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Abstract— In this paper, we investigate the state prepara-
tion problem of quantum noiselsss subsystems for the quan-
tum Markovian systems via quantum feedback control. The
controlled dynamics we consider are given by the so-called
stochastic master equation including the coupling terms with
the environment. We formulate the problem as a stochastic
stabilization problem of an invariant set. This formulation
allows us to utilize the stochastic Lyapunov technique and
derive a globally stabilizing controller. The effectiveness of this
method is evaluated by applying it to the 3-qubit systems subject
to the collective noise.

Index Terms— Quantum noiseless subsystems, Stochastic
master equation, Stochastic stabilization problem

I. INTRODUCTION

For realizing the quantum information processing, one

must protect the information encoded in the system against

errors and decoherence due to the interaction of the system

and its surrounding environment. One of the most general

protection methods is the noiseless subsystem encoding [2],

[3]. In order for quantum information to be isolated from

the noisy environment, one represents the information not

directly by the total quantum system, but by the properly

chosen quantum subsystem. If completely noise-protected

subsystem exists, it is called noiseless subsystem. In this

paper, we consider Quantum Information Processing (QIP)

with the noiseless subsystem being the information carrier.

In general, it is necessary for implementing QIP protocols

that one can control the system into an intended pure

state and manipulate its state universally [5]. Similarly, QIP

with noiseless subsystems requires control methodologies to

manipulate the subsystem state [9], [12]. However, this topic

has not been tackled intensively yet by the control theoretic

way in contrast to the control of the physical degrees of

freedom such as spin systems [4], [6], [10]. In this paper,

we consider the state preparation problem for the noiseless

subsystem of the quantum Markovian systems via quantum

feedback control, where the controlled dynamics are given

by the stochastic master equation. In particular, we formulate

the control problem as a stochastic stabilization problem of

an invariant set.

While state preparation problems for spin systems have

been intensively studied, the problem here is not trivial

because of the complexity of the dynamics including the

interaction with the environment. The underlying idea of the

main result is that the noiseless subsystem can be regarded as

an independent noise-free quantum system. Such a viewpoint
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makes the apparently complex problem relatively simple

and allows us to derive a globally stabilizing controller by

the similar discussion to the control problem for the spin

systems.

This paper is organised as follows. In Section II, we intro-

duce the notion of noiseless subsystems and the definition of

the stochastic stability used in this paper. Section III is the

main part of this paper: we first give the controlled dynamics.

Then, we state our control problem and provide its solution.

Section IV is devote to the verification of the effectiveness

of the main result, where we consider the control problem

of 3-qubit systems. Section V concludes the paper.

We use the following notation: for matrices A = (aij)
and B, the symbol A∗ represents its conjugate transpose,

i.e., A∗ = (a∗
ji), and [A,B] = AB − BA. The symbol ⊗

stands for the tensor product or the Kronecker product, ⊕
represents the direct sum of vector spaces, i =

√
−1 and I• is

the identity operator on a Hilbert space H• (if • is a number,

In represents the n×n identity matrix). The eigenstate of a

matrix A corresponding to a eigenvalue λ is defined by ρλ =
vλv∗

λ, where vλ is a normalilzed eigenvector corresponding

to λ.

II. PRELIMINARY

A. Quantum Markovian Dynamics, Noiseless Subsystems

Consider the system I defined on Hilbert space HI = C
n

and provide its dynamics by the master equation

ρ̇t = −i[H, ρt] +
∑

k

γkD(Lk, ρt), (1)

where ρt is a density matrix of the system I at time t, i.e.

an element of the set

D = {ρ ∈ C
n×n : ρ = ρ∗ ≥ 0, tr(ρ) = 1}. (2)

The Hermitian matrix H and the complex matrix Lk denote

the effective Hamiltonian and the Lindblad operator, respec-

tively. The superoperator D(c, ρ) is defined by D(c, ρ) =
cρc∗ − 1

2 (c∗cρ + ρc∗c). Assume that the second term in the

right-hand side of (1) is zero. Then, the system dynamics are

given by the Schrödinger equation

ρ̇t = −i[H, ρt].

