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Abstract— This paper treats the practical and challenging
control problem of tracking a prescribed continuous trajectory
for an autonomous underwater vehicle immersed in the pres-
ence of gravity, buoyancy, hydrodynamic and other uncertain
forces and moments. These uncertain forces and moments are
bounded and may be difficult to model accurately, but they
act persistently or over long periods of time. The trajectory is
specified in terms of desired attitude and translational motion
for a rigid body model of the vehicle. For an autonomous under-
water vehicle (AUV) in a dynamic environment like the ocean,
the presence of changing ocean currents create hydrodynamic
forces and moments that are not well-known or predictable,
even though they are bounded. In the absence of such forces
and moments, it is possible to model the AUV dynamics very
accurately and use the model for trajectory generation and
tracking, as has been shown in prior research. However, the
presence of uncertainties makes it difficult to accurately model
the dynamics. This in turn makes the control task of tracking a
desired or prescribed trajectory very challenging as an accurate
model of the system dynamics is not available. We develop a
robust feedback tracking scheme for autonomous underwater
vehicles that can track a prescribed trajectory, while rejecting
the effects of disturbances due to poorly known inputs with a
simple yet general internal model.

I. INTRODUCTION

We consider robust feedback tracking control of an au-

tonomous underwater vehicle(AUV) that is required to track

a desired state trajectory in the presence of uncertainties in

the dynamics model. Although the problem of control of

AUVs or underwater robots has been extensively studied in

the past, our approach to this problem is very different from

previous approaches. Three salient features of our approach

are: (i) we use a robust feedback geometric control scheme

that ensures practically global asymptotic trajectory tracking

in motion states, provided that actuator bounds are not

exceeded; (ii) we use an internal model for the uncertainties

that only assume bounds on the magnitude, direction and

rates of change of these uncertain inputs; and (iii) we use

estimates of the uncertain inputs, that may be obtained from

an a priori known model or a state estimation scheme.

The dynamics of an AUV modeled as a rigid body is given

by its translation and attitude motion. The dynamics model

that we use is based on available models in standard texts on

this subject like [1], [2], [3]. The AUV has to track a desired

trajectory that can be generated as a translation and attitude

time profile that results in a desired state trajectory. The task

of transferring the system state under dynamic constraints,
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from its initial state to a desired final state, is termed motion

planning or dynamic interpolation.

Motion planning in nonlinear spaces, like the group of

rigid body motions SE(3), under prescribed and well-known

dynamics, has been studied extensively in the past. Motion

planning for AUVs also has an extensive literature, with

application of several control strategies and schemes. Neural

net-based controllers for AUVs were reported in [4], [5].

Open-loop geometric control schemes have also been applied

to AUVs in [6]-[8], and shown to work well in the absence of

model uncertainties. Such open-loop control strategies give

trajectories in TSE(3) that transfer the system from the given

initial state to the desired final state, while minimizing a cost

function that is usually (a combination of) the time taken or

control energy expended.

In practice, the presence of dynamic uncertainties like

unmodeled external forces and moments, makes it impossible

for the desired trajectory to be followed by an open-loop

control scheme. Therefore, a feedback trajectory tracking

control scheme that is robust to these dynamic uncertainties

is essential to ensure that the autonomous vehicle tracks the

desired trajectory, while rejecting the effect of the uncertain

forces and moments on this trajectory. Recent research using

the framework of geometric mechanics and geometric control

has been successful in demonstrating almost global rigid

body attitude and angular velocity stabilization and tracking

with bounded control inputs. Such results have been applied

to orbiting spacecraft in gravity in [9], [10], to autonomous

underwater vehicles in [11] and to simple mechanical sys-

tems in [12]. However, these results do not take into account

uncertainties in the system model.

This paper is organized into five sections besides this

introduction. Section II gives the dynamical model of the

AUV used in our theoretical development. This model in-

cludes the effects of the bounded (but otherwise unknown)

disturbance forces and moments. Section III gives the feed-

back control approach based on the dynamics model without

the effect of disturbances. Section IV gives assumptions

on the disturbance models for bounded disturbance inputs

acting on the system. Section V presents results for the

feedback tracking control scheme with disturbance rejection,

based on the complete dynamical model given in Section

II. Finally, Section VI presents a concluding discussion of

results obtained in this paper and possible future work.

