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Abstract— This paper provides a novel method of construct-
ing an internal model for a class of LTV plants driven by
known LTI exosystems. It is shown how the realization of a
time-varying internal model can be constructed by means of a
novel feedback mechanism. The design of the internal model
consists of two ingredients: 1) a time-varying system immersion
of the exosystem; 2) automatic generation of the desired control
input, based on the complete knowledge of the plant model.
The important features of the proposed method lie in that the
solution does not involve solving Sylvester differential equations,
moreover the immersion is guaranteed to hold for the class of
plant models under consideration. These features significantly
broaden the range of applications of the proposed method and
simplify the control implementation process.

I. INTRODUCTION

It has long been recognized that internal model-based

design is a powerful approach for tracking and/or rejecting

signals governed by an autonomous exogenous system. The

problem of this kind, known as output regulation or ser-

vomechanism, has been extensively studied for LTI systems.

The extension to linear time-varying systems was introduced

in [1] with extension of the regulator equation [2] to the LTV

case. Recently a more comprehensive regulation theory for

LTV and linear periodic systems has been developed in [3],

[4], where the solvability of the problem was characterized.

Based on the complete knowledge of the plant and exosystem

models, a regulator synthesis was given by solving the

Sylvester differential equation. For general LTV systems,

however, the construction of a time-varying internal model

by means of system immersion [5], remained open.

As a special case of the internal model principle, a scheme

called repetitive control [6], [7], [8], focuses on dealing with

periodic exogenous signals and has been applied to many

industrial applications [9], [10]. It is worth noting that among

the applications a wide class involves tracking and/or reject-

ing rotational-angle dependent signals, where the signals of

interest are periodic with respect to the angular displacement

but not periodic with respect to time as the rotational speed

varies. For instance, the problem of controlling internal

combustion engines, many engine subsystems demonstrate

rotational-angle dependent behaviors [11] such as the intake

and exhaust valves motion, but the engine rotational speed

changes in real-time. To leverage the periodicity of signals

in the rotational-angle domain, a feasible approach is to

convert the plant model into the rotational-angle domain,

which yields the plant model time-varying [12] (actually
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angle-varying). This motivates us to investigate the extension

of the internal model-based design to the case of LTV plant

models in this work.

Based on the complete knowledge of the plant and ex-

osytem models, we provide a new approach of internal

model design for a class of LTV plants driven by LTI

exosystems. The internal model unit is based on a unique

feedback mechanism inspired by repetitive control [6], [7].

The important features of our design lie in that the plant

model setup and the feedback mechanism allow us to avoid

explicitly calculating the desired input, which keeps the

regulated error identically zero. Moreover, the construction

of the internal model can be realized by a time-varying

system immersion, and the realization is guaranteed to hold

for the class of plant models under consideration without

assuming any additional property on the augmented system.

The rest of the paper is organized as follows: In Section II,

we give the formulation of the asymptotic tracking and/or

disturbance rejection problem for a class of LTV plants.

The realization of a time-varying system immersion is given

in Section III. Based on the unique feedback mechanism,

the condition for the internal model design is proposed in

Section IV. An illustrative example is presented in Section V,

followed by some conclusions.

II. PROBLEM SETTING

Consider the tracking control problem for the LTV plant

models of the form

ẋ = A(t)x + B(t)u

yp = C(t)x

y = C(t)x + d

(1)

with the plant state x ∈ R
n, the plant output yp ∈ R, the

control input u ∈ R, the regulated error y ∈ R, and bounded

and smooth (A(·), B(·), C(·)). The signal d to be tracked

or rejected is generated by an LTI system of the form

ẇ = Sw

d = Qw
(2)

with the state of exosystem w ∈ R
ρ. The plant model (1)

satisfies the following assumptions:

Assumption 2.1: The pair (A(·), B(·)) and (A(·), C(·))
is uniformly controllable and uniformly observable [13]

respectively.

The exosystem (2) satisfies the standing assumption which

corresponds to periodic trajectories.

Assumption 2.2: All the eigenvalues of S are on the

imaginary axis, and the pair (S, Q) is observable.
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In addition, for the ease of s stabilizer design, we assume

that the plant model (1) is already stabilized.