The density matrix at time t is represented by ρt = Utρ0U
∗
t

with an unitary matrix Ut = exp(−iHt). As a result, we can

ensure that the purity of the system tr(ρ2), which explains

how the system is useful for QIP, is preserved:

tr(ρ2
t ) = tr(Utρ0U

∗
t Utρ0U

∗
t ) = tr(ρ2

0).
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On the other hand, unless the second term in the right-

hand side of (1) is zero, the purity monotonically decreases

without exception: for t ≥ s, 0 ≤ tr(ρ2
t ) ≤ tr(ρ2

s) ≤ 1. Re-

laxation rate of the coupling is specified by positive constants

γk. Here, the important thing is that the dissipation of the

purity is an irreversible process. Hence, for the QIP purpose,

we must use the physical system whose decoherence time is

as long as possible, or consider the methodologies in order

to avoid the dissipation.

One of the approaches for these requests is the noiseless

subsystem encoding. While the purity of the system I
dissipates due to the action of Lk, that of the subsystem

is invariant for the time evolution if H and Lk safisfy some

conditions.

Definition 1: [9] A quantum subsystem S of a system I
is a quantum system whose state space is a tensor factor HS

of a subspace HSF of HI ,

HI = HSF ⊕HR = (HS ⊗HF ) ⊕HR, (3)

for some co-factor HF and remainder space HR.

The condition for the purity of the subsystem to be

invariant for the time evolution is given by the matrix repre-

sentation of the Hamiltonian and the Lindblad operators. In

order to prepare for introducing such conditions, we define

a block decomposition of matrices acting on HI as in [9].

Let m = dim(HS), f = dim(HF ), r = dim(HR), and

let {|φS
j 〉}m

j=1, {|φF
k 〉}

f
k=1, {|φR

l 〉}r
l=1 denote orthonormal

bases for HS , HF , HR, respectively. The basis for HI is

determined by (3) as follows.

{|ϕi〉} = {|φS
j 〉 ⊗ |φF

k 〉}m,f
j,k=1 ∪ {|φR

l 〉}r
l=1

The block decomposition of matrices acting on HI is natu-

rally induced by the basis {|ϕ〉i}:

X =

(

XSF XP

XQ XR

)

. (4)

For the later discussion, we define the notation

X̄S := trF (XSF ) (5)

for a matrix X acting on HI . Here, trF (·) is the partial trace,

which is the unique linear operator defined by trF (XS ⊗
XF ) = XS tr(XF ) for matrices XS and XF acting on HS

and HF . Hence, it follows that tr(XSF ) = tr(X̄S) [9]. In

order to avoid the notational complexity, we standardize by

tr(·) the notation of the trace for matrices acting on each

Hilbert space H•.

With the definition of (4), (5) for X = ρ, ρ̄S represents the

(virtual) quantum state of the subsystem. However, as clear

from the relation tr(ρ) = tr(ρ̄S) + tr(ρR) = 1, ρ̄S does not

satisfy the definition of the density matrix unless tr(ρR) = 0
(the density matrix ρ̄S satisfies ρ̄S ≥ 0 and tr(ρ̄S) = 1). This

motivates us the following definition.

Definition 2: The system I with the state ρ is said to be

initialized in HSF with the reduced state ρS if the blocks of

the state ρ at t = 0 satisfy

(i) trF (ρSF ) = ρS ,

(ii) ρP = 0, ρR = 0.

Then, under the following assumption, the purity tr(ρ̄S) is

invariant, i.e., the subsystem HS becomes noiseless.

Assumption 1: The effective Hamiltonian H and the Lind-

blad operators Lk satisfy

H = 0, (6)

Lk =

(

IS ⊗ LF,k LP,k

0 LR,k

)

, (7)

∑

k

γk(IS ⊗ L∗
F,k)LP,k = 0. (8)

Theorem 1: Let the system I evolve under the dynamics

(1). Then, under Assumption 1, S is a noiseless subsystem:

for arbitrarily given ρ̄S,0, the system I initialized in HSF

with reduced state ρ̄S,0 satisfies

ρ̄S,t = ρ̄S,0, ∀t ≥ 0. (9)

Note that (9) does not hold in the case of tr(ρ̄S,0) =
tr(ρSF,0) 6= 1, unless LP,k = 0 for any k. Thus, if the initial

state satisfies the conditions in Definition 2, we can create

the noise-protected quantum information on the subsystem.