II. MODEL OF AUV DYNAMICS

We treat the AUV dynamics within the framework of

geometric mechanics, which makes it convenient to deal with
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feedback trajectory tracking in a global setting. We denote

the position vector of the AUV by b = (b1, b2, b3)
T ∈

R
3, and R ∈ SO(3) is the rotation matrix describing its

orientation. Therefore the configuration space of an AUV is

the special Euclidean group SE(3), the semi-direct product

of SO(3) and R
3, with (b,R) ∈ SE(3) denoting the con-

figuration. The state space of an AUV in spatial motion is

therefore the tangent bundle TSE(3), with the translational

and angular velocities in the body-fixed frame denoted by

ν = (ν1, ν2, ν3)
T and Ω = (Ω1,Ω2,Ω3)

T respectively. The

kinematic equations for a rigid body are:

ḃ = R ν

Ṙ = R Ω×
(1)

where the operator (·)× : R
3 → so(3) is defined by y× z =

y× z, so(3) being the Lie algebra of SO(3) or equivalently,

the space of skew-symmetric 3 × 3 matrices.

Taking the origin of the body-fixed frame for the AUV at

its center of gravity CG, the only moment due to the restoring

buoyancy force is the righting moment −rCB
× (ρgV)RTe3,

where rCB
is the vector from CG to the center of buoyancy

CB , ρ is the fluid density, g the acceleration of gravity, V
the volume of displaced fluid and e3 = [0 0 1]T be the

inertial unit vector pointing in the direction of gravity. The

dynamics with uncertain forces and moments is given by:

Mν̇ =Mν × Ω + Dν(ν)ν + ρgVRTe3 + ϕc + ϕu,

JΩ̇ =JΩ × Ω + Mν × ν + DΩ(Ω)Ω

− rCB
× (ρgV)RTk + τc + τu,

(2)

where M accounts for the mass and added mass, J accounts

for the body moments of inertia and the added moments

of inertia. The matrices Dν(ν) and DΩ(Ω) represent the

drag force and drag momentum, respectively. The vectors

ϕu ∈ R
3 and τu ∈ R

3 are bounded uncertain force and

uncertain moment, respectively, expressed in the body-fixed

frame. Finally, ϕc and τc are the control forces and moments

on the AUV, respectively.

Our previous research on the time and energy consumption

minimization problem resulted in open loop motion planning

for an AUV based on a theoretical model that neglected many

factors affecting the experiments. These factors include drag

associated with the attached tether, thruster dynamics, under-

water currents, etc. This implementation on the testbed AUV

was carried out in a controlled environment (a swimming

pool, see [6]-[8]). This research is an improvement of our

prior research, motivated by the observed failure of such open

loop schemes in following a path prescribed by a motion

planning algorithm. This research is necessary to translate

our AUV experiments from a controlled environment to an

ocean environment.

III. ASYMPTOTIC FEEDBACK TRACKING OF AUV

MOTION

Prior literature on local nonlinear control methods for

tracking desired attitude motion for a rigid body in the

presence of disturbance moments exists, for example [13],

[14]. These local methods are not suitable for controlling

a highly maneuverable AUV that has to implement large

motions. Additionally, it is impossible to obtain a globally

asymptotically stable tracking control scheme for the motion

of a rigid body or multibody system; as is known in some

circles since the early 1980s (see [15] for instance). The first

correct treatment of this problem was in [16], which intro-

duced the concept of almost global asymptotic stabilzation

of such systems by continuous feedback. This was followed

by a few correct treatments of this problem, like [17].

The almost global property of the control schemes in [9],

[10] ensures that a desired attitude or attitude motion tra-

jectory is tracked starting from almost any initial state

modulo a set of measure zero in the state space. In [10], we

also included the effects of additional drag-type disturbance

moments (that are bounded but unknown) on the attitude

dynamics, and showed that the desired trajectory in TSO(3)
could be tracked almost globally even in the presence of such

disturbances.

