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Abstract— Many robotic tasks are specified in terms of the
position and orientation (pose) of the robot end–effector. The
operational space is defined by a set of generalized coordinates
to describe the end–effector pose. The main contribution of
this paper is a new operational space trajectory tracking
controller, which does not require any velocity measurement. A
rigorous stability analysis based on Lyapunov’s direct method
is presented. The practical viability of the proposed algorithm is
explored through real–time experiments in an horizontal planar
direct–drive arm with two degrees–of–freedom.

I. INTRODUCTION

It is natural to specify a robotic task through the position

and orientation of the robot end–effector with respect to a

fixed reference frame, usually at the base of the robot. The

pose denotes both the position and orientation of the robot

manipulator end–effector. A natural way of representing the

end–effector orientation is through the Euler angles, which is

a three parameters minimal representation of the end–effector

orientation. In this case, at least locally, a set of generalized

coordinates can be used to describe the dynamics of the end–

effector pose. This way of representing the pose defines the

operational space of a robot manipulator . On the other hand,

the term task space refers the case in that the orientation

is described by the unit quaternion, i.e., a set of four Euler

parameters. See, e.g., [13], [8] and [7], and references therein

for formal studies on rigid body pose description.

Robot pose tracking control strategies typically require

full state measurements, i.e., position and velocity in the

joint/pose space. The position and orientation of the end–

effector is usually sensed through the direct kinematics

model with joint position measurements. However, velocity

measurements are not available and they are replaced by

numerical derivatives of the position and orientation mea-

surements. Although numerical differentiation of position is

a common practice to solve the problem of unmeasurable

velocity, sometimes the closed–loop stability can not be

guaranteed. This situation has motivated Lyapunov–based

control designs to assure pose motion control by using

synthesized velocity feedback from position measurements,

see, e.g., [15], [2], [16], and references therein. Until now,

only a few solutions for the pose trajectory tracking control

of robot manipulators by using only position measurements

have been proposed.

On the other hand, the robot literature reports that indus-

trial robots are provided with a primary (inner) joint velocity
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loop, which works together with a task–based secondary

(outer) loop [4], [9], [11], [5]. However, these approaches did

not addressed the problem of unmeasurable joint/operational

space velocity.

The main objective of this paper is to present a new

solution for the pose trajectory tracking control problem

based on two industrial motivations:

1) The control structure is based on two loops of feed-

back.

2) Incorporation of synthesized velocity from position

measurements.

In particular, the proposed primary joint velocity controller

is implemented following the concept of filtering the joint

positions via a stable first order system to obtain a synthetic

version of the joint velocity. Using the Lyapunov theory

framework and cascade systems stability results [10], a

rigorous study of the proposed algorithm in closed–loop with

the robot arm model is presented.

The main contribution of this paper is a new solution for

the pose trajectory tracking control problem based on two

loops of feedback. The proposed algorithm incorporates a

synthesized velocity feedback from position measurements.

Using Lyapunov’s direct method cascade systems stabil-

ity theory, a rigorous study of the closed–loop system is

presented. As second contribution, an experimental study

carried out in a two degrees–of–freedom direct–drive robot

is presented.

Notation: Throughout this paper the following notation

will be adopted. ‖x‖ =
√

xT x stands for the norm of

vector x ∈ IRn. tanh(x) = [tanh(x1) · · · tanh(xn)]T .

λmin{A(x)} and λMax{A(x)} denote the minimum and

maximum eigenvalues of a symmetric positive definite matrix

A(x) ∈ IRn×n for all x ∈ IRn, respectively. ‖B(x)‖ =
√

λMax{B(x)T B(x)} stands for the induced norm of a

matrix B(x) ∈ IRm×n for all x ∈ IRn.