Remark 1: We here imposed the assumption of H = 0,

so that the result (9), which is stronger than the invariance of

the purity, is derived. For more general results with H 6= 0,

see [9].

B. Stochastic Stability

As the controlled dynamics introduced in the next section

have the stochastic behavior, we first define the stochastic

stability.

Definition 3: Let xz
t be a diffusion process on the metric

space X , started at x0 = z, and let M denote an invariant

set of the diffusion, i.e., for z ∈ M, xz
t ∈ M,∀t ≥ 0. Then

1) the invariant set M is said to be stable in probability

if

lim
d(z,M)→0

P

(

sup
0≤t<∞

d(xz
t ,M) ≥ ε

)

= 0 ∀ε > 0,

(10)

2) the invariant set M is globally stable if it is stable in

probability and additionally

P

(

lim
t→∞

d(xz
t ,M) = 0

)

= 1 ∀z ∈ X , (11)

where d(x,M) denotes the distance from a point to a set

and is defined by

d(x,M) := inf
q∈M

‖x − q‖. (12)

The stochastic stability of the dynamics is probed by

employing a stochastic version of the Lyapunov theorem

and the LaSalle invariance theorem. Let V (·) be a R-valued

nonnegative continuous function on the metric space X and

define a level set Qm by Qm = {x ∈ X : V (x) < m}.

Moreover, let τm = inf{t : xz
t /∈ Qm}, t ∧ s := min{t, s}

and define the infinitesimal operator A of the process xs.

Then, we obtain the following propositions.
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Lemma 1: [8] Let A V (x) ≤ 0 in Qm. If xz
t is a right

continuous strong Markov process defined untill at least

some τ ′ > τm a.s., then, for z ∈ Qm and λ ≤ m, we

have

P

(

sup
0≤t<∞

V (xz
t∧τm

) ≥ λ

)

≤ V (z)

λ
. (13)

Proposition 1: Let A V (x) ≤ 0 in Qm and xz
t be a

right continuous strong Markov process defined untill at least

some τ ′ > τm a.s.. If V (x) = 0 for x ∈ M and V (x) 6= 0
for x /∈ M, then M is stable in probability.

Proof: The statement is proved by using Lemma 1.

Proposition 2: [4] Let A V (x) ≤ 0 in Qm. Suppose

1) Qm has a compact closure,

2) xz
t∧τm

is Feller continuous,

3) P(‖xz
t∧τm

− z‖ > ε) → 0 as t → 0, for any ε > 0,

uniformly for z ∈ Qm.

Then xz
t∧τm

converges in probability to the largest invariant

set contained in Cm = {x ∈ Qm : A V (x) = 0}. Hence, xz
t

converges in probability to the largest invariant set contained

in Cm for almost all paths which never leave Qm.

III. FEEDBACK STABILIZATION PROBLEM

A. State Preparation via Quantum Feedback Control

In this section, we suppose Assumption 1 holds. In this

paper, we investigate the state preparation problem of the

noiseless subsystem introduced in the last section by the

feedback control scheme as in [4], [6], [10]. In order to

perform the feedback control, we first input a probe to the

system whose dynamics are given by (1), and monitor the

system’s observable M ∈ C
n×n continuously by homodyne

detection. Further, we control the monitored system by the

Hamiltonian F , where F is a Hermitian matrix. Then, the

quantum state ρt ∈ D conditioned on the measurement

record {yt} is given by the following Itô type stochastic dif-

ferential equation called Stochastic Master Equation (SME):

dρt = −i[H, ρt]dt +

p
∑

k=1

γkD(Lk, ρt)dt

−iut[F, ρt]dt + D(M,ρt)dt +
√

ηG(M,ρt)dWt, (14)

where ut ∈ R is a control input and η ∈ (0, 1] represents

the detector efficiency. The Wiener process Wt ∈ R is the

innovation and is associated with the measurement output

yt as follows: dWt = dyt −
√

η tr((M + M∗)ρt)dt. For

the derivation of the SME and its solution properties as a

stochastic process, see [1] and [4], respectively.