A. Trajectory Tracking for AUV

The reference trajectory to be tracked by the AUV can be

obtained from an open loop scheme like that in [6]-[8]. It

can be specified in terms of the initial desired position vector

in inertial frame br(0),the initial desired attitude Rr(0), and

the desired translational and angular velocity time profiles

in body frame, ν0
r (t) and Ωr(t) respectively. The reference

trajectory satisfies the kinematic equation in SE(3):

ġr = grζr, gr =

[

Rr br

0 1

]

and ζr =

[

Ω×

r ν0
r

0 0

]

. (3)

Next we define the trajectory tracking errors, as follows:

a(t) , b(t) − br(t) = error in inertial position,

x(t) , RT
r (t)a(t) = error in position expressed in reference

body frame,

Q(t) , RT
r (t)R(t) = error in body attitude (orientation),

υ(t) , ν(t) − QT (t)(ν0
r (t) + Ωr(t)

×x(t)) = error in body

translational velocity,

ω(t) , Ω(t)−QT (t)Ωr(t) = error in body angular velocity.

We also define νr , ν0
r + Ω×

r x. Thus, we can express the

tracking error kinematics in left-invariant form on SE(3):

ẋ = Qυ

Q̇ = Qω×

}

⇔ ḣ = hξ, (4)

where

h =

[

Q x

0 1

]

∈ SE(3), ξ =

[

ω× υ

0 0

]

∈ se(3).

The dynamics of the AUV can be expressed in terms of

the trajectory tracking errors as follows:

Mυ̇ = M{ω×QT νr − QT ν̇r}
+ M(υ + QT νr)

×(ω + QT Ωr) + Dν(ν)(υ + QT νr)

+ ρgVQT RT
r e3 + ϕc,

(5)

Jω̇ = J(ω×QT Ωr − QT Ω̇r) − (ω + QT Ωr)
×J(ω

+ QT Ωr) − (υ + QT νr)
×M(υ + QT νr)

+ DΩ(Ω)(ω + QT Ωr) − rCB × (ρgV)QT RT
r e3 + τc,

(6)
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as obtained from equation (2) in the absence of uncertain

inputs (ϕu = τu = 0). The control laws for the inputs ϕc and

τc are created to asymptotically track the reference trajectory.

B. Asymptotic Tracking Control Laws in TSE(3)

We design a feedback tracking control scheme, based on

Lyapunov-type analysis and full-state feedback, to achieve

this task. Let Φ : R
+ → R

+ be a C2 function that satisfies

Φ(0) = 0 and Φ′(u) > 0 for all u ∈ R
+. Furthermore, let

Φ′(·) ≤ α(·) where α(·) is a Class-K function [18]. Let K,

Lν , LΩ and N be positive definite control gain matrices, with

K = diag(k1, k2, k3) such that 0 < k1 < k2 < k3. Therefore

Φ(trace(K − KQ)) is a Morse function on SO(3) (where

Q ∈ SO(3)) whose critical points are non-degenerate and

hence isolated, according to the Morse lemma [19]. Along

the kinematics (4), the time derivative of this function is (see

[9] and [10]):

d

dt
Φ(trace(K − KQ)) = −Φ′(trace(K − KQ))ωT

×
[

k1e
×

1 QTe1 + k2e
×

2 QTe2 + k3e
×

3 QTe3

]

. (7)

We propose the following control laws for ϕc and τc to

asymptotically track the reference trajectory in TSE(3) in

the absence of disturbance inputs:

ϕc = −Lνυ + MQTν̇r + (QTΩr)
×

(

M(υ + QTνr)
)

− Dν(ν)
(

υ + QTνr

)

− ρgVQTRT
r e3 − QTNx,

(8)

τc = −LΩω + JQTΩ̇r + (QTΩr)
×(JQTΩr)

+ (QTνr)
×(MQTνr) − DΩ(Ω)(ω + QT Ωr)

+ (ρgV)r×CB(QTRT
r e3) + Φ′(trace(K − KQ))

×
[

k1e
×

1 QTe1 + k2e
×

2 QTe2 + k3e
×

3 QTe3

]

.

(9)

Note that this control law, and hence the trajectories of the

closed-loop system, are continuous with respect to the error

variables x, υ, Q and ω. We next show the almost global

asymptotic tracking properties of the closed-loop system (5)-

(6) and (8)-(9) when there are no disturbance inputs.