II. ROBOT MODELING AND CONTROL GOAL

A. Robot dynamics

The dynamics in joint space of a serial–chain n-link robot

manipulator considering the presence of friction at the robot

joints can be written as [13]

M(q)q̈ + C(q, q̇)q̇ + g(q) + Fv q̇ + fCl(q̇) = τ (1)

where q is the n × 1 vector of joint displacements, q̇ is the

n × 1 vector of joint velocities, τ is the n × 1 vector of

applied torque inputs, M(q) is the n×n symmetric positive

definite manipulator inertia matrix, C(q, q̇)q̇ is the n × 1
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vector of centripetal and Coriolis torques, g(q) is the n ×
1 vector of gravitational torques, Fv is a n × n diagonal

positive definite matrix which contains the viscous friction

coefficients of each joint, and f Cl(q̇) is a continuous and

uniformly bounded function, which approaches the behavior

of the Coulomb friction.

Assuming that C(q, q̇) is expressed in terms of the

Christoffel symbols, the following properties on the matrices

M(q) and C(q, q̇) are satisfied [13], [3]:

Property 1. The matrix C(q, q̇) and the time derivative of

the inertia matrix Ṁ(q) satisfy

xT

[

1

2
Ṁ(q) − C(q, q̇)

]

x = 0 ∀ x, q, q̇ ∈ IRn. (2)

Ṁ(q) = C(q, q̇) + CT (q, q̇) ∀ q, q̇ ∈ IRn. (3)

⋄ ⋄ ⋄
Property 2. For all x, y and q ∈ IRn, the inertia matrix

M(q) is bounded in the sense

|xT M(q)y| ≤ λMax{M(q)}‖x‖‖y‖, (4)

λmin{M(q)}xT M(q)x ≤ λMax{M(q)}. (5)

⋄ ⋄ ⋄
Property 3. For all x, y, z ∈ IRn we have that matrix

C(x, y) satisfies

C(x, y)z = C(x, z)y. (6)

‖C(x, y)z‖ ≤ kC‖y‖ ‖z‖, (7)

where kC is strictly positive constant. ⋄ ⋄ ⋄
In addition the following two properties are satisfied by

the Coulomb–like friction function f Cl(q̇):
Property 4. For all x, y ∈ IRn the following two inequalities

[x − y][fCl(x) − fCl(y)] ≥ 0, (8)

‖[fCl(x) − fCl(y)]‖ ≤ kf‖x − y‖, kf > 0, (9)

are satisfied. ⋄ ⋄ ⋄

B. Robot kinematics

Denoting h(q) : IRn → IRm the direct kinematics map,

the position and orientation y ∈ IRm of the end–effector is

given by

y = h(q). (10)

In particular, the example with natural physical interpretation

is the case when y ∈ IR6. Specifically,

y =

[

p(q)
φ(q)

]

where p ∈ IR3 denotes the end–effector position in the

three dimensional Cartesian space and φ = [ϕ ϑ ψ]T ∈
IR3 is the set of three Euler angles which describes end–

effector orientation. Let us notice that the Euler angles can

be extracted from a given rotation matrix R describing the

orientation of the end–effector frame by using the closed–

loop inversion formula [13], [1].

The time derivative of the direct kinematic model (10)

yields the differential kinematic model

ẏ =
d

dt
h(q) =

∂h

∂q
q̇ = J(q)q̇ (11)

where J(q) is the so–called analytical Jacobian matrix [13],

[3]. The robot Jacobian describes a map from velocities in

joint space to velocities in operational space. The Jacobian

right pseudo inverse [3], is given by

J(q)† = J(q)T
[

J(q)J(q)T
]−1

,

assuming that J(q)J(q)T is nonsingular.

Assumption 1. The analytical Jacobian J(q) is assumed of

full–rank (rank=m) and bounded by kJ > 0, i.e.

‖J(q)‖ ≤ kJ ∀ q ∈ IRn. (12)

At the same time, it is also assumed that

‖J(q)†‖ ≤ k†
J ∀ q ∈ IRn, (13)

with k†
J > 0.

⋄ ⋄ ⋄
In this paper the notation

J̇(q, q̇)† =
d

dt

[

J(q)†
]

stands for the time derivative of the Jacobian right pseudo–

inverse, which satisfies the following assumptions.

