=0, 0 ≤ k<ri−1, 1 ≤ i, j ≤ m

in a neighborhood of x=0, and det {Lgj
Lri−1

f hi(0)}m×m �=
0. If the system (1) has a vector relative degree

{r1, r2, · · · , rm} at x = 0, and with the assumption of

the distribution spanned by the row vectors of g(x) being

involutive in a neighborhood of x=0, it can be described by














η̇ = f0(x),

ξ̇i,j = ξi,j+1, j = 1, 2, · · · , ri − 1,

ξ̇i,ri
= vi,

yi = ξi,1, i = 1, 2, · · · , m,

(2)

where vi = ai(x)+bi(x)u, i = 1, 2, · · · , m, with the matrix

col {b1(x), b2(x), · · · , bm(x)} being smooth and nonsingular.

Even though the definition of relative degree and the

resulting normal form are nonlinear equivalence of the notion

of infinite zeros and the related canonical form for single

input single output systems, the vector relative degree for

multiple input multiple output systems is a rather strong

structural property that not even all square invertible linear

systems, with the freedom of choosing coordinates for the

state, output and input spaces, could possess [24].

A major generalization of the form (2) was made in [9,

12, 13], where square invertible systems are considered. By

using the Zero Dynamics Algorithm, under the assumptions

that the ranks of certain matrices are constant and that the

distribution spanned by the row vectors of g(x) is involutive,

the system can be transformed into the following form


























η̇ = f0(x),

ξ̇i,j = ξi,j+1+

i−1
∑

l=1

δi,j,l(x)vl, j = 1, 2, · · · , ni − 1,

ξ̇i,ni
= vi,

yi = ξi,1, i = 1, 2, · · · , m,

(3)

where n1 ≤ n2 ≤ · · · ≤ nm, vi = ai(x) + bi(x)u, i =
1, 2, · · · , m, with the matrix col {b1(x), b2(x), · · · , bm(x)}
being smooth and nonsingular.

As pointed out in [9], when all δi,j,l(x) = 0, the set of

integers {n1, n2, · · · , nm} in (3) corresponds to the vector

relative degrees, which in this case, represent the infinite zero

structure if the system is linear. These integers however are

not related to the infinite zero structure of linear systems
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when δi,j,l(x) �= 0, and thus cannot be viewed as the

nonlinear equivalence of and expected to play a similar role

as infinite zeros ( see [24] for an example showing this ).

In a recent paper [24], we study the structural properties of

affine-in-control nonlinear systems beyond the case of square

invertible systems. We propose an algorithm that identifies a

set of integers that are equivalent to the infinite zero structure

of linear systems and leads to a normal form representation

that corresponds to these integers as well as to the system

invertibility structure. This new normal form representation

takes the following form


































η̇ = f∆(η, zd)+g∆(η, zd)u∆,

ξ̇i,j = ξi,j+1+

i−1
∑

l=1

δi,j,l(x)vd,l, j=1, 2, · · · , qi−1,

ξ̇i,qi
= vd,i,

y∆ = h∆(η, zd),
yd,i = ξi,1, i = 1, 2, · · · , md,

(4)

where q1≤q2≤· · ·≤qmd
, ξi={ξi,1, ξi,2, · · · , ξi,qi

}, zd ={ξ1,

ξ2,· · ·, ξmd
}, vd,i =ai(x)+bi(x)u, with the matrix col {b1(x),

b2(x), · · · , bmd
(x)} being of full row rank and smooth, and

δi,j,l(x) = 0, for j < ql, i = 1, 2, · · · , md. (5)

We note here that md is the largest integer for which the

system assumes the above form. The system is left invertible

if u∆ is non-existent, right invertible if y∆ is non-existent, and

invertible if both are non-existent. In the case that the system

is square and invertible, i.e., the system that was considered

in [9, 12, 13], m = p = md and the parts containing y∆ and

u∆ drop off. Thus, the normal form (4) simplifies to


























η̇ = f∆(η, ξ),

ξ̇i,j = ξi,j+1+

i−1
∑

l=1

δi,j,l(x)vl, j = 1, 2, · · · , qi−1,

ξ̇i,qi
= vi,

yi = ξi,1, i = 1, 2, · · · , m,

(6)

where q1 ≤ q2 ≤ · · · ≤ qm, ξi = col {ξi,1, ξi,2, · · · , ξi,qi
},

ξ = col {ξ1, ξ2, · · · , ξm}, and

δi,j,l(x) = 0, for j < ql, i = 1, 2, · · · , m. (7)