C. Critical Points for Feedback Attitude Dynamics

Let 〈·, ·〉 denote the trace inner product on the vector space

R
n×n, given by

〈A,B〉 , trace
(

ATB
)

.

We first present a couple of lemmas that are used to prove

the main result on asymptotic trajectory tracking.

Lemma 1. The function Φ
(

trace(K −KQ)
)

on SO(3) has

the set of non-degenerate critical points

Ec , {I, diag(−1, 1,−1), diag(1,−1,−1),

diag(−1,−1, 1)} . (10)

Further, the unique minimum point of this function is Q =
I , diag(1, 1, 1).

The proof of this result is given in [10]. A function Φ of

this type has the minimum number of critical points for a

Morse function on the nonlinear space SO(3). This lemma

is also a corollary of Proposition 1 of [20], which treats

Wahba’s problem in attitude determination using similar

techniques. For the closed-loop attitude dynamics of the

AUV, we first state a result on the local asymptotic stability

of the equilibrium (I, 0) ∈ TSO(3). The proof of this result

is also provided in [10], which uses a result in [21].

Lemma 2. The equilibrium (I, 0) of the closed-loop at-

titude dynamics given by (6) and the control law (9) is

locally asymptotically stable when (υ, ω) = (0, 0). The

other equilibria given by (Qe, 0), where Qe ∈ Ec \ {I},

of the closed-loop attitude dynamics under these conditions

are unstable. Furthermore, under these conditions the set of

all initial conditions converging to the equilibrium (Qe, 0),
where Qe ∈ Ec \ {I} form a lower dimensional manifold.

D. Asymptotic Convergence Results

We now present our main result on asymptotic conver-

gence of the tracking error dynamics for the closed-loop

dynamics (5)-(6) and (8)-(9) to the desired equilibrium

(xe, Qe, υe, ωe) = (0, I, 0, 0).

Theorem 1. In the absence of uncertain inputs (ϕu = 0
and τu = 0), the trajectories of the closed-loop tracking

error system given by the (5)-(6) and control laws (8)-(9)

converge to the set

E = {(x,Q, υ, ω) ∈ TSE(3) : υ = 0, ω = 0, x = 0,

Q ∈ Ec} , (11)

where Ec is as defined in (10). Further, the equilibrium

(xe, Qe, υe, ωe) = (0, I, 0, 0) of the closed-loop system is

asymptotically stable in this case and its domain of attraction

is almost global.

Proof: For the closed-loop tracking error dynamics

given by (5)-(6) and control laws (8)-(9), we propose the

following candidate Lyapunov function:

V (x,Q, υ, ω) = VT (x, υ) + VA(Q,ω),

VT (x, υ) =
1

2
υTMυ +

1

2
xTNx,

VA(Q,ω) =
1

2
ωTJω + Φ

(

trace(K − KQ)
)

.

(12)

Note that V (x,Q, υ, ω) ≥ 0 and its “attitude component”

VA(Q,ω) = 0 if and only if (Q,ω) = (I, 0). Thus

V (x,Q, υ, ω) is a positive definite function on TSE(3) that

is zero only at the desired equilibrium.

We evaluate the time derivative of V (x,Q, υ, ω) along

the trajectories of the closed-loop system, using the time

derivative of Φ
(

trace(K −KQ)
)

given by equation (7). The

time derivative of VT (x, υ) along (5) and (8) is:

V̇T = υTMυ̇ + xTNẋ (13)

= υT[M(ω×QTνr) +
(

M(υ + QTνr)
)

×

ω − Lνυ].

The time derivative of VA(Q,ω) along (6), (7) and (9) is:

V̇A =ωTJω̇ − Φ′(trace(K − KQ))ωT[

k1e
×

1 QTe1

+ k2e
×

2 QTe2 + k3e
×

3 QTe3

]

(14)

= −ωT[υ×M(υ + QTνr) + (QTνr)
×Mυ + LΩω].
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Therefore, combining (13) and (14) and using the scalar

triple product identity, we get

V̇ = V̇T + V̇A = −υTLνυ − ωTLΩω ≤ 0,

and V̇ = 0 if and only if υ = 0 and ω = 0.