Assumption 2.3: Assume that the homogenous part of the

plant model (1)

ẋ = A(t)x

is uniformly asymptotically stable.

We consider the tracking control problem given as follows:

Problem 2.1: The tracking control problem consists of

finding an output-feedback compensator of the form

ζ̇ = G(t)ζ + F (t)y

u = H(t)ζ + K(t)y
(3)

with state ζ ∈ R
nζ , such that:

1. The origin of the closed-loop unforced system (w = 0)

is a uniformly asymptotically stable equilibrium.

2. Trajectories of the closed-loop system originating from

any initial condition (w0, x0, ζ0) are bounded and

limt→∞ y(t) = 0.

The solvability of Problem 2.1 is shown as follows (with

a minor extension of the result for periodic systems in [4]).

Proposition 2.1: A stabilizing controller (3) is a regulator

if and only if there exist smooth mappings Π : R 7→ R
n×ρ,

Σ : R 7→ R
nζ×ρ, and R : R 7→ R

1×ρ satisfying the

differential equations:

Π̇(t) + Π(t)S = A(t)Π(t) + B(t)R(t)

0 = C(t)Π(t) + Q
(4)

and

Σ̇(t) + Σ(t)S = G(t)Σ(t)

R(t) = H(t)Σ(t) .
(5)

Equation (5) characterizes the internal model principle in

the time-varying setting. The role of the internal model is

to generate the desired input uff = R(t)w, which keeps the

regulated output identically zero.

III. TIME-VARYING SYSTEM IMMERSION

Based on the above solvability conditions, the existing

research activities of the output regulation problem were

spent on constructing the required input uff = R(t)w for

the exosystem with an output of the form

ẇ = Sw

uff = R(t)w .
(6)

Note that exosystem state w is not measurable. If there is

no (parametric) uncertainties in the plant model, the desired

input uff can be constructed by solving the inverse of a

Sylvester differential equation (SDE) [4, Proposition 5.1],

which is very difficult to obtain a closed form solution. This

difficulty could be overcome by resorting to the concept of

system immersion. The usefulness of a system immersion is

to reconstruct uff by finding another system whose output

includes every output of system (6).

Definition 3.1: The LTV system (6) is said to be immersed

into another LTV system

ξ̇ = Φ(t)ξ

uff = Γ(t)ξ .
(7)

where Φ : R 7→ R
nξ×nξ and Γ : R 7→ R

1×nξ are

smooth functions of their arguments, if there exists a smooth

mapping U : R 7→ R
nξ×ρ, satisfying

U̇(t) + U(t)S = Φ(t)U(t)

R(t) = Γ(t)U(t) .

If such an immersion exists, the pair (Φ(·), Γ(·)) is termed

as the internal model pair of (6). Note that for a robust

design, it means that immersion (7) can be found, and

it is independent of parametric uncertainties in R(t). The

difficulty lies in the fact that an explicit design method for

finding such an immersion of a time-varying pair (S, R(·))
is not available yet due to the absence of Cayley-Hamilton

like theorem.

In this study, we present an explicit design method of

the internal model unit, whose role is to keep the regulated

error identically zero if the plant is appropriately initialized.

Inspired by the unique structure of repetitive control [6],

[7], we propose a feedback mechanism (Figure 1) to realize

such a persistent input. The idea is that a self-excitation

mechanism is embedded in the feedback loop so that it drives

the plant to compensate the persistent and bounded signal

d(t) when y(t) = 0. The specific steps are: first, by designing

controllers in the feedback loop, the exogenous signal d(t)
is embedded in the place of ud (see Section III); second,

by finding certain conditions between the internal model

candidate and the plant model, the required control input uff

is automatically generated, which keeps the regulated error

y(t) identically zero (see Section IV). In short we would like

to find a certain condition, under which the exosystem (2)

is immersed into a time-varying system, and uff can be

automatically generated by leveraging on the setup (1) to

avoid explicitly computing R(t). The overall controller is

given as the cascade connection of an internal model unit

and the stabilizer of the interconnected plant model and the

internal model. The stabilizer is of the form

ξ̇st = Gst(t)ξst + Fst(t)y

ust = Hst(t)ξst + Kst(t)y
(8)

with state ξst of the stabilizer of the interconnected system.