We note that the normal form (6) is the same as (3) except for

the additional structural property (7). The ξ̇i,j equation in (6)

displays a triangular structure of the control inputs that enter

the system. The property (7) imposes additional structure

within each chain of integrators on how control inputs enter

the system. With this additional structural property, the set

of integers {q1, q2, · · · , qm} indeed represent infinite zero

structure when the system is specialized to a linear one.

In this paper, we would like to explore the application of

the normal form (6)-(7) in solving the problem of semi-global

stabilization for nonlinear systems (1). The normal form (6)-

(7) does not require a vector relative degree. The problem of

semi-global stabilization of system (1) with a vector relative

degree has been well-studied in the literature. For example,

the work of [14, 15] solved the semi-global stabilization

problem for nonlinear systems with vector relative degrees,

i.e., in the form of (2), but the zero dynamics is driven only

by ξi,1, i = 1, 2, · · · , m, the states at the top of the m chains

of integrators. The works of [16, 18] generalized this result

of [14, 15] by allowing f0 to be dependent on any one state

of each of the m chains of integrators. More specifically, the

system considered in [16, 18] can be represented as follows,














η̇ = f0(η, ξ1,ℓ1 , ξ2,ℓ2 , · · · , ξm,ℓm
),

ξ̇i,j = ξi,j+1, j = 1, 2, · · · , ri − 1,

ξ̇i,qi
= vi,

yi = ξi,1, i = 1, 2, · · · , m,

(8)

where 1 ≤ ℓi ≤ ri + 1, i = 1, 2, · · · , m, and ξi,qi+1 ≡ vi.

The peaking phenomenon, which was identified in [15] as a

main obstacle to semi-global stabilization, in such systems

is eliminated by stabilizing part of linear system with a

high-gain linear control and the remaining part of the linear

subsystem with a small, bound nonlinear control [16]. The

reference [18] shows that the same problem can be done by

linear state feedback laws, which, of course, depend only on

the linear states. The fundamental issue in design of such a

linear state feedback law is to induce a specific time-scale

structure in the linear part of the closed-loop system. This

time-scale structure consists of a very slow and a very fast

time scale, which are the results of a linear state feedback

of the high-and-low-gain nature.

In this paper, we consider semi-global stabilization prob-

lem for the following nonlinear system,


























η̇ = f0(η, ξ1,ℓ1 , ξ2,ℓ2 , · · · , ξm,ℓm
),

ξ̇i,j = ξi,j+1+

i−1
∑

l=1

δi,j,l(η, ξ)vl, j=1, 2, · · · , qi−1,

ξ̇i,qi
= vi,

yd,i = ξi,1, i = 1, 2, · · · , m,

(9)

where q1 ≤ q2 ≤ · · · ≤ qm, ξi = col {ξi,1, ξi,2, · · · , ξi,qi
},

ξ=col {ξ1, ξ2, · · · , ξm}, and

δi,j,l(η, ξ) = 0, for j < ql, i = 1, 2, · · · , m. (10)

ℓi ≤ q1 + 1, i = 1, 2, · · · , m, (11)

with ξi,qi+1 ≡ vi.

As explained earlier, no vector relative degree is required

for systems to be decomposed into the above normal form.

Note that in [16, 18], δi,j,l = 0. That is, the systems con-

sidered in [16, 18] are a cascade of a linear subsystem with

the zero dynamic, which is the only source of nonlinearity.

The remainder of this paper is organized as follows.