Recall that Φ(·) is a strictly increasing monotone function.

Hence, for any (x(0), Q(0), υ(0), ω(0)) ∈ TSE(3), the set

I = {(x,Q, υ, ω) ∈ TSE(3) : V (x,Q, υ, ω) ≤
V (x(0), Q(0), υ(0), ω(0))} ,

is an invariant set of the closed-loop system [9], [10]. By

LaSalle’s invariant set theorem, it follows that all solutions

that begin in I converge to the largest invariant subset of

V̇ −1(0) contained in I. Since V̇ (x,Q, υ, ω) ≡ 0 implies

υ = ω ≡ 0, we substitute this into the closed-loop system

equations to get:

V̇ −1(0) = {(x,Q, υ, ω) ∈ TSE(3) : υ ≡ 0, ω ≡ 0,

x = 0, k1e
×

1 QTe1 + k2e
×

2 QTe2 + k3e
×

3 QTe3 ≡ 0
}

= {(x,Q, υ, ω) ∈ TSE(3) : x ≡ 0, Q ∈ Ec,

υ ≡ 0, ω ≡ 0} ,

since QTNx = 0 ⇒ x = 0 as Q ∈ SO(3) is invertible and

N is positive definite. In this case, each of the four points

given by (11) are an equilibrium of the closed-loop dynamics

in TSE(3). Therefore, by LaSalle’s theorem, all solutions of

the closed-loop system converge to one of the equilibria in

E ∩ I, where E is given by (11).

From Lemma 2, the only stable equilibrium is

(x,Q, υ, ω) = (0, I, 0, 0), and all solutions that converge to

the other three equilibria form a lower dimensional manifold.

Thus, this set of solutions has measure zero in TSE(3)
(see also [9], [10]). Solutions of the closed-loop system that

do not start in this manifold, converge aymptotically to the

stable equilibrium (x,Q, υ, ω) = (0, I, 0, 0). Therefore, the

domain of attraction of this equilibrium is almost global.

IV. INTERNAL MODEL FOR BOUNDED DISTURBANCE

INPUTS

Here we consider the AUV system with model uncertain-

ties, given by the uncertain force ϕu and moment τu in

equations (2). We add disturbance rejection control inputs

to the control laws to ensure that the effect of these bounded

uncertainties on the dynamics of the feedback system van-

ishes asymptotically. These uncertain inputs are described

by an internal model that prescribes bounds in the direction,

magnitude and time rates of these uncertainties.

For ease of notation, we use g ∈ SE(3) for the config-

uration variables and ξ ∈ se(3) for the velocity variables

as in the kinematic equation (1). It is reasonable to assume

that we know the bounds in magnitude and direction of ϕu

and τu at any given time. We also have estimates of these

uncertain quantities, which could be obtained from a known

a priori model or from real-time state measurements. An

ellipsoidal bound on magnitude would result in an ellipsoidal

neighborhood of the origin in R
3, while a bound on direction

would result in a solid cone with vertex at the origin. The

intersection of these regions will be a compact subset of R
3

in which the uncertain input will lie, as shown in Figure 1.

The ellipsoidal bounds on magnitudes are given by:

ϕu(g, ξ, t)TPϕϕu(g, ξ, t) ≤ 1,

τu(g, ξ, t)TPττu(g, ξ, t) ≤ 1,
(15)

where Pϕ and Pτ are constant symmetric positive definite

matrices defining the shape and size of the ellipsoidal

bounds. The internal model of these uncertain quantities is

therefore of the form:

P
1

2

ϕ ϕu(g, ξ, t) =
(

I + Ξϕ(t)×
)

P
1

2

ϕ ϕ̄u(g, ξ, t), (16)

P
1

2

τ τu(g, ξ, t) =
(

I + Ξτ (t)×
)

P
1

2

τ τ̄u(g, ξ, t), (17)

where ϕ̄u(g, ξ, t) and τ̄u(g, ξ, t) are the known estimates of

the uncertain force and moment respectively. P
1

2

ϕ and P
1

2

τ

are the positive definite square root matrices of Pϕ and Pτ .