Assumption 2. The map expressed by the time derivative

of the Jacobian right pseudo–inverse satisfies the following

relation

J̇(q, x + y)† = J̇(q, x)† + J̇(q, y)† (14)

for all q, x, y ∈ IRn. ⋄ ⋄ ⋄
Assumption 3. The time derivative of the Jacobian right

pseudoinverse satisfies the following bound
∥

∥

∥
J̇(q, ẋ)†

∥

∥

∥
≤ kJ1‖ẋ‖ (15)

for all q, x ∈ IRn. ⋄ ⋄ ⋄
In practice, assumptions 1–3 are not valid at singularity

points [13], [3]. To hold these assumptions, the actual robot

pose trajectory should not pass through singular configura-

tions. The global definition of assumptions 1–3 is made to

facilitate the stability analysis.

On the other hand, it is possible to show that a planar

two degrees–of–freedom revolute joint robot satisfies as-

sumptions 2 and 3. Therefore, these assumptions resemble

properties more than assumptions.

C. Control goal

Once the motion specification is given in terms of the

desired trajectory yd(t) in the operational space, then the

motion control objective in operational space is to achieve:

lim
t→∞

ỹ(t) = 0, (16)

where ỹ(t) = yd(t) − y(t) denotes the operational space

pose error.
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III. A CONTROLLER BASED ON SYNTHETIC JOINT

VELOCITY FEEDBACK

A. Synthetic velocity controller: Primary loop

The task of the primary control loop is to compute the

proper torques and forces τ ∈ IRn so that the joint velocity q̇

achieves asymptotic tracking of a desired velocity command

ωd, i.e., limt→∞ ω̃(t) = 0, where

ω̃(t) = ωd(t) − q̇(t) (17)

denotes the joint velocity error. In this paper we assume that

the desired joint velocity ωd is given as function of time

t ∈ IR+ and the actual joint position q ∈ IRn, i.e., ωd(t, q).
Therefore, from the joint velocity error definition (17) we

can write

q̇(t) = ωd(t, q(t)) − ω̃(t), (18)

which is interpreted as the dynamics of the joint position

q(t), where the signal ω̃(t) is acting as disturbance. By

assuring the exponential vanishing of ω̃(t) and defining in

proper way the desired joint velocity ωd, the operational

motion control objective (16) can be guaranteed. This will

be shown in the discussion of the secondary loop. The first

step is to show the exponential convergence of ω̃(t).
The proposed joint velocity controller is written as fol-

lows:

τ = M(q)ω̇⋆
d + C(q, ωd)ωd + g(q)

+Kv tanh(ξ̇) + Fvωd + fCl(ωd) (19)

ξ̇ = ωd − ϑ (20)

where Kv is a n × n diagonal positive–definite matrix,

ϑ ∈ IRn is the output of a first order filter, the desired joint

velocity ωd is the output of the secondary, and ω̇⋆
d is a signal

called precompensated acceleration, which only depends on

time t ∈ IR+ and the joint position q ∈ IRn. The signals ωd

and ω̇⋆
d will be defined later. For the analysis that is coming,

the following assumptions on ωd and ω̇⋆
d will be important.

Assumption 4: The signals ωd and ω̇⋆
d satisfy:

1) The desired joint velocity ωd(t, q) is bounded for all

t ≥ 0 and q ∈ IRn, i.e.,

‖ωd(t, q)‖ ≤ ‖ωd‖M ∀ t ≥ 0 and q ∈ IRn, (21)

with ‖ωd‖M a strictly positive constant.

2) The difference between the desired acceleration ω̇d and

the signal ω̇⋆
d can be expressed as a function of time

t ∈ IR+, the joint position q ∈ IRn and the velocity

error ω̃ ∈ IRn, i.e.,

ω̇d − ω̇⋆
d = η(t, q, ω̃). (22)

3) The signal η(t, q, ω̃) can be upper bounded linearly by

the velocity error ω̃, that is,

‖ω̇d − ω̇⋆
d‖ = ‖η(t, q, ω̃)‖ ≤ k‖ω̃‖, (23)

where k is a strictly positive constant.