In Section II, we recall the conventional backstepping de-

sign methodology. We will also describe the level-by-level

backstepping approach as well as the mixed chain-by-chain

and level-by-level backstepping, both of which have been

developed in [25] to solve the global stabilization problem

for nonlinear systems. Section III presents our solution to

the semi-global stabilization problem for nonlinear systems

without vector relative degrees. Some examples are used to

illustrate how the proposed design approach works. A brief

conclusion to the paper is drawn in Section IV.
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II. PRELIMINARY RESULTS

In the section, we recall some results on the backstepping

design methodology [8, 12, 20, 25]. The backstepping design

method is readily applicable to systems that have vector

relative degrees and are represented in the form (2), which

contains m chains of integrators. Each of these chains

independently controlled by a separate input. If the zero

dynamics is only dependent on the states of the leading

integrators of each chain, i.e.,

η̇ = f0(η, ξ1,1, ξ2,1, · · · , ξm,1), (12)

and there exist smooth functions, v⋆
i (η), with v⋆

i (0) = 0, i =
1, 2, · · · , m, such that η̇ = f0(η, v⋆

1(η), v⋆
2(η), · · · , v⋆

m(η))
is globally asymptotically stable at η = 0, then it is

straightforward to design a globally stabilizing feedback

law v1(x), v2(x), · · · , vm(x), recursively, by viewing the

next integrators as a new intermediate input. Such a design

procedure is thus referred to as “backstepping.”

The technique of backstepping, however, cannot as easily

be implemented if the system does not have a vector relative

degree. An additional assumption is required. In what fol-

lows, we recall from [12] this additional assumption on the

normal form (3) and the backstepping design procedure that

is implemented under these assumptions.

This assumption is that the coefficient functions δi,j,l

to display a certain “triangular” dependency on the state

variables [9]. Under this “triangular” dependency, a feed-

back law vi = u⋆
i (η; ξ1,1, ξ2,1, · · · , ξm,1; ξ1, ξ2, · · · , ξi), i =

1, 2, · · · , m that globally stabilizes the whole system can

be constructed from v⋆
i (η), i = 1, 2, · · · , m, through a

backstepping procedure. The procedure commences with

the subsystem (12), and is followed by backstepping

n1 times through the variables in first chain of in-

tegrators to obtain u⋆
1(η; ξ1,1; v

⋆
2(η), v⋆

3(η), · · · , v⋆
m(η); ξ1),

and backstepping n2 times through the variables in

the second chain of integrators to obtain the feed-

back law u⋆
2(η; ξ1,1, ξ2,1; v⋆

3(η), v⋆
4(η), · · · , v⋆

m(η); ξ1, ξ2).
This procedure is continued chain by chain for i =
1 through m, each backstepping n i times through

i-th chain of integrators to discover the feedback

law u⋆
i (η; ξ1,1, ξ2,1, · · · , ξi,1; v

⋆
i+1(η), v⋆

i+2(η), · · · , v⋆
m(η);

ξ1, ξ2, · · · , ξi).
As the backstepping is implemented on the integrators

chain by chain, we will refer to the above backstepping

procedure as the chain-by-chain backstepping, and corre-

spondingly, the “triangular” dependency of δ i,j,l on the state

variables the chain-by-chain triangular dependency.

Let us call all ξi,1, i.e., the “leading” variables in each

chain of integrators which connect an input to an output,

the first level integrators, and call all ξi,2 the second level

integrators, and so on. As an alternative to the chain-by-

chain backstepping, in [25], we proposed to carry out the

backstepping on all first level integrators, and then repeat the

procedure on all second level integrators until we reach to

last level of integrators. We will refer to such a backstepping

procedure as the level-by-level backstepping, in contrast with

the chain-by-chain backstepping procedure.

To make the level-by-level backstepping possible, the

coefficients δi,j,l in (6) should satisfy the level-by-level

triangular dependency [25]. Suppose that the level-by-level

triangular dependency is satisfied, the level-by-level back-

stepping procedure for (6) can be described as follows. We

will start with

η̇ = f0(η, v⋆
1(η), v⋆

2(η), · · · , v⋆
m(η)).