The uncertainty in directions of these quantities are char-

acterized by Ξϕ(t) ∈ R
3 and Ξτ (t) ∈ R

3, which we

assume have known bounds. The above model implies that

P
1

2

ϕ ϕu(g, ξ, t) (P
1

2

τ τu(g, ξ, t)) is coning about P
1

2

ϕ ϕ̄u(g, ξ, t)

(P
1

2

τ τ̄u(g, ξ, t), respectively). The cone angles give the un-

dertainty bounds in direction. The tangent of the half-cone

angle is given by the maximum value of the ratio of the

norm of Ξϕ(t)×P
1

2

ϕ ϕ̄u(g, ξ, t) to P
1

2

ϕ ϕ̄u(g, ξ, t) for the force

uncertainty. A similar relation holds for the uncertainty in

the direction of the moment P
1

2

τ τu(g, ξ, t). Thus, the uncer-

tainties in the directions of P
1

2

ϕ ϕu(g, ξ, t) and P
1

2

τ τu(g, ξ, t)
are given by the half-cone angles

tan αϕ = max
t

‖Ξϕ(t)‖ and tan ατ = max
t

‖Ξτ (t)‖.

The uncertain vectors Ξϕ(t) and Ξτ (t) also satisfy

Fig. 1. Region of R
3 in which an uncertain force or moment may lie, is

depicted as an intersection of an ellipsoid and a solid cone.

Ξϕ(t) =Ξ̄ϕ(t) + bϕ(t)P
1

2

ϕ ϕ̄u(g, ξ, t),

Ξτ (t) =Ξ̄τ (t) + bτ (t)P
1

2

τ τ̄u(g, ξ, t),
(18)
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where Ξ̄ϕ(t) (Ξ̄τ (t)) are estimates of Ξϕ(t) (Ξτ (t)) that

are not parallel to P
1

2

ϕ ϕ̄u (P
1

2

τ τ̄u, respectively). The scalar

quantities bϕ(t) and bτ (t) are unknown but in a small

bounded neighborhood of 0.

The internal model (16)-(17) implies that the ellipsoidal

magnitude bounds given by (15) are also satisfied by the

force estimate ϕ̄u(g, ξ, t) and moment estimate τ̄u(g, ξ, t).
We also assume that ϕ̄u(g, ξ, t), τ̄u(g, ξ, t), Ξϕ(t) and Ξτ (t)
are slowly time-varying. This is made explicit in the distur-

bance rejection control law given in the next section.

V. ASYMPTOTIC FEEDBACK TRACKING WITH

DISTURBANCE REJECTION

A. Rejection of Disturbances from Bounded Uncertainties

The statement below gives sufficient conditions under

which a control input u rejects an uncertain disturbance input

v acting on a system evolving on SE(3).

Proposition 1. Let v(g, ξ, t) ∈ R
3 and Ξ(t) ∈ R

3 be

uncertain quantities that satisfy

P
1

2 v(g, ξ, t) =
(

I + Ξ(t)×
)

P
1

2 v̄(g, ξ, t), (19)

where P is positive definite and v̄(g, ξ, t) is an estimate of

v(g, ξ, t). Also let u(g, ξ, t) ∈ R
3 and Ξ̄(t) ∈ R

3 satisfy

P
1

2 u(g, ξ, t) =
(

I + Ξ̄(t)×
)

P
1

2 v̄(g, ξ, t), (20)

where Ξ̄(t) is an estimate of Ξ(t). We define

∆(t) , Ξ(t) − Ξ̄(t).

If in addition the condition

d

dt

(

∆×P
1

2 v̄
)

= −ǫ
(

∆×P
1

2 v̄
)

+ ζ×
(

∆×P
1

2 v̄
)

(21)

is satisfied, where 0 < ǫ(t) ∈ [γ, δ] and ‖ζ(t)‖ is bounded,

then the control input u(t) rejects the disturbance input v(t).
Further, V̇

P
1

2 (v−u)
≤ −γV

P
1

2 (v−u)
, where Vη , 1

2ηTη.