The internal model candidate is of the form

ξ̇1 = Φ1(t)ξ1 + Ψ1(t)u

ud = Γ1(t)ξ1

(9)

and
ξ̇2 = Φ2(t)ξ2 + Ψ2(t)(ust − ud)

u = Γ2(t)ξ2 + D2(t)(ust − ud)
(10)

with the state ξ = col(ξ1, ξ2). In what follows, we show how

to construct the internal model (9)–(10), by first showing in

Section III that how to immerse exosystem (2) into (9)–(10)
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Fig. 1. Block diagram of the error-feedback compensator.

when ust = 0, then showing how the desired input uff can

be automatically generated in Section IV.

To begin with, assume that the initial condition is appro-

priately set such that y(t0) = 0 and hence ust = 0. Then

our goal is to construct an internal model which produces

a self-excited u = uff , which keeps y(t) = 0, that is, the

exosystem with output (6) is immersed to

ξ̇ = Φ(t)ξ

u = Γ(t)ξ ,
(11)

where Φ(t) =

(

Φ1(t) − Ψ1(t)D2(t)Γ1(t) Ψ1(t)Γ2(t)

−Ψ2(t)Γ1(t) Φ2(t)

)

.

Γ(t) =
(

−D2(t)Γ1(t) Γ2(t)
)

. If there exist such pairs

(Φ1(·), Ψ1(·), Γ1(·)) and (Φ2(·), Ψ2(·), Γ2(·), D2(·)), then

for the given feedback structure there exists a realization of

the time-varying internal pair (Φ(·), Γ(·)) (11):

ξ̇ = Gim(t)ξ + Fim(t)Γim(t)ξ

u = Γim(t)ξ ,
(12)

where Gim(t) =

(

Φ1(t) 0

−Ψ2(t)Γ1(t) Φ2(t)

)

, Fim(t) =

(

Ψ1(t)

0

)

, Γim(t) = Γ(t) .

Since in general the pair (Φ(·), Γ(·)) is not uniformly

observable, how to design the controllers in (11) such that

exosystem with output (6) is immersed into (11) is not clear.

In order to make the realization (11) real, we propose an

approach in twofold:

T1. Find the condition for (Φ1(·) , Ψ1(·) , Γ1(·)), (Φ2(·) ,

Ψ2(·) , Γ2(·) , D2(·)) and (S, Q) under which signal d

can be embedded.

T2. Without explicit calculation, generate uff = R(t)w by

matching the I/O maps between the plant model and

subsystem (Φ1(·) , Ψ1(·) , Γ1(·)) (see Figure 1).

Task 1 is inspired by the fact that a suitable copy of

exosystem is required to be embedded into the feedback

controller [2] to achieve asymptotic regulation. Moreover

if signal d can be embedded, then it will facilitate the

generation of uff in Task 2. From Figure 1, it is clear that

when the regulation is achieved, y(t) = 0 for all t ≥ t0, the

output of the plant model yp(t) is identically −d(t). This

observation is one reason why we are interested in seeing

how signal d(t) can be embedded inside the feedback loop.

Specifically, we show how to accomplish Task 1 in what

follows, and leave Task 2 in Section IV. For Task 1 to see

how to embed d in the feedback loop, note that controllers (9)

and (10) are in the cascade connection. If exogenous signal

d can be embedded in the place of ud inside the feedback

loop, then the loop connection can be put in the following

form
ξ̇ = Φ(t)ξ

d = Γa
1(t)ξ ,

(13)

with Γa
1(t) =

(

−Γ1(t) 0
)

.

For the ease of our derivation, we now choose specific

forms of exosystem (2), controllers (Φ1(·), Ψ1(·), Γ1(·))
and (Φ2(·), Ψ2(·), Γ2(·), D2(·)). Since the LTI pair (S, Q)
is observable, we consider that the exosystem is of the

observer canonical form (So, Qo), with a constant vector α =
col(αρ−1, · · · , α0) ∈ R

ρ collecting the first column of So.