⋄ ⋄ ⋄
We will show that a proper definition of ω̇⋆

d to satisfy (22)–

(23) is possible.

The signal ϑ involved in the joint velocity controller (19)–

(20) is obtained from the following first order filter

ẋ = tanh(ωd − ϑ) − ωd, (24)

ϑ = ωd + Ax + Aq, (25)

where A = diag{a1, . . . , an} is positive definite.

B. Closed–loop system derivation

It is possible to show that the equation

d

dt
ξ̇ = −A tanh(ξ̇) + Aω̃ (26)

resumes the dynamics of the velocity filter (24)–(25).

On the other hand, substituting equation (19) in the robot

equation (1), and using the robot model property (6), we

obtain

M(q) ˙̃ω + [C(q, q̇) + C(q, ωd)]ω̃ + Kv tanh(ξ̇)

+Fvω̃ + [fCl(ωd)− fCl(q̇)]−M(q)η(t, q, ω̃) = 0. (27)

Equations (18), (26) and (27) represent the closed-loop

dynamics, that in state variables is given by

Σ1 :
d

dt
q = ωd(t, q) − ω̃, (28)

Σ2 :
d

dt

[

ξ̇

ω̃

]

=

[

−A tanh(ξ̇) + Aω̃

−M(q)−1ζ(t, q, ξ̇, ω̃) + η(t, q, ω̃)

]

,(29)

where

ζ(t, q, ξ̇, ω̃) = [C(q, ωd(t, q) − ω̃) + C(q, ωd(t, q))]ω̃

+Kv tanh(ξ̇) + Fvω̃ + [fCl(ωd) − fCl(q̇)],

ωd(t, q) is the desired velocity provided by the secondary

loop, and η(t, q, ω̃) was defined in (22)–(23).

C. Stability analysis

In order to consider systems Σ1 and Σ2, as a cascade [10]

we must prove that the overall system (28)–(29) is complete

that is, that the solutions can be continued for all t ≥ 0 and

do not blow up in finite time. This allows us to consider

Σ2 as a time–varying system, that is, we regard the robot–

joint velocity controller system as a time–varying system

dependent on the joint position q(t).
1) Completeness of the closed–loop system: To prove that

the system (28)–(29) is complete consider the function

W (q, ξ̇, ω̃) =
1

2
ω̃T M(q)ω̃ +

1

2
ξ̇

T
KvA

−1ξ̇ +
1

2
qT q,

which is a positive definite and radially unbounded function.

By virtue of property 1 in equation (2) the time derivative of

W (q, ξ̇, ω̃) along the closed–loop system trajectories (28)–

(29) is given by

Ẇ (q, ξ̇, ω̃) = −ω̃T C(q, ωd(t, q))ω̃ − ω̃T Kv tanh(ξ̇)

−ω̃T Fvω̃
T − ω̃T [fCl(ωd) − fCl(q̇)] + ω̃T M(q)η(t, q, ω̃)

−ξ̇
T
Kv tanh(ξ̇) + ξ̇Kvω̃ + qT ωd(t, q) − qT ω̃.

Using the robot model properties (4) and (7), the Coulomb–

like friction function property (8), properties of the tangent
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hyperbolic function, assumptions (21) and (23), it is possible

to show that there exist κ1 and κ2 large enough strictly pos-

itive constants such that the function Ẇ (q, ξ̇, ω̃) attains the

inequality Ẇ (q, ξ̇, ω̃) ≤ κ1W (q, ξ̇, ω̃) + κ2

√

W (q, ξ̇, ω̃).

With the transformation z =
√

W we obtain ż ≤ κ1

2
z + κ2

2
.

It follows using the comparison equations method to show

that z(t) ≤ eκ1t/2z(0) + κ2

κ1

[eκ1t/2 − 1], that is, W (t) is

bounded for all t bounded and since W (t) is positive definite

we obtain that the solutions [q(t)T ξ̇(t)T ω̃(t)T ]T exist and

can be continued for all t ≥ 0.