The mathematical description of the problem in this paper

is given as follows.

Problem 1: Let MS ∈ C
m×m be the Hermitian matrix in

which the maximum eigenvalue λ(1) is nondegenerate, and

ρ̄(1) be the eigenstate of MS corresponding to the eigenvalue

λ(1). Further, under the dynamics (14) and Assumption 1. let

Λ(1) = {ρ ∈ D : ρ̄S = ρ̄(1)} (15)

be an invariant set. Then, find the control Hamiltonian F , the

measurement operator M and the controller ut = u(ρt), u :
D → R which globally stabilize the invariant set Λ(1).

Moreover, show that E[ρ̄S,t] → ρ̄(1) as t → ∞.

B. Main Result

The stabilization problem of noise-free quantum systems

has been studied intensively [4], [6], [10]. However, they

are not directly applicable to Problem 1 for the following

reasons:

• High dimensionality of the dynamics (14). To construct

the (virtual) quantum system on the noiseless subsystem

HS = C
2, which is the lowest dimensional Hilbert

space for representing the quantum system, we have

to prepare at least 8 dimensional quantum system I.

For such high dimensional systems, it is not realistic to

apply the numerical method proposed in [6].

• Effect of the noise. This changes the dynamical prop-

erties of the quantum systems significantly. As a result,

it becomes difficult to apply the analytical method

proposed in [4], [10] to our control problem.

Note here that we do not necessarily need to control the

whole state of ρt. The central idea for the controller design

of this paper is that we neglect the unconcerned part of ρ
for the stabilization problem, i.e., the elements other than

ρ̄S . That is, we design the control law based on the control

Lyapunov function

V1(ρ) = 1 − tr(ρ̄S ρ̄(1)),

which is the natural distance between the system and the

target state as in the existing result [4], [10].

To do this, we begin by specifying the class of the

control Hamiltonian and the measurement operator. This is

the natural extension of the spin control systems.

Assumption 2: 1) The measurement operator M is

given by

M =

(

MS ⊗ IF 0
0 MR

)

, (16)

where MS ∈ C
m×m is the same matrix with that in

Problem 1 and MR ∈ C
r×r is the Hermitian matrix

whose eigenvalues are all less than λ(1).

2) The control Hamiltonian F satisfies the following

conditions: there exist the constants β,C ∈ R such

that all the eigenvalues of

−iβF − M2 − 1

2

∑

k

γkL∗
kLk + CM (17)

are nondegenerate, and that all the elements of P ∗v(1)

are nonzero, where v(1) is the eigenvector of M which

corresponds to the eigenvalue λ(1) and P is the matrix

consisting of all the eigenvalues of (17), i.e., P =
[u1, · · · , un] (each of {ui}i is an eigenvector of (17)).

Remark 2: The assumption 1) is a necessary condition for

Problem 1 in some sense. On the other hand, the assumption

2), which are used for the proof of Lemma 6, gurarantees that

we can always draw the system out of the orthogonal space

to Λ(1). Note that these assumptions are not very restrictive.

In fact, 3-qubit systems suffering from the collective noise

satisfy these assumptions; see Section IV. In the control

problem of noise-free spin systems, these assumption are

automatically satisfied.
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We hereafter denote the eigenvalues of the measurement

operator M by λ(i), i = 1, 2, 3, · · · , where λ(1) > λ(2) >
λ(3) > · · · , and the subset of D spanned by the eigenstates

corresponding to λ(i) by Λ(i). The following R-valued non-

negative continuous functions V1, V2 : D → R are repeatedly

used for the later discussion:

V1(ρ) := 1 − tr(ρρ(1)), (18)

V2(ρ) := 1 − tr(ρρ(1))
2, (19)

ρ(1) :=

(

ρ̄(1) ⊗ IF 0
0 0

)

. (20)

Further, we define the R-valued continuous function u1 :
D → R,

u1(ρ) = − tr(i[F, ρ]ρ(1)).

The next theorem is the main result of this paper.

Theorem 2: Under Assumption 1, 2, suppose that the

dynamics of the system I is given by (14). Then, for α, β >
0 satisfying

β2

8αη(λ(1) − λ(2))2
< 1, (21)

the control law

ut = αu1(ρt) + βV1(ρt) (22)

globally stabilizes the invariant set Λ(1) and E[ρ̄S,t] → ρ̄(1)

as t → ∞.

C. Proof of Theorem 2

For simplifying the notation, define the subsets of the state

space D,

Dγ = {ρ ∈ D : V2(ρ) = γ}, (23)

D<γ = {ρ ∈ D : 0 ≤ V2(ρ) < γ}, (24)

D>γ = {ρ ∈ D : γ < V2(ρ) ≤ 1}. (25)

Here, note that the following holds.

Lemma 2: The set D0 is equal to the target set Λ(1).

Proof: We omit the proof.

To prove Theorem 2, it is required to show the stochastic

properties of the quantum dynamics. As in the reference [4],

the following proposition holds.

Proposition 3: Let the control law ut be given by ut =
u(ρt) with u ∈ C

1(D, R) and denote by ϕt(ρ, u) the solution

of (14) whose initial state and control law are given by ρ and

u. Then, the following properties hold.

1) For any ε > 0, P(‖ϕt(ρ, u)− ρ‖ > ε) → 0 as t → 0,

uniformly for ρ ∈ D.

2) ϕt(ρ, u) is Feller continuous: if V : D → R is

continuous, E[V (ϕt(ρ, u))] is continuous on ρ.

3) ϕt(ρ, u) is a right continuous strong Markov process

in D.

The proof of Theorem 2 consists of the following steps.

1. Λ(1) is stable in probability.

2. There exists 0 < γ < 1 such that for almost all paths

which never leave the set D<1−γ2 , they converge into

the invariant set Λ(1), i.e., d(ρt, Λ(1)) → 0 as t → ∞.

3. For almost all paths there exist a finite time T , and after

it they never leave D<1−γ2 .

We hereafter denote the infinitesimal operator associated

with the dynamics (14) by A .

Step 1. The statement of Step 1. is proved by finding

the Lyapunov function which satisfies the conditions of

Proposition 1 for the invariant set Λ(1).

Lemma 3: With the control input (22), A V2(ρ) ≤ 0 is

satisfied for ∀ρ ∈ D<1−(γ0/2)2 , where

γ0

2
=

β2

8αη(λ(1) − λ(2))2
< 1. (26)

Proof: The direct calculation of A V2(ρt) yields

A V2(ρt) = −2 tr(ρtρ(1)){utu1(ρt) + Φ(ρt)

+2η(λ(1) − tr(Mρt))
2 tr(ρtρ(1))}, (27)

Φ(ρ) := tr

(

∑

k

γkLk,P ρRL∗
k,P (ρ̄(1) ⊗ IF )

)

.

Since tr(ρtρ(1)) is nonnegative in D, to prove the statement

of the lemma, it is sufficient to show the nonnegativity of

the terms in the curly brackets in (27) for ρt ∈D<1−(γ0/2)2 .

By noting that the nonnegativity of density matrices leads

to the nonnegativity of Φ(ρt), we observe that the statement

above is proved by showing the nonnegativity of (28).

utu1(ρt) + 2η(λ(1) − tr(Mρt))
2 tr(ρtρ(1))

= α

(

u1(ρt) +
β

α

V1(ρt)

2

)2

+ Ψ(ρt) (28)

Ψ(ρ) := 2η(λ(1) − tr(Mρ))2 tr(ρρ(1)) −
β2

α

V1(ρ)2

4
Let us show the nonnegativity of Ψ(ρ) in D<1−(γ0/2)2 .

To this end, choose a constant γ ∈ (γ0/2, 1] and suppose

ρ ∈ D1−γ2 (⊂ D<1−(γ0/2)2 ). By noting V1(ρ) = 1 − γ
and tr(ρρ(1)) = γ from the definition of D1−γ2 , we can see

that Ψ(ρt) is monotonically increasing with respect to λ(1)−
tr(Mρt) ≥ 0. Next, consider the spectral decomposition of

the Hermitian matrix M . When we denote by {Pλ(i)

j } the

set of the (mutually orthogonal) eigenstates corresponding to

the eigenvalues λ(i), M is expressed as

M =
∑

i,j

λ(i)P
λ(i)

j .

Moreover, by defining pi = tr(
∑

j Pjρt), it follows that

tr(Mρt) =
∑

i λ(i)pi. Here, note {pi} satisfies
∑

i pi =
1, pi ≥ 0. This fact and λ(1) > λ(2) > λ(3) > · · · implies

that the minimum value of λ(1)−tr(Mρt) in D1−γ2 is λ(1)−
γλ(1) − (1 − γ)λ(2): the minimum value is given by ρ =
γρ(1) + (1 − γ)ρ(2), ρ(1) ∈ Λ(1), ρ(2) ∈ Λ(2). Hence, we

obtain the following inequality.

Ψ(ρ) ≥ 2η
{

λ(1) − γλ(1) − (1 − γ)λ(2)

}2
γ − β2

α

V1(ρt)
2

4

≥ 2η(λ(1) − λ(2))
2(1 − γ)2γ − β2

α

V1(ρt)
2

4

≥ 2ηV1(ρt)
2

{

γ(λ(1) − λ(2))
2 − β2

8ηα

}

(29)

1502



Under the condition (26) in D<1−(γ0/2)2 , we obtain Ψ(ρ) ≥
0. This completes the proof.

Step 2. We first prove the following lemma.

Lemma 4: For almost all paths which never exist

D<1−(γ0/2)2 , ρt converges in probability into Λ(1) as t →
∞.

Proof: Consider the Lyapunov function V2(ρ). From

the discussion in Lemma 3, A V2(ρ) ≤ 0 in D<1−(γ0/2)2

and all the conditions of Proposition 2 are satisfied. Hence,

by showing that the largest invariant set contained in {ρ ∈
D<1−(γ0/2)2 : A V2(ρ) = 0} is equal to Λ(1), the statement

is proved.

As the state space is restricted to D<1−(γ0/2)2 , tr(ρρ(1)) >
0 is obtained. In order to satisfy A V2(ρ) = 0, Ψ(ρ) = 0 is

necessary from (27) and (28). This implies V1(ρ) = 0 from

(29). On the contrary, if λ(1) − tr(Mρ) 6= 0, then it follows

that V1(ρ) 6= 0. Therefore, we have

λ(1) − tr(Mρ) = 0. (30)

We compute the set of the initial states in which tr(Mρt)
is constant for ∀t ≥ 0. Using Itô rule, we obtain

d tr(Mρt) = −iut tr(M [F, ρt])dt

+
∑

k

tr (M · γkD(Lk, ρt)) dt

+2
√

η{tr(M2ρt) − tr(Mρt)
2}dWt.

Hence, in order for tr(Mρt) to be constant for ∀t ≥ 0, we

must have

tr(M2ρ0) − tr(Mρ0)
2 = 0. (31)

By noting ρt ∈ D<1−(γ0/2)2 , the only subset in which the

condition (31) is satisfied is Λ(1).

Further, we can verify that (30) holds in Λ(1). Thus, from

the discussion above, the assertion is proved.

By using Lemma 4, the statement of Step 2. is proved by

the same discussion in Lemma 4.9 in [4].

Step 3. We first prepare two lemmas.

Lemma 5: Suppose that the initial value of (14) is ρ0 ∈
D<1−γ2

0
. Then,

P

[

sup
0≤t<∞

V2(ρt) ≥
(γ0

2

)2
]

≤ 1 − p =
1 − γ2

0

1 − (γ0/2)2
< 1.

(32)

Proof: From Lemma 1 and A V2(ρ) ≤ 0 in D<1−γ2
0
,

the assertion is proved.

Lemma 6: Let τρ0(D>1−γ2
0
) be the first exit time of ρt

from D>1−γ2
0

where ρ0 denotes the initial value of ρt. Then,

sup
ρ0∈D

>1−γ2
0

E[τρ0(D>1−γ2
0
)] < ∞. (33)

Proof: We only sketch the proof. First, we prove that

mint∈[0,T ] E[V2(ρt)] < 1 − γ2
0 for some 0 < T < ∞. Then,

by using Proposition 3.2 in [10], i.e.,

E[τρ0(D>1−γ2
0
)] ≤ T

1 − supρ0∈D P[τρ0(D>1−γ2
0
) > T ]

for all T ≥ 0 and ρ0 ∈ D, we can obtain (33).

The first claim is proved by the support theorem of Theo-

rem 5.7.6 in [7] (or Proposition 3.1 in [10]). We first compute

the stratonovich form of (14), and derive the corresponding

deterministic equation by substituting the Wiener increment

of the diffusion part with the increment of some piecewise

smooth function ξ. By using this solution, we obtain

d

dt
V2(ρt) = 2 tr(ρtρ(1))×

{

iut tr([F, ρt]ρ(1)) −
∑

k

γk tr
(

D(Lk, ρt)ρ(1)

)

−4λ(1)η tr(ρtρ(1)) tr(Mρt) + 8 tr(Mρt)
2 + 4λ2

(1)

−4 tr(M2ρt) − 2
√

η tr(ρtρ(1))(λ(1) − tr(Mρt))ξt

}

.

Then, according to the support theorem, the closure {V2(ρt) :
ξ ∈ Ξ} is equal to the support of V2(ρt) with respect to

(14) in the finite time interval [0, T ], where Ξ is the set

of all deterministic piecewise smooth functions. Hence, it

is sufficient to show that the closure of {V2(ρt) : ξ ∈ Ξ}
contains [0, γ] when V2(ρ0) = γ ≤ 1.

In order to prove this statement, we analyze the behavior

of the deterministic function V2(ρt). That is, we show that

there does not exist the invariant set of ρt except for D0

when ξt 6= 0. Suppose ξt 6= 0, then we must at least have

tr(ρtρ(1))(λ(1) − tr(Mρt))ξt = 0 for V̇2(ρt) = 0. The state

set under which tr(ρtρ(1))(λ(1) − tr(Mρt)) = 0 is devided

into three sets.

1) D0 = {ρ ∈ D : tr(ρρ(1)) = 1}
2) {ρ ∈ D : tr(Mρ) 6= λ(1)} ∩ D1

3) {ρ ∈ D : tr(Mρ) = λ(1)} \ D0

Clearly, D0 is an invariant set of ρt. That the set 2) is not

invariant is proved by the similar discussion with Lemma 4.3

and 4.4 in [4], where we use the conditions in Assumption

2. Finally, by investigating the value of d tr(Mρt)/dt, it is

shown that the set of 3) is not invariant.

Intuitively, Lemma 5 indicates that the sample paths never

leave the set D<1−(γ0/2)2 with nonzero probability if they

once arrive D<1−γ2
0
. On the other hand, Lemma 6 implies

that all the sample paths starting from the outside of D<1−γ2
0

arrive D<1−γ2
0

in a finite time. Thus, by combining these two

lemmas, we obtain the following.

Lemma 7: For almost all paths there exist a finite time T ,

and after T they never exit the set D<1−(γ0/2)2 .

Proof: The statement is proved by the similar discus-

sion in Lemma 4.10 in [4].

Proof of Theorem 2 The stability in probability follows

Step 1., and the a.s. convergence to the target set is proved

by unifying the remaing steps. Then, it follows that

E

[

lim
t→∞

V1(ρt)
]

= 0.

Since V1(ρ) is uniformly bounded, we obtain

V1

(

lim
t→∞

E[ρt]
)

= lim
t→∞

E[V1(ρt)] = E

[

lim
t→∞

V1(ρt)
]

= 0

by dominated convergence and linearity and continuity of

V1(ρ). Hence, we obtain that E[ρ̄S,t] → ρ̄(1) as t → ∞.
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IV. CONTROL OF 3-QUBIT SYSTEMS

As an application, we consider the control of 3-qubit

system subject to the collective noise, i.e., the system Hilbert

space is given by HI = C
2 ⊗ C

2 ⊗ C
2 and the Lindblad

operator is given by

Lk =
3

∑

j=1

I
(1)
2 ⊗ σ

(j)
k ⊗ I

(3)
2 k = x, y, z, (34)

where σk denotes the Pauli matrix, i.e.,

σx =

(

0 1
1 0

)

, σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

.

Then, from [11], when we choose the bases of HS and HF

as satisfying

|φS
1 〉 ⊗ |φF

1 〉 =
1√
2
(|01〉 − |10〉)|0〉, (35)

|φS
2 〉 ⊗ |φF

1 〉 =
1√
6
(2|001〉 − |010〉 − |100〉), (36)

|φS
1 〉 ⊗ |φF

2 〉 =
1√
2
(|10〉 − |01〉)|1〉, (37)

|φS
2 〉 ⊗ |φF

2 〉 =
1√
6
(2|110〉 − |101〉 − |011〉), (38)

the subsystem S is noiseless, where |0〉 = (1, 0)T, |1〉 =
(0, 1)T are the standard basis of C

2 and |i〉 ⊗ |j〉 ⊗ |k〉 is

simply denoted by |ijk〉. Further, we determine the bases of

HR as follows:

|φR
1 〉 = |000〉, (39)

|φR
2 〉 =

1√
3
(|100〉 + |010〉 + |001〉), (40)

|φR
3 〉 =

1√
3
(|011〉 + |101〉 + |110〉), (41)

|φR
4 〉 = |111〉. (42)

By transforming the base consisting of (35)-(42) to the

standard basis {ei}8
i=1, respectively, we can confirm that

Lk, k = x, y, z satisfy Assumption 1. In the following, we

discuss on the latter basis.

Consider to make the state of the subsystem HS , ρ̄S ,

converge to |φS
1 〉〈φS

1 |. That is, the control objective is to

globally stabilize the set {ρ ∈ D : ρ̄S = diag{1, 0} ≡
ρ̄(1)}. We employ the following control Hamiltonian and

measurement operator:

F = σx ⊗ σx⊗I2 + 2 · I2 ⊗ σx ⊗ σx + σx ⊗ I2 ⊗ σx,

M = −
∑

k=x,y,z

σk ⊗ σk ⊗ I2.

Then, the measurement operator M is given by

M =

(

MS ⊗ I2 0
0 −I4

)

, MS =

(

3 0
0 −1

)

.

Thus, λ(1) = 3 is the maximum eigenvalue of M . By the

direct calculation, we can check Assumption 2 is satisfied.

With this system and the control law (22), we perform the

control simulation. In the simulation, we take γk = η = α =
β = 1 and the initial quantum state is given by

ρ =

(

04×4 04×4

04×4
1
4 I4

)

.
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Fig. 1. Averaged time response of tr(ρ̄S,tρ̄(1)) and tr(ρ̄S,t).

Figure 1 depicts the averaged time response of the function

tr(ρ̄S,tρ̄(1)) and tr(ρ̄S,t), where we used 100 sample paths to

derive the curves. The blue solid line and the red dased line

represent the fidelity between ρ̄S,t and the target subsystem

state tr(ρ̄S,tρ̄(1)) and the trace of ρ̄S , tr(ρ̄S,t), respectively.

Note that the blue solid and red dashed lines do not cross,

and that these converge in a similar way. This indicates that

the control law (22) makes ρ̄S,t converge to the target state,

moving tr(ρ̄S) to 1: from the relation tr(ρ̄S,tρ̄(1)) ≤ tr(ρ̄S,t),
we have tr(ρ̄S ρ̄(1)) = 1 only if tr(ρ̄S,t) = 1.

V. CONCLUSION

In this paper, we proposed a new method for the state

preparation of noiseless subsystems. This is done based on

the idea that the noiseless subsystem can be regarded as an

independent noise-free quantum system. The obtained result

suggests the general framework to apply existing reuslts for

noise-free quantum systems to the control of noiseless sub-

systems. It is expected that our framework is also effective

for the general control problem for the noiseless subsystem.
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