Also we choose (13) as follows: Since (Φ1(·), Ψ1(·), Γ1(·))
is uniform observable, it is topologically equivalent to the

observer canonical form (Φ1o(t), Ψ1o(·), Γ1o), with g(t) =
col(gρ−1(t), · · · , g0(t)) ∈ R

ρ collecting the first column

of Φ1o(·) and Ψ1o(t) = f(t) = col(fρ−1(t), · · · , f0(t)) ∈

R
ρ. Since (Φ2(·), Ψ2(·), Γ2(·), D2(·)) is uniform control-

lable, it is topologically equivalent to the controllability

canonical form (Φ2c(·), Ψ2c, Γ2c(·), D2c(·)) and the phase-

variable (controller) form (Φ2p(·), Ψ2p, Γ2p(·), D2p(·)). De-

note q(t) = col(qρ−2(t), · · · , q0(t)) ∈ R
ρ−1 the first column

of Φ2c(·), and p(t) = col(p0(t), · · · , pρ−1(t)) ∈ R
ρ the co-

efficients of Γ2c(t) = (p0(t)− pρ−1(t)q0(t) , · · · , pρ−2(t)−
pρ−1(t)qρ−2(t)), and D2c(t) = pρ−1(t). The coefficients

of (Φ2p(·), Ψ2p(·), Γ2p(·), D2p(·)), p̄(t) and q̄(t) can be

represented by the derivatives of p(t) and q(t).
Now we are in position to find conditions to enforce (13)

by resorting to a suitable output mapping, which yields the

resulting system uniformly observable. Define an auxiliary

signal v = Γ2oξ2 with Γ2o = (1 0 · · · 0) and observe that

the system is of the form
(

ξ̇2

ξ̇1

)

= Φt(t)

(

ξ2

ξ1

)

v =
(

Γ2o 0
)

(

ξ2

ξ1

)

,

(14)

where

Φt(t) =

(

Φ2p(t) −Ψ2pΓ1o

Ψ1o(t)Γ2p(t) Φ1o(t) − Ψ1o(t)D2p(t)Γ1o(t)

)

is in the lower triangular form. It can be shown that this fact

and the output mapping in the form of Γo = (Γ2o 0) makes

the pair (Φt(·) , Γo) uniformly observable. Therefore, it is

topologically equivalent to the system in observer canonical

form as
˙̄ξ = Φo(t)ξ̄

v = Γo ξ̄ ,
(15)

where it can be verified that

Φo(t) =

(

OΦ1
(t) ·

(

1

q(t)

)

+ CΨ1
(t) p(t)

I

0

)

2ρ−1

,

(16)
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with

OΦ1
(t) =






Gρ(t) · · ·







0ρ−2

1

G1(t)













0ρ−1

1

G0(t)













2ρ×ρ

,

and

CΨ1
(t) =

(

Fρ−1(t) · · ·

(

0ρ−1

F1(t)

) (

0ρ

F0(t)

))

2ρ×ρ

,

with

Gk+1(t) =

(

Gk(t)

0

)

+

(

0

Ġk(t)

)

, G0(t) = g(t) ,

k = 0 , · · · , ρ − 1 , and

Fk+1(t) =

(

Fk(t)

0

)

+

(

0

Ḟk(t)

)

, F0(t) = f(t) ,

k = 0 , · · · , ρ − 2 .

On the other hand, if (13) holds, then based on the given

structure it is realized as
(

ξ̇1

ξ̇2

)

=

(

Φ1o(t) − Ψ1o(t)D2p(t)Γ1o(t) Ψ1o(t)Γ2p(t)

0 Φ2p(t)

)

(

ξ1

ξ2

)

+

(

0

Ψ2p

)

d

d =
(

−Γ1o 0
)

(

ξ1

ξ2

)

.

(17)

From (17) and (14), it is clear that

ξ̇2 = Φ2p(t)ξ2 + Ψ2p d

v = Γ2o ξ2

(18)

where the triplet (Φ2p(·) , Ψ2p , Γ2o) is in both observer and

controller canonical form. Then the cascade connection of

exosystem (2) and (18) reads as
(

ξ̇2

ẇ

)

=

(

Φ2p(t) Ψ2pQo

0 So

)(

ξ2

w

)

v =
(

Γ1o 0
)

(

ξ2

w

)

.