2) Proof of exponential stability: We have proven that the

solutions of the closed–loop system Σ1–Σ2 can be continued

for all t ≥ 0 thus the subsystem (29) can be interpret as a

nonlinear and nonautonomous system, being the state space

origin an equilibrium point. In order to show the asymptotic

stability of the subsystem Σ2 in equation (29), the following

Lyapunov function candidate is proposed

V (t, ω̃, ξ̇) =
1

2
ω̃T M(q)ω̃

+

n
∑

i=1

kvia
−1

i ln(| cosh(ξ̇i)|) − α tanh(ξ̇)T M(q)ω̃, (30)

where α is a strictly positive constant. It is possible to show

that V (t, ω̃, ξ̇) is globally positive definite for

α <

√

λmin{KvA−1}λmin{M(q)}
λMax{M(q}

=

√

λmin{Kv}λmin{M(q)}
√

λMax{A}λMax{M(q}
. (31)

This can be done by invoking the fact

n
∑

i=1

kvia
−1

i ln(| cosh(ξ̇i)|) ≥
1

2
tanh(ξ)T KvA

−1 tanh(ξ),

and the robot model properties (4)–(5).

The time derivative of V (t, ω̃, ξ̇) along of the closed–loop

system trajectories (29) is given by

V̇ (t, ω̃, ξ̇) = −ω̃T C(q, ωd)ω̃ − ω̃T Fvω̃ − ω̃T [fCl(ωd)

−fCl(q̇)] + ω̃T M(q)η(t, q, ω̃) − tanh(ξ̇)T Kv tanh(ξ̇)

+α tanh(ξ̇)C(q, ωd)ω̃ + α tanh(ξ̇)T Kv tanh(ξ̇)

+α tanh(ξ̇)T Fvω̃ + α tanh(ξ̇)T [fCl(ωd) − fCl(q̇)]

−α tanh(ξ̇)T M(q)η(t, q, ω̃) − α tanh(ξ̇)T C(q, q̇)T ω̃

+αω̃T M(q)Sech2(ξ̇)A tanh(ξ̇) − αω̃T M(q)Sech2(ξ̇)Aω̃,

where the property 1 in (2)–(3), property 3 in (6), and

property d
dt tanh(x) = Sech2(x)ẋ = diag{Sech2(x1), . . . ,

Sech2(xn)}ẋ were used.

By virtue of properties (4)–(5), (7)–(9), inequalities (21)

and (23), the facts ‖ tanh(x)‖ ≤ ‖x‖ and ‖ tanh(x)‖ ≤ √
n

for all x ∈ IRn, the following upper bound on V̇ (t, ω̃, ξ̇) is

obtained

V̇ (t, ω̃, ξ̇) ≤ −
[

‖ξ̇‖
‖ω̃‖

]T

Q

[

‖ξ̇‖
‖ω̃‖

]

− φ(ξ̇)‖ω̃‖2

where the entries of the matrix Q are

Q11 = λmin{Kv} − αλMax{Kv}

Q12 = −1

2
α[γ1 + λMax{A}λMax{M(q)}]

Q21 = −1

2
α[γ1 + λMax{A}λMax{M(q)}]

Q22 = λmin{Fv},
and

φ(ξ̇) = α
[

λmin{M(q)}λmin{Sech2(ξ̇)}λmin{A}

−kC

√
n
]

− γ2,

with

γ1 = 2kC‖ωd‖M + λMax{Fv} + kf + k λMax{M(q)},
γ2 = kC‖ω‖M + k λMax{M(q)}.