Proof: For ease of notation, we define η(t) , P
1

2 v(t),
η̄(t) , P

1

2 v̄(t) and ηc(t) , P
1

2 u(t). Then we construct the

energy-like function

V
P

1

2 (v−u)
(t) = V(η−ηc)(t) ,

1

2

(

η(t)−ηc(t)
)T(

η(t)−ηc(t)
)

.

Note that η(t) − ηc(t) = ∆(t)×η̄(t). The time derivative of

this function along (19)-(20) is:

V̇(η−ηc) =
(

η − ηc
)T(

η̇ − η̇c
)

=
(

∆×η̄
)T(

∆̇×η̄ + ∆× ˙̄η
)

= − ǫ
(

∆×η̄
)T(

∆×η̄
)

≤ −γV(η−ηc)

using equation (21). Therefore, this time derivative is nega-

tive semi-definite. Note that V̇(η−ηc)(t) is uniformly contin-

uous and bounded due to the assumptions on η(t), η̄(t),Ξ(t)
and Ξ̄(t). Therefore, by Barbalat’s lemma, V̇(η−ηc)(t) → 0
as t → ∞ [18]. This in turn implies V(η−ηc)(t) → 0 since

V̇(η−ηc)(t) ≤ −γV(η−ηc)(t) ≤ 0.

Thus, under the condition (21), η−ηc(t) converges to 0, and

therefore v(t)−u(t) → 0 as t → ∞. Thus, the control input

u(t) rejects the disturbance v(t).
Further sufficient conditions for disturbance rejection, ob-

tained from condition (21), can be obtained when bounds

on the time rate of Ξ(t) are known. The following corollary

of Proposition 1 gives a set of sufficient conditions under

which the control input rejects the disturbance by satisfying

condition (21).

Corollary 1. Let the uncertain vector Ξ(t) and its time rate

satisfy

Ξ = Ξ̄ + bη̄, Ξ̇ = βη̄ + ζ×Ξ − bΞ̄, (22)

where b(t) and β(t) are in a bounded neighborhood of 0.

Further, let the time rates of change of Ξ̄(t) and η̄(t) satisfy

˙̄Ξ = ζ × Ξ̄, ˙̄η = −ǫη̄ − Ξ̄, (23)

where ζ(t) ∈ R
3 and ǫ(t) are as specified in Proposition 1.

Then we can guarantee that limt→0 η(t)− η̄(t) = 0, i.e., the

control input u(t) rejects the disturbance v(t).

Proof: Equations (22) and (23) together imply that

∆̇ = Ξ̇ − ˙̄Ξ = βη̄ + ζ×∆ − bΞ̄. (24)

Thereafter, we verify that

d

dt

(

∆×η̄
)

= ∆̇ × η̄ + ∆ × ˙̄η

= ζ×
(

∆×η̄
)

− bΞ̄×η̄ − ǫ
(

∆×η̄
)

− Ξ×Ξ̄

= ζ×
(

∆×η̄
)

− bΞ̄×η̄ − ǫ
(

∆×η̄
)

− bη̄×Ξ̄

= −ǫ
(

∆×η̄
)

+ ζ×
(

∆×η̄
)

,

which is equivalent to condition (21).

The disturbance rejection control u(t) is thus given by

equations (20) and (23), with initial conditions for η̄ and Ξ̄.

B. Disturbance Rejection Control Laws

These results can now be applied to the system (5)-(6)

with uncertain inputs ϕu(t) and τu(t) satisfying the bounds

given earlier. We first write down the control inputs to the

system:

ϕc = −Lνυ + MQTν̇r + (QTΩr)
×

(

M(υ + QTνr)
)

(25)

− Dν(ν)
(

υ + QTνr

)

− ρgVQTRT
r e3 − QTNx − ϕc

u,

τc = −LΩω + JQTΩ̇r + (QTΩr)
×(JQTΩr)

+ (QTνr)
×(MQTνr) − DΩ(Ω)(ω + QT Ωr)

+ (ρgV)r×CB(QTRT
r e3) + Φ′(trace(K − KQ))

×
[

k1e
×

1 QTe1 + k2e
×

2 QTe2 + k3e
×

3 QTe3

]

− τ c
u,

(26)

where ϕc
u and τ c

u are disturbance rejection inputs for trans-

lation and attitude control respectively.