(19)

Again the above system is uniformly observable. Therefore

it can be transformed into a system in observer canonical

form (Φ̄o(·), Γo), where it can be verified that

Φ̄o(t) =

(

OS ·

(

1

q(t)

)

I

0

)

2ρ

, (20)

with

OS =





















α · · · 0 0
...

. . .
...

...

0 · · · 0 0
0 · · · 1 0
... · · · α 1
0 · · · 0 α





















2ρ×ρ

.

Equating (20) to (16) yields the following form

(

OΦ1
(t) CΨ1

(t)
)







1

q(t)

p(t)






= OS

(

1

q(t)

)

. (21)

The solvability of the proposed realization (17) depends on

the nonsingularity of the matrix (OΦ1
(t)−OS , CΨ1

(t)), and

the result is characterized by the following lemma.

Lemma 3.1: If the pair (Φ1o(·) − αΓ1o, Ψ1o(·)) is uni-

formly controllable, there exists a unique solution for (21).

Proof: It is easy to check that the pair (Φ1(·) −

αΓ1, Γ1(·)) is uniformly observable. The proof follows the

same lines in [14, Corollary 2.16, Lemma 2.33].

By solving (21), we have obtained a realization for sys-

tem (14) and hence the realization (17) holds as well by

noting (18) and (19), that is:

Proposition 3.2: If the condition in Lemma 3.1 holds, and

the following differential equation

Ξ̇2(t) + Ξ2(t)So = Φ2p(t)Ξ2(t) + Ψ2pQo , (22)

admits a solution Ξ2(t), then the exosystem (2) is immersed

into (13), and there exists a mapping Ξ : R 7→ R
2ρ−1×ρ such

that
Ξ̇(t) + Ξ(t)So = Φ(t)Ξ(t)

Qo = Γa
1(t)Ξ(t) .

(23)

Proof: The existence of Ξ2(t) in (22) implies that ξ2 =
Ξ2(t)w . Also note that both system (14) and (19) are of the

same dimension and are uniformly observable, so there exists

a mapping such that
(

ξ2

ξ1

)

=

(

I 0
M1(t) M2(t)

)(

ξ2

w

)

,

which implies that ξ1 = [M1(t)Ξ2(t)+M2(t)]w := Ξ1(t)w.

Therefore the proof follows by noting that

Ξ(t) =

(

Ξ1(t)
Ξ2(t)

)

, Γa
1(t) =

(

−Γ1o 0
)

.

In particular,

Ξ̇1(t) + Ξ1(t)So = (Φ1o(t) − Ψ1o(t)D2p(t)Γ1o)Ξ1(t)

+Ψ1o(t)Γ2p(t)Ξ2(t)

Qo = −Γ1oΞ1(t) .
(24)

For LTV plant models, condition (21) alone cannot make

system (12) the internal model, as the signal u generated in

equation (12) is not necessarily the desired input uff . So we

need to provide an extra condition under which the above

construction is indeed an internal model unit.

IV. DESIGN OF INTERNAL MODEL

We have shown that the exosystem (2) can be im-

mersed into system (13) by solving an algebraic equa-

tion (21), which yields the coefficients, pi(t) and qi(t), of

(Φ2c(·), Γ2c(·), D2c(·)) (10) in terms of the coefficients, fi(t)
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and gi(t), and their derivatives of system (9). In order to

make system (13) the internal model, we also need to find

the condition under which the control input u(t) is exactly

the desired one uff by choosing the remaining degree of

freedom in (13), i.e., gi(t) and fi(t) in (Φ1o(·), Ψ1o(·)) (9).