After the first-level backstepping, we obtain the feedback

laws

vi = u⋆
i (η; ξ1,1, ξ2,1, · · · , ξi,1), i = 1, 2, · · · , α1,

where α1 is the number of chains that contain exactly one

integrator, i.e., q1 =q2 = · · ·=qα1
=1. For chains that contain

more than one integrator, we have

ξi,2 =φ⋆
i,2(η; ξ1,1, ξ2,1, · · · , ξi,1), i = α1+1, α1+2, · · · , m.

Here, ξi,2 are viewed as inputs. We next proceed with back-

stepping on the second level integrators. After the second

level backstepping, we obtain the feedback laws

vi = u⋆
i (η; ξ1,1, ξ2,1, · · · , ξm,1; ξ1,2, ξ2,2, · · · , ξi,2),

i = α1 + 1, α1 + 2, · · · , α2,

where α2 − α1 is the number of chains that contain exactly

two integrators, i.e., qα1+1 = qα1+2 = · · · = qα2
= 2. For

chains with lengths greater than 2, we obtain

ξi,3 = φ⋆
i,3(η; ξ1,1, ξ2,1, · · · , ξm,1; ξ1,2, ξ2,2 · · · , ξi,2),

i = α2 + 1, α2 + 2, · · · , m.

Here, ξi,3 are viewed as inputs. Continuing in this way, we

finally obtain

vi = u⋆
i (η; ξ1,1, ξ2,1, · · · , ξm,1; ξ1,2, ξ2,2, · · · , ξm,2;

· · · ; ξ1,qm−1, ξ2,qm−1, · · · , ξm,qm−1; ξi,qm
),

for chains that contain qm integrators.

The level-by-level backstepping will allow the backstep-

ping to be implemented on some systems for which the

chain-by-chain backstepping procedure is not applicable. As

pointed out in [25], the triangular dependency requirement

can be further weakened if we mix the chain-by-chain back-

stepping and the level-by-level backstepping and implement

it on a same system, allowing the stabilization of a larger

class of systems.

Consider


























η̇ = f0(η, ξ1,1, ξ2,1, · · · , ξm,1),

ξ̇i,j = ξi,j+1+

i−1
∑

l=1

δi,j,l(η, ξ)vl, j = 1, 2, · · · , qi − 1,

ξ̇i,qi
= vi,

yd,i = ξi,1, i = 1, 2, · · · , m,
(13)

where q1 ≤ q2 ≤ · · · ≤ qm, ξ = col {ξ1, ξ2, · · · , ξm}, ξi =
col {ξi,1, · · · , ξi,qi

},

δi,j,l = 0, for j < ql, i = 1, 2, · · · , m. (14)
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Following [25], we have the following theorem, which is

crucial for the results in next section.

Theorem 2.1: Suppose that the system (13) satisfies (14)

and there exist smooth functions, v⋆
i (η), with v⋆

i (0) = 0, i =
1, 2, · · · , m, such that η̇ = f0(η, v⋆

1(η), v⋆
2(η), · · · , v⋆

m(η)) is

globally asymptotically stable at η = 0. Then there exists

a state feedback v that globally asymptotically stabilizes the

system at the origin if there exists an ordered list κ containing

all variables of ξ such that

1) ξi,1 are the first m elements of κ; ξi,j appears earlier

than ξi,j+1 in κ, for j = 2, 3, · · · , qi − 1, i =
1, 2, · · · , m;

2) The function δi,j,l depends only on η, and vari-

ables that appear earlier than ξi,j+1 in κ, for j =
2, 3, · · · , qi − 1, i = 1, 2, · · · , m.

III. MAIN RESULTS

Definition 3.1: The system (9) is semi-globally stabiliz-

able by state feedback if, for any compact set of initial

conditions X0 of the state space, there exists a smooth state

feedback

u = αX0
(η, ξ) (15)

such that the equilibrium (0, 0) of the closed-loop system (9)

and (15) is locally asymptotically stable and X0 is contained

in its domain of attraction.

In what follows, we will present an algorithm for con-

structing a family of feedback laws that semi-globally stabi-

lize the system (9). This algorithm consists of two steps.