The disturbance rejection inputs ϕc
u and τ c

u satisfy the

following equations:

P
1

2

ϕ ϕc
u(g, ξ, t) =

(

I + Ξ̄ϕ(t)×
)

P
1

2

ϕ ϕ̄u(g, ξ, t), (27)

P
1

2

τ τ c
u(g, ξ, t) =

(

I + Ξ̄τ (t)×
)

P
1

2

τ τ̄u(g, ξ, t). (28)
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The estimates ϕ̄u, τ̄u, Ξ̄ϕ and Ξ̄τ are updated by

P
1

2

ϕ ˙̄ϕu = −ǫϕP
1

2

ϕ ϕ̄u − Ξ̄ϕ, ˙̄Ξϕ = ζϕ × Ξ̄ϕ, (29)

P
1

2

τ ˙̄τu = −ǫτP
1

2

τ τ̄u − Ξ̄τ , ˙̄Ξτ = ζτ × Ξ̄τ . (30)

The main result on trajectory tracking with disturbance

rejection using continuous control inputs now follows.

Theorem 2. Let the AUV system given by (5)-(6) have

uncertain inputs satisfying equations (16)-(18) and control

inputs given by (25)-(26), with disturbance rejection inputs

satisfying equations (27)-(30). Further, let

0 < ǫϕ ∈ [γϕ, δϕ], Lν = 4γϕPϕ,

0 < ǫτ ∈ [γτ , δτ ], LΩ = 4γτPτ .
(31)

Then the equilibrium

(xe, Qe, υe, ωe) = (0, I, 0, 0)

of the closed-loop dynamics is asymptotically stable in the

presence of the disturbance force ϕd
ν and the disturbance

torque τd
Ω. Further, the domain of attraction of this equilib-

rium is almost global in TSE(3).

Proof: The proof of this result is obtained after combin-

ing the earlier results Theorem 1, Proposition 1 and Corollary

1. For ease of notation, we define

ϕ̃ , ϕu − ϕc
u, τ̃ , τu − τ c

u.

The time derivative of the Lyapunov function defined by (12)

in the proof of Theorem 1 is:

V̇ = −υT(

Lνυ + ϕ̃
)

− ωT(

LΩω + τ̃
)

, (32)

which has additional terms depending on ϕ̃ and τ̃ . For this

system, we define the candidate Lyapunov function:

V̄ (x,Q, υ, ω, ϕ̃, τ̃) = V (x,Q, υ, ω) +
1

2
ϕ̃TPϕϕ̃ +

1

2
τ̃TPτ τ̃ .

(33)

Then using equations (25)-(32), we can show that the time

derivative of the above function is:

˙̄V = −(L
1

2

ν υ +
√

γϕP
1

2

ϕ ϕ̃)T(L
1

2

ν υ +
√

γϕP
1

2

ϕ ϕ̃)

−(L
1

2

Ωω +
√

γτP
1

2

τ τ̃)T(L
1

2

Ωω +
√

γτP
1

2

τ τ̃),

which is negative semi-definite. Using Proposition 1 and its

Corollary 1, we can also show that ϕ̃ = ϕd
ν − ϕu

ν → 0 and

τ̃ = τd
Ω − τu

Ω → 0. Thereafter, one may use the arguments

in the proof of Theorem 1 and the invariance principle to

show that we get almost global convergence to the desired

equilibrium in the feedback tracking errors.

VI. CONCLUSIONS

This paper deals with the challenging control problem

of tracking a reference trajectory in translation and attitude

by an autonomous underwater vehicle in the presence of

dynamic uncertainties. We first obtain a continuous tracking

control law that can track the desired trajectory almost

globally over the state space in the absence of any uncertain

inputs in the dynamics model. Then we propose a very

general internal model of the uncertainties based on known

bounds on their magnitude, direction and time rates. With

this internal model, we design a disturbance rejection control

law that ensures almost global convergence to the desired

trajectory in state space while rejecting disturbance due

to the uncertain inputs. In forthcoming work, we will use

these analytical control laws in numerical simulations to

demonstrate their effectiveness with respect to trajectory

tracking and disturbance attenuation.
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