A sufficient condition for the Lyapunov function

V (t, ω̃, ξ̇) be globally positive definite and radially un-

bounded, and its time derivative V̇ (t, ω̃, ξ̇) be negative

definite into the set

Ω = {ω̃ ∈ IRn} ×
{

ξ̇ ∈ D
}

, (32)

with D =
{

ξ̇ ∈ IRn : ‖ξ̇‖ ≤ d
}

, is given by the inequality

kC‖ωd‖M + k λMax{M(q)}
λmin{M(q)}λmin{A}sech2(d) − kC

√
n

< α

< min

{

√

λmin{Kv}λmin{M(q)}
√

λMax{A}λMax{M(q)}
,

λmin{Kv}
2λmin{Kv}

,

√

λmin{Kv}λMax{Fv}
γ1 + λMax{A}λMax{M(q)}

}

, (33)

which requires large enough values for the filter gain A and

the control gain Kv. A simple tuning procedure to select

the gains A and Kv that satisfy the condition (33) has been

developed. The tuning procedure was not included in the

paper due to space limitation.

Therefore, all the conditions to prove that the state space

origin of the closed–loop system (29) is locally asymptoti-

cally stable are satisfied [6]. As result, it is possible to claim

that [ξ̇(t)T ω̃(t)T ]T → 0 as t → ∞ for all initial condition

[ξ̇(0)T ω̃(0)T ]T starting at the some domain of attraction

RA ⊂ Ω, where Ω is defined in (32).

D. Operational space trajectory tracking controller: Sec-

ondary loop

We have already shown the exponential convergence of the

velocity error ω̃(t). The second step is to select a appropriate

definition of the the desired joint velocity ω d. Substituting

the velocity error definition ω̃ in (17) into the differential

kinematics (11) we obtain

ẏ = J(q)[ωd(t, q) − ω̃]. (34)

Let us notice that the kinematic control concept [12] consid-

ers the system (34) as the robot model, with control input
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Fig. 1. Experimental robot manipulator actuated by DC motors

ωd(t, q). Because the analytical robot Jacobian J(q) is as-

sumed full–rank, and inspired from the resolved motion rate

control philosophy [14], we propose the following control

law to generate the desired joint velocity ωd

ωd(t, q) = J(q)† [ẏd(t) + K tanh(ỹ)] , (35)

with K ∈ IRm×m a positive definite matrix and ỹ(t) =
yd(t) − y(t). Note that y ∈ IRm can be measured through

the direct kinematics map (10). Substituting (35) into (34),

the error equation

˙̃y = −K tanh(ỹ) + J(q)ω̃ (36)

is obtained. We have already proven that the synthetic

velocity–based controller (19)–(20) achieves exponential

tracking of the desired velocity command ω d(t, q(t)), which

implies that ω̃(t) vanishes with exponential rate. It is possible

to show that the solution ỹ(t) of the undisturbed system
˙̃y = −K tanh(ỹ) is exponentially convergent. Therefore,

by invoking the results in [10], and under the assumption

that the robot Jacobian J(q) is full–rank and bounded, the

system (36) has solution ỹ(t) exponentially convergent, this

implies that limt→∞ ỹ(t) = 0. The signal ω̇⋆
d is defined as

ω̇⋆
d = J̇(q, ωd)

† [ẏd(t) + K tanh(ỹ)] + J(q)† [ÿd(t)] ,
(37)

By using some direct computations, and the assumption that

‖ẏd(t)‖ and ‖ÿd(t)‖ are bounded functions for all t ≥ 0,

it is possible to prove that ωd and ω̇⋆
d in (35) and (37),

respectively, satisfy the assumption 4 in (21)–(23).

IV. EXPERIMENTAL RESULTS

A planar two degrees–of–freedom direct–drive arm has

been built at the CITEDI–IPN Research Center. The system

is composed by two DC Pittman motors operated in current

mode with two Advanced Motion Controls servo amplifiers.

A Sensoray 626 I/O card is used to read encoder signals with

quadrature included and control commands are transferred

through the D/A channels. The control system is running in

real–time with a 1 kHz sampling rate on a PC over Windows

XP using Matlab with Simulink and the Real–Time Windows

Target.

The DC motors actuators are operated in current mode,

then the torque delivered is given by

τ = Ku, (38)

with K = diag{k1, . . . , kn} [Nm/Volt] is a positive definite

matrix that contains the motor constants and u ∈ IRn is the

applied control voltage.