We first find positive constants ci,ks, such that the poly-

nomials

pi(s) = sℓi−1 + ci,ℓi−2 sℓi−2 + · · · + ci,1 s + ci,0,

i = 1, 2, · · · , m,

have all roots with negative real parts. Define

v⋆
i = −εℓi−1ci,0ξi,1 − εℓi−2ci,1ξi,2 − · · · − εci,ℓi−2ξi,ℓi−1,

i = 1, 2, · · · , m.

where ε > 0. Consider






η̇ = f0(η, v⋆
1 , v⋆

2 , · · · , v⋆
m),

ξ̇i,j = ξi,j+1, j = 1, 2, · · · , ℓi − 2,

ξ̇i,ℓi−1 = v⋆
i , i = 1, 2, · · · , m.

(16)

Following [18], the dynamics of (16) has a locally asymp-

totically stable equilibrium at the origin of

(η; ξi,1, · · · , ξi,ℓi−1, i = 1, 2, · · · , m).

Moreover, the domain of attraction of this equilibrium can

be made arbitrarily large by decreasing the value of the low

gain parameter ε.

Lemma 3.1: Consider the system (16). Suppose that its

zero dynamics have a globally asymptotically stable equi-

librium at the origin. For any R > 0, there exists ε⋆ > 0

such that, for any 0 < ε ≤ ε⋆, the system (16) is locally

asymptotically stable and, moreover,






‖η(0)‖ ≤ R,

‖ξi,j(0)‖ ≤ R,

j = 1, 2, · · · , ℓi − 1, i = 1, 2, · · · , m

=⇒







limt→∞ η(t) = 0,

limt→∞ ξi,j(t) = 0,

j = 1, 2, · · · , ℓi − 1, i = 1, 2, · · · , m.
Once the intermediate inputs v⋆

i , i = 1, 2, · · · , m, have

been obtained, both [16] and [18] design the overall con-

troller by using linear high-gain state feedback. This is

possible because the systems considered there are linear

except the zero dynamics. In our situation, the system is in

the form of (9). Because of the nonlinearities δ i,j,l(η, ξ)vl,

we have to resort to backstepping procedure as described

in [25], where a special case of (9), i.e., ℓ i = 1, i =
1, 2, · · · , m, is considered.

By Lemma 3.1 and Theorem 2.1, we have

Theorem 3.1: Let the system (9) satisfy (10) and (11), and

there exist smooth functions, v⋆
i (η), with v⋆

i (0) = 0, i =
1, 2, · · · , m, such that η̇ = f0(η, v⋆

1(η), v⋆
2(η), · · · , v⋆

m(η)) is

globally asymptotically stable at η = 0. If there exists an

ordered list κ containing {ξi,j , j = ℓi, ℓi + 1, 2, · · · , qi, i =
1, 2, · · · , m}, such that

1) ξi,j appears earlier than ξi,j+1 and in κ;

2) The function δi,j,l depends only on η, {ξi,j , j =
1, 2, . . . , ℓi − 1, i = 1, 2, · · · , m}, and variables that

appear earlier than ξi,j+1 in κ, for j = 2, 3, · · · , qi−1,

i = 1, 2, · · · , m.

Then the system (9) is semi-globally stabilizable. That is,

there exists a state feedback v that locally asymptotically

stabilizes the system (9) and the basin of attraction of the

closed-loop system contains any compact set X of the state

space (η, ξ).
Example 3.1: Consider a three input three output system

in the form of (9) with three chains of integrators of lengths

{3, 4, 4},


























































η̇ = f0(η, ξ1,2, ξ2,1, ξ3,3),

ξ̇1,j = ξ1,j+1,

ξ̇1,3 = v1,

ξ̇2,j = ξ2,j+1,

ξ̇2,3 = ξ2,4+δ2,3,1(η; ξ1; ξ2,1, ξ3,1; ξ2,2, ξ3,2; ξ2,3)v1,

ξ̇2,4 = v2,

ξ̇3,j = ξ3,j+1, j = 1, 2,

ξ̇3,3 = ξ3,4 + δ3,3,1(η;ξ1; ξ2,1, ξ3,1; ξ2,2, ξ3,2; ξ2,3, ξ3,3)v1,

ξ̇3,4 = v3.
(17)

It is obvious that ℓ1 = 2, ℓ2 = 1, ℓ3 = 3. Suppose

there exist smooth functions, v⋆
i (η), with v⋆

i (0) = 0, i =
1, 2, 3, such that η̇ = f0(η, v⋆

1(η), v⋆
2(η), v⋆

3(η)) is globally

asymptotically stable at η = 0. Clearly, this system satisfies

the conditions in Theorem 3.1.