Recalling equation (12), the following condition holds

based on the above design
(

ξ̇1

ξ̇2

)

=

(

Φ1o(t) 0

−Ψ2pΓ1o Φ2p(t)

)(

ξ1

ξ2

)

+

(

Ψ1o(t)

0

)

u

u =
(

−D2p(t)Γ1o Γ2p(t)
)

(

ξ1

ξ2

)

,

(25)

where u may not be the desired input uff . As system

(Φ2p(·) , Ψ2p , Γ2p(·) , D2p(·)) is fixed (by solving (21) to

relate (Φ1o(·), Ψ1o(·), Γ1o), we need to find a condition

between (Φ1o(·), Ψ1o(·), Γ1o) and (A(·), B(·), C(·)) under

which the input u = uff . For the design of (Φ1o(·), Ψ1o(·),
Γ1o) we make the following assumption:

Assumption 4.1: The dimensions of ξ1 and x are the same.

Assumption 4.1 will be removed and the more general

situation will be discussed later but the idea used for the

design remains the same.

Lemma 4.1: Suppose that condition (21) and Assump-

tions 2.1, 4.1 hold and if the I/O maps of (A(·), B(·), C(·))
and (Φ1o(·), Ψ1o(·), Γ1o(·)) are the same, then system (12)

is indeed an internal model unit, i.e., there exists a mapping

Σ : R 7→ R
2ρ−1×ρ such that

Σ̇(t) + Σ(t)S = Φ(t)Σ(t)
R(t) = Γ(t)Σ(t) .

Proof: From Proposition 3.2, equation (23) holds. By

assumption (A(·), B(·), C(·)) and (Φ1o(·), Ψ1o(·), Γ1o) are

uniform realizations of the same impulse response, hence

they are related by a Lyapunov transformation T : R 7→

R
ρ×ρ such that

Φ1o(t) = T−1(t)A(t)T (t)−T−1(t)Ṫ (t) , Γ1o = C(t)T (t) ,

Ψ1o(t) = T−1(t)B(t) .

Condition (24) can be rewritten as

Π̇(t) + Π(t)S = A(t)Π(t) + B(t)(Γ2p(t)Ξ2(t)

−D2p(t)Γ1oT
−1(t)Π(t))

0 = C(t)Π(t) + Q ,

by setting Π(t) = T (t)Ξ1(t). The above condition is

nothing else but the regulator equation (4) which implies

R(t) = −D2p(t)Γ1oΞ1(t)+Γ2p(t)Ξ2(t) . The proof follows

by noting that

Σ(t) =

(

Ξ1(t)

Ξ2(t)

)

, Γ(t) =
(

−D2p(t)Γ1o Γ2p(t)
)

.

The easiest design of (Φ1(·), Ψ1(·), Γ1(·)) can be cho-

sen as (Φ1o(·), Ψ1o(·), Γ1o) = (Ao(·), Bo(·), Co) , where

(Ao(·), Bo(·), Co) is in observer canonical form.

Now we consider the general case where dim(ξ1) 6=
dim(x). Without loss of generality, assume that dim(ξ1) >

dim(x), as for the case that dim(ξ1) < dim(x), one can

always augment the exosystem (2) such that dim(ξ1) =
dim(x). Augment system (A(·), B(·), C(·)) with an expo-

nentially stable LTI filter, the resulting augmented plant

model (Ā(·), B̄(·), C̄(·)) shares the same I/O map with

(A(·), B(·), C(·)), and (Ā(·), C̄(·)) is uniformly observable.

Example 4.1: Consider the case that ρ = 4 and n = 2.

Augment (A(·), B(·), C(·)) with an exponential stable LTI

filter
s2 + c1s + c0

s2 + c1s + c0

, the resulting augmented plant model

(Ā(·), B̄(·), C̄(·)) can be put in the following observer

canonical form where

Āo(t) =











−c1 + a1(t) 1 0 0

−(c0 + c1a1(t) + a0(t)) 0 1 0

−(c0a1(t) + c1a0(t)) 0 0 1

−c0a0(t) 0 0 0











,

B̄o(t) =











b1(t)

c1b1(t) + b0(t)

c0b1(t) + c1b0(t)

c0b0(t)











, C̄o(t) =
(

1 0 0 0
)

.