Under the consideration that the actuator torque is given

by (38), the proposed controller (19) can be implemented as

u = K−1 [M(q)ω̇⋆
d + C(q, ωd)ωd + g(q)

+Fvωd + fCl(ωd)] + K ′
v tanh(ξ̇), (39)

with K ′
v = K−1Kv. It is noteworthy that the control law

(39) can be implemented without knowing the matrix K .

This is achieved by noting that the robot model can be written

as follows:

K−1M(q) =

[

θ1 + 2θ2 cos(q2) θ3 + θ2 cos(q2)
θ4 + θ5 cos(q2) θ6

]

, (40)

K−1C(q, q̇) =

[

−θ2 sin(q2)q̇2 −θ2 sin(q2)[q̇1 + q̇2]
θ5 sin(q2)q̇1 0

]

,

(41)

K−1Fv = diag{θ7, θ8}, (42)

K−1fCl(q̇) =







k−1

1 fCl1(q̇1) =

{

θ9 tanh(50q̇1) if q̇1 ≥ 0,
θ10 tanh(50q̇1) if q̇1 < 0,

k−1

2 fCl2(q̇2) =

{

θ11 tanh(50q̇2) if q̇2 ≥ 0,
θ12 tanh(50q̇2) if q̇2 < 0,






, (43)

K−1g(q) = 0. (44)

It is possible to show that the Coulomb–like function f Cl(q̇)
in (43) satisfies the property 4 in equations (8)–(9). By using

the recursive least squares identification method, we have

estimated the coefficients involved in robot model (40)–(44).

See Table I.

TABLE I

ESTIMATED PARAMETERS

θ1 0.0480 θ5 0.0226 θ9 0.0560
θ2 0.0038 θ6 0.0166 θ10 0.0057
θ3 0.0033 θ7 0.0073 θ11 0.0611
θ4 0.0158 θ8 0.0066 θ12 0.0137

The desired trajectory is given by

yd(t) =

[

yd1c + r0 sin(v0

r0

t)
yd2c + r0 cos(v0

r0

t)

]

[m],

with parameters yd1c = 0.15 [m], yd2c = 0 [m] r0=0.05

[m] and v0=0.15 [m/sec]. The robot initial conditions were

q(0) = [42 97]T [degrees], which implies that ỹ(0) = 0.

By using equation (39), we have implemented

the joint velocity controller (19)–(20), filter (24)–

(25), and operational space controller (35) and (37),

with gains K ′
v = diag{0.4, 0.4} [Volt sec/rad],

A = diag{1000, 1000} [1/sec], and K = diag{7.5, 10.0}
[1/sec]. With these control and filter gains, the assumption

(33) is satisfied. The initial condition for the filter (24)–(25)

was x(0) = [−0.7303 − 1.6901]T [rad], implying that

ϑ(0) = 0.
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Fig. 2. New controller: Robot path in Cartesian coordinates

The results of the implementation of the new controller

(19)–(20), which incorporates the filter (24)–(25), kinematic

controller (35) and precompensated acceleration signal (37),

is shown in Figure 2, that depicts the Cartesian robot path,

Figure 3, which shows the time history of the robot Cartesian

position y1(t) and y2(t), and Figure 4, that describes the

applied control voltages u1(t) and u2(t).

Let us notice that high frequency components appeared

in the experimental control signals u1(t) and u2(t), as

seen in Figure 4. The reasons were the 2000 [ppr] encoder

resolution of the robot actuators, discrete implementation

of the controller and filter, quantization errors, and PWM

switching of the servo amplifiers. But in spite of the high

frequency contents in the voltage control signal, we did not

observe negative effects in the performance of the robot, such

as mechanical vibrations.

By using the robot model in (40)–(44), with the estimated

parameters in Table I, and taking into account the above–

mentioned effects, we have assessed the performance of the

new controller with respect to numerical simulations. The

results in Figures 3 and 4 indicate that the experimental and

simulation results are very similar. In addition, numerical

simulation showed that the high frequency contents of the

control signals u1(t) and u2(t) was owing mainly to the

encoder resolution of the robot actuators.
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