Let

v⋆
1 = −εξ1,1 − ξ1,2,
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v⋆
3 = −ε2ξ3,1 − εξ3,2 − ξ3,3,

Note that the equilibrium η = 0 of the subsystem

η̇ = f0(η, 0, v⋆
2(η), 0)

is globally asymptotically stable. In what follows, we will

illustrate how to implement the level-by-level backstepping

on this system. The backstepping procedure starts with the

following subsystem,

η̇ = f0(η, v⋆
1 , v⋆

2(η), v⋆
2).

The variable ξ2,1 is the only first level variable in κ. To carry

out the backstepping on the first level variables, we consider










































η̇ = f0(η, v⋆
1 , ξ2,1, v

⋆
3),

ξ̇1,1 = ξ1,2,

ξ̇1,2 = v⋆
1 ,

ξ̇3,1 = ξ3,2,

ξ̇3,2 = ξ3,3,

ξ̇3,3 = v⋆
3 ,

ξ̇2,1 = ξ2,2,

(18)

with ξ2,2 as the input. This subsystem can be asymptotically

stabilized by a control of the form

ξ2,2 = φ⋆
2,2(η; ξ1,1, ξ1,2, ξ2,1, ξ3,1, ξ3,2, ξ3,3). (19)

The subsystem (18) can be written as

η̇I = fI (ηI , ξ2,2), (20)

where ηI = col {η, ξ1,1, ξ1,2, ξ2,1, ξ3,1, ξ3,2, ξ3,3}. The equi-

librium ηI = 0 of this system (20) is asymptotically stabilized

by the virtual inputs ξ2,2 as given by (19).

To start the second level backstepping, consider






η̇I = fI (ηI , ξ2,2),

ξ̇1,2 = ξ1,3,

ξ̇2,2 = ξ2,3,

(21)

and view ξ1,3 and ξ2,3 as its inputs. Following the same

procedure as in the first level backstepping, we find the

controls of the form
{

ξ1,3 = φ⋆
1,3(ηI ; ξ1,2),

ξ2,3 = φ⋆
2,3(ηI ; ξ1,2, ξ2,2)

(22)

that asymptotically stabilize the equilibrium η II =
col {ηI , ξ1,2, ξ2,2} = 0 of the subsystem (21). The subsystem

(21) can be written as

η̇II = fII (ηII , ξ1,3, ξ2,3),

whose equilibrium ηII = 0 is asymptotically stabilized by the

virtual inputs ξ1,3 and ξ2,3 given by (22).

For the third level backstepping, we define














η̇II = fII (ηII , ξ1,3, ξ2,3),

ξ̇1,3 = v1,

ξ̇2,3 = ξ2,4 + δ2,3,1(η; ξ1; ξ2,1, ξ3,1; ξ2,2, ξ3,2; ξ2,3)v1,

ξ̇3,3 = ξ3,4+δ3,3,1(η; ξ1; ξ2,1, ξ3,1; ξ2,2, ξ3,2; ξ2,3, ξ3,3)v1,
(23)

with v1, ξ2,4 and ξ3,4 as its inputs. This system can be

asymptotically stabilized by the controls of the form

v1 = u⋆
1(η; ξ1, ξ2,1, ξ3,1; ξ2,2, ξ3,2). (24)

The subsystem (23) under the control (24) can be written as

η̇III = fIII (ηIII ; ξ2,4, ξ3,4), and its equilibrium ηIII = col {ηII ,

ξ1,3} = 0 is asymptotically stabilized by the virtual inputs

ξ2,4 and ξ3,4 as given by
{

ξ2,4 = φ⋆
2,4(ηII ; ξ1,3, ξ2,3),

ξ3,4 = φ⋆
3,4(ηII ; ξ1,3, ξ2,3, ξ3,3).

Finally, define






η̇III = fIII (ηIII ; ξ2,4, ξ3,4),

ξ̇2,4 = v2,

ξ̇3,4 = v3,

on which we carry out the last level of backstepping to obtain

v2 = u⋆
2(η; ξ1; ξ2; ξ3,1, ξ3,2, ξ3,3),

v3 = u⋆
3(η; ξ1; ξ2; ξ3).

The inputs v1, v2 and v3 semi-globally asymptotically sta-

bilize the equilibrium col {η, ξ1, ξ2, ξ3} = 0 of the system

(17).

In what follows, we give an example which requires the

mixed chain-by-chain and level-by-level backstepping design

procedure.

Example 3.2: Consider a system in the form of (9) with

three chains of integrators of lengths {2, 4, 4},










































































η̇ = f0(η, ξ1,2, ξ2,2, ξ3,2),

ξ̇1,1 = ξ1,2,

ξ̇1,2 = v1,

ξ̇2,1 = ξ2,2,

ξ̇2,2 = ξ2,3 + δ2,2,1(η, ξ1, ξ2,1, ξ2,2, ξ3,1, ξ3,2)v1,

ξ̇2,3 = ξ2,4 + δ2,3,1(η, ξ1, ξ2,1, ξ2,2, ξ2,3, ξ3,1, ξ3,2)v1,

ξ̇2,4 = v2,

ξ̇3,1 = ξ3,2,

ξ̇3,2 = ξ3,3 + δ3,2,1(η, ξ1, ξ2, ξ3,1, ξ3,2)v1,

ξ̇3,3 = ξ3,4 + δ3,3,1(η, ξ1, ξ2, ξ3,1, ξ3,2, ξ3,3)v1,

ξ̇3,4 = v3,
(25)

where ℓ1 = ℓ2 = ℓ3 = 2.

It is obvious that the system satisfies the conditions in The-

orem 3.1 with κ = {ξ1,1, ξ2,1, ξ3,1; ξ1,2, ξ2,2, ξ3,2, ξ2,3, ξ2,4,

ξ3,3, ξ3,4}. We first find the low-gain control. Let

v⋆
1 = −εξ1,1 − ξ1,2,

v⋆
2 = −εξ2,1 − ξ2,2,

v⋆
3 = −εξ3,1 − ξ3,2.

Then we carry out a mixed chain-by-chain and level-by-

level backstepping in the order of ξ1,2, v1, ξ2,2, ξ3,2, ξ2,3, ξ2,4,

v2, ξ3,3, ξ3,4, v3 to obtain

v1 = u⋆
1(η, ξ1, ξ2,1, ξ3,1),

v2 = u⋆
2(η, ξ1, ξ2, ξ3,1, ξ3,2),

v3 = u⋆
3(η, ξ1, ξ2, ξ3).
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Example 3.3: Consider

η̇ = −η + η2(v1 + ξ2,2),

ξ̇1,1 = v1,

ξ̇2,1 = ξ2,2 + ηv1,

ξ̇2,2 = v2.

Obviously the system satisfies the conditions in Theorem 3.1

with

q1 = 1, q2 = 2, ℓ1 = 2, ℓ2 = 2.

Choosing both poles of linear slow subsystem to be −ε, we

obtain

v⋆
2 = −εξ2,1,

v1 = −εξ1,1.

By backstepping, we obtain

v2 = −ξ2,1 −
1

ε
ξ2,2.

Shown in Fig. 1 and Fig. 2 are some simulation results of

the closed-loop system.
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Fig. 1. State trajectories with ε = 0.9
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Fig. 2. State trajectories with ε = 0.2

IV. CONCLUSIONS

In this paper, we showed how a recently developed struc-

tural decomposition can be used to solve the semi-global

stabilization of a class of MIMO systems without vector rel-

ative degrees. The design procedure involved several existing

design techniques in nonlinear stabilization, including low

gain feedback and different forms of backstepping design

procedures.
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