The result in Lemma 4.1 holds by replacing

(A(·), B(·), C(·)) with (Ā(·), B̄(·), C̄(·)) and using Kalman

decomposition arguments. The proof is straightforward

and hence is omitted. The corresponding design of

(Φ1(·), Ψ1(·), Γ1(·)) can be determined as

(Φ1o(·), Ψ1o(·), Γ1o) = (Āo(·), B̄o(·), C̄o) .

where pair (Āo(·), B̄o(·), C̄o) is in observer canonical form.

Note that system (12) remains the internal model if

(Φ1(·), Ψ1(·), Γ1(·)) is a realization of the same impulse

response of the plant model with parametric uncertainties.

Once the internal model is designed as shown in the

preceding sections, Problem 2.1 is then converted to a sta-

bilization problem. If the plant model is uniform minimum-

phase and the internal model is a canonical realization (i.e.,

in (12) ξ̇ = Gim(t)ξ is uniformly asymptotically stable), a

static output feedback stabilizer can be invoked (see [4]). We

do not make such assumptions in this work. With uniform

observability and controllability assumptions on the plant

model (1) time-varying “pole-placement” technique [14] can

be applied to the stabilization of the interconnection of the

plant (1) and the internal model (9)– (10). Due the space

limitation, the derivation is omitted.

V. ILLUSTRATIVE EXAMPLE

Consider the plant model (1) and the exosystem (2) as

A(t) = φ(t)

(

0 1

−a0 −a1

)

, B(t) = φ(t)

(

b1

b0

)

,

So =

(

0 1

−ω2 0

)

, Qo = C =
(

1 0
)

,

5343



where a1 = 20, a0 = 200, b1 = 30, and b0 = −100, and

φ ∈ R is a smooth and bounded function of time.

Also it is easy to verify that (A(·), B(·), C(·)) is uniformly

controllable and observable and the plant is not minimum-

phase. The plant model can be transformed to observer form

Ao(t) =

(

−a1(t) 1

−a0(t) 0

)

, Bo(t) =

(

b1(t)

b0(t)

)

, Co =
(

1 0
)

,

where

a1(t) = a1φ(t) −
φ̇(t)

φ(t)
, a0(t) = a0φ

2(t) − ȧ1(t) ,

b1(t) = b1φ(t) , b0(t) = b0φ
2(t) + b1a1(t)φ(t) .

The internal model is chosen in the form (9)–(10), where

Φ1o(t) =

(

−g1(t) 1

−g0(t) 0

)

, Ψ1o(t) =

(

f1(t)

f0(t)

)

,

Γ1o =
(

1 0
)

, Φ2p(t) = −q̄0(t) = −q0(t) , Ψ2p = 1 ,

Γ2p(t) = p̄0(t) − p̄1(t)q̄0(t) , D2p(t) = p̄1(t) = p1(t) ,

with p̄0(t) = ṗ1(t) + p0(t). Since dim(ξ1) = dim(x), the

coefficients of fi(t) and gi(t) can be chosen by gi(t) = ai(t),
fi(t) = bi(t), i = 0, 1. The coefficients of q0(t), p1(t), and

p0(t) can be determined by solving equation (21), where







0 b1(t) 0

a1(t) b0 − ḃ1(t) b1(t)

a0(t) − ω2 −ḃ0(t) b0(t)













q0(t)

p1(t)

p0(t)







=







−a1(t)

−a0(t) + ȧ1(t) + ω2

ȧ0(t)






.

The stabilizer (8) can be obtained by solving a similar

algebraic equation, which is omitted duce to the space

limitation. Figure 2 shows respectively the tracking error

and the control input for a simulation with ω = 10 and the

initial conditions y(0) = 0.5, w(0) = (1,−0.5) ′. Figure 3

shows respectively time-varying φ(t) and the time-varying

coefficients of the plant model in observer form.
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Fig. 2. Tracking error and control input.
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Fig. 3. Plant parameters.

VI. CONCLUSIONS

In this paper, we have proposed a new internal model-

based design of asymptotic trajectory tracking and/or dis-

turbance rejection for a class of LTV plants. Based on the

unique feedback mechanism of the internal model, we have

given the condition of the realization of the internal model,

where the calculation of the desired input is not required

a priori. The solution has been obtained without solving

differential equations. The construction of a robust regulator

remains open and is currently under investigation.
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