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Abstract— This paper aims to improve computational com-
plexity in the sum-of-squares approximations to robust semidef-
inite programs whose constraints depend polynomially on
uncertain parameters. By exploiting sparsity, the proposed
approach constructs sum-of-squares polynomials with smaller
number of monomial elements, and hence gives approximate
problems with smaller sizes. The sparse structure is extracted
by a special graph pattern. The quality of the approximation
is improved by dividing the parameter region, and can be
expressed in terms of the resolution of the division. This
expression shows that the proposed approach is asymptotically
exact in the sense that, the quality can be arbitrarily improved
by increasing the resolution of the division.

I. INTRODUCTION

A robust semidefinite program (robust SDP in short) is the

optimization of a linear objective function subject to linear

matrix inequalities (LMIs in short) whose coefficients depend

on uncertain parameters. It plays an important role in robust

control [4], [20] an nonlinear optimization [9], [15]. A survey

about robust SDPs can be found in [1].

A robust SDP is difficult to solve in general [1], [5].

Therefore, we have to consider an approximate approach,

that is, a solvable SDP is constructed so that its feasible

region is included in that of the original robust SDP. This

approach is conservative since there is in general a nonzero

gap, called an approximation error, between the optimal

value of the approximate problem and that of the original

problem. Early results on such an approximate approach are

found in [1], [2], [5]. In the case of polynomial parameter

dependence, asymptotically exact approximate approaches

were proposed with the Kalman-Yakubovich-Popov lemma

[14], [3], with Pólya’s lemma [19], with the sum-of-squares

(SOS) technique [15], [21], [7], and with the matrix dilation

[11], [12], [13]. Here, the asymptotic exactness means that

the approximation error can be made arbitrary small by

considering an approximate problem of larger size, that is, an

SDP with more number of variables and/or an LMI constraint

of larger size.

Here we pay special interest on the SOS-based approach,

which is the most widely used among the approximate

approaches mentioned above due to its efficacy in imple-

mentation with the software SOSTOOLS [16]. In the SOS-

based approach, a sequence of approximate problems which

is asymptotically exact to the original one can be constructed

by the degree increase of SOS polynomial matrices in [21]

or by the division on the parameter region in [7]. The recent
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work [7] developed by the author showed several advantages

of the region-dividing scheme over that based on the degree

increase of the SOS polynomials. In spite of its advantages,

an approximate problem of large size is required to guarantee

convergence of the scheme. It may be beyond capability

of the currently available SDP solvers in some situations.

However, there is still a room for improvement of the result

for a special class of robust SDPs of practical importance.

In this paper, we aim to improve the result of [7] by

constructing an approximate problem of reduced size while

the convergence of the region-dividing approach is still

preserved. This can be done by considering the following

structure of a given robust SDP. Here, the LMI constraint of

the given robust SDP is supposed to depend polynomially

on an uncertain parameter θ := (θ1, θ2, . . . , θp)
T ∈ R

p, and

the maximum degree for θi in the polynomial representation

is di for i = 1, 2, . . . , p. In the region-dividing approach

in [7], it is supposed implicitly that the LMI constraint is

represented as a dense polynomial in θ, that is, it contains

all of monomials whose degree in θi is at most di for each

of i = 1, 2, . . . , p. However, such a case hardly appears in

many practical problems. Then, we assume in this paper that

the constraint is a sparse polynomial in θ, i.e., only a few

monomials appear in the polynomial representation. We use

this structure to construct a reduced-size approximate prob-

lem. In particular, a special graph called a rectilinear Steiner

arborescence is applied to capture the sparse structure. The

resulting approximate problem always has a smaller size

than the existing one, and hence computational efficiency

is improved. The discrepancy is apparent when the number

of monomials is small and the degrees di’s are large. Note

that, this idea has been used in [13] to reduce the size of the

approximate problem based on the matrix-dilation approach.

The convergence of our approach is similarly obtained

as that of [7]. Precisely, this approach is asymptotically

exact in the sense that the approximation error converges

to zero as the resolution of the division becomes finer.

Moreover, the main feature of the region-dividing approach

is still preserved in this setting. Namely, an upper bound

on the approximation error can be obtained in terms of the

resolution of the division. The existence of such an upper

bound is the main result of this paper. This result is important

because the tradeoff between the computational complexity

and the amount of conservatism can be understood via this

bound. The result can be used to construct an efficient

division, which attains good approximation with moderate

computational cost, along the same line as in [11], [7]. The

procedure to obtain the main result in this paper can be

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

ThA14.4

978-1-4244-4524-0/09/$25.00 ©2009 AACC 2445



performed in a similar fashion to [7], by using a connection

between the SOS approach and the matrix-dilation approach.

It is notable that another method for exploiting sparsity

in the SOS approach is independently studied in [10], [24].

This method is applied to polynomial optimization, which

can be considered as a special class of robust SDPs. However,

extension to the class of robust SDPs studied in this paper,

as well as the existence of the error bound are not known in

this method.

This paper is structured as follows. Section II introduces

the concept of SOS matrices, and provides a robust SDP

as well as an overview on the region-dividing approach.

Section III is the main section, which gives a reduced-

size approximate problem with an upper bound on the

approximation error. A numerical example is provided in

Section IV. Section V concludes this paper.

The notation used in this paper is rather standard. The

symbol Z
p
+ denotes the set of p-dimensional vectors of

nonnegative integers. For θ = (θ1, θ2, . . . , θp)
T ∈ R

p and

α = (α1, α2, . . . , αp)
T ∈ Z

p
+, the symbol θα means the

product θα1
1 θα2

2 · · · θ
αp

p . We let Im denote the m×m identity

matrix. For a real symmetric matrix A, the inequality A � O
means that A is positive semi definite. Similarly, A ≻ O
indicates that A is positive definite. For two real symmetric

matrices A and B, the inequalities A � B and A ≻ B mean

A − B � O and A − B ≻ O, respectively. Finally, C ⊗ D
stands for the Kronecker product of matrices C and D.

II. PRELIMINARIES

A. Sum-of-squares polynomial matrices

Let R[θ]m×n denote the set of m×n polynomial matrices

in θ ∈ R
p and S[θ]n denote the set of n × n symmetric

polynomial matrices. We define the notion of sum-of-squares

(SOS) polynomial matrices as follows.

Definition 1: [8], [21] A polynomial matrix S ∈ S[θ]m is

said to be a sum of squares (SOS) if there exists a polynomial

matrix T ∈ R[θ]q×m such that

S(θ) = T (θ)TT (θ).
This is a generalization of the SOS representation for

scalars [9], [15]. We use Σ[θ]m to represent the set of m×m
SOS polynomial matrices. It is clear that any polynomial

matrix S ∈ Σ[θ]m is globally positive semidefinite, i.e.,

S(θ) � 0, ∀θ ∈ R
p, but the converse is not true in general.

A computational procedure for verifying whether S(θ)
is an SOS proceeds as follows. Choose pairwise different

monomials u1(θ), . . . , unu
(θ) and search for the coefficient

matrix Y in the representation

T (θ) = Y (u(θ) ⊗ Im)

with Y = (Y1, . . . , Ynu
) and u(θ) = (u1(θ), . . . , unu

(θ))T.

The matrix S(θ) is said to be an SOS with respect to

u(θ) if there exists some Y satisfying S(θ) = (u(θ) ⊗
Im)T(Y TY )(u(θ)⊗ Im). Substituting Z = Y TY yields the

following result.

Proposition 1: [8], [21] A polynomial matrix S ∈ S[θ]m

is an SOS with respect to the monomial basis u(θ) if and

only if there exists a symmetric matrix Z � O with

S(θ) = (u(θ) ⊗ Im)TZ(u(θ) ⊗ Im). (1)

Expanding the right-hand side of (1) yields a polynomial

whose coefficients depend affinely on elements of Z. As an

identity in θ, we can match coefficients of the polynomials in

both sides of (1). Hence the condition (1) can be interpreted

as an affine constraint in Z. This implies that the problem

to find Z � O with (1) can be formulated as an SDP. In

other words, we can check whether S ∈ Σ[θ]m with respect

to some monomial basis by solving an SDP.

B. A robust SDP and its SOS approximation

A robust SDP is considered in this section. We briefly

present construction of an approximate problem using the

SOS approach, as well as improvement of the approximation

by the region-dividing approach proposed in [11], [7].

A robust SDP is the following optimization problem:

minimize cTx

subject to F0(θ) +

n
∑

i=1

xiFi(θ) � O, ∀θ ∈ Θ,











(2)

where c ∈ R
n is given, x = (x1, x2, . . . , xn)T ∈ R

n is an

optimization variable, and θ := (θ1, . . . , θp)
T is an uncertain

parameter which can take any value in the p-dimensional

interval Θ = {θ ∈ R
p | θi ≤ θi ≤ θi, i = 1, . . . , p}. The

coefficients F0(θ), . . . , Fn(θ) are given m × m symmetric-

matrix-valued functions which depend polynomially on the

parameter θ. Let F (x, θ) � F0(θ) +
n

∑

i=1

xiFi(θ), we denote

by di the maximum degree of F (x, θ) in θi for i =
1, 2, . . . , p. We can assume without loss of generality that

∃i, di �= 0. Otherwise, F (x, θ) is independent of θ and the

problem (2) is just a standard SDP.

With the notion of the SOS matrices, an approximate SDP

for (2) can be constructed. Quality of the approximation

is improved by dividing the parameter region. Precisely,

the approximation error decreases as the maximum size

of the subregions becomes smaller. We first explain this

idea by preparing some terminology for the region-dividing

approach. A division ∆ = {Θ[j]}J
j=1 of Θ is a set of closed

p-dimensional intervals such that Θ = ∪J
j=1Θ

[j] holds and

Θ[j] ∩ Θ[k] has no interior point whenever j �= k. Each

element Θ[j] of a division ∆ is called a subregion. Write

Θ[j] as Πp
i=1[θ

[j]
i , θ

[j]

i ] for each j = 1, 2, . . . , J . The radius

of the subregion Θ[j] is defined as rad Θ[j] := maxi
θ
[j]
i −θ

[j]
i

2 .

The maximum radius of a division ∆ is defined as rad ∆ :=
maxj rad Θ[j].

For a given division ∆, we then construct the following

approximate problem:
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P (∆) : minimize cTx

subject to F (x, θ) = S
[j]
0 (θ)

+

p
∑

i=1

(θi − θ
[j]
i )(θ

[j]

i − θi)S
[j]
i (θ),

∀j = 1, 2, . . . , J,



























where S
[j]
0 , S

[j]
1 , . . . , S

[j]
p ∈ Σ[θ]m are SOS matrices guar-

anteeing F (x, θ) � O, ∀θ ∈ Θ[j]. We use the same

monomial basis, say ui(θ), for the SOS matrices S
[j]
i (θ),

for all j = 1, 2, . . . , J . This means that S
[j]
i = (ui(θ) ⊗

Im)TZ
[j]
i (ui(θ) ⊗ Im), ∀j = 1, 2, . . . , J , for some matrices

Z
[j]
i ’s. It is not difficult to express the problem P (∆) as an

SDP in the decision variables x and Z
[j]
0 , Z

[j]
1 , . . . , Z

[j]
p using

the idea discussed at the end of Section II-A.

The existence of the SOS matrices

S
[j]
0 (θ), S

[j]
1 (θ), . . . , S

[j]
p (θ), j = 1, 2, . . . , J implies

F (x, θ) � O, ∀θ ∈ Θ. This is immediately obtained from

the definition of SOS matrices and the expression of Θ[j].

Hence the feasible region of P (∆) projected into the space

of x is included in that of (2). This implies inf P (∆) ≥ vopt,

where inf P (∆) denotes the optimal value of P (∆) and

vopt denotes the optimal value of (2).

The approximation error | inf P (∆) − vopt| can be made

smaller by subdivision on each subregion Θ[j]. It has been

proved in [7] that | inf P (∆) − vopt| converges to zero as

rad ∆ → 0, if the monomial bases ui(θ), i = 1, 2, . . . , p
contain all monomials whose degree in θi is not exceed

di for each i = 1, 2, . . . , p. Moreover, an upper bound

on the approximation error is available under such choice

of monomial bases. The size of the approximate problem,

however, tends to become large even with a coarse division

when the degrees di’s and the dimension p are high. This

drawback arises from the assumption that F (x, θ) contain

all monomials whose degree in each θi is not exceed di,

which is not suitable for practical problems.

In the next section, we assume that F (x, θ) contains only

a small number of monomials and use this sparse structure

to construct monomial bases with a few elements. This

results in an approximate problem whose size is reduced

from that in [7]. We will also prove that the convergence of

the region-dividing approach as well as an upper bound on

the approximation error are still available, even with these

monomial bases of reduced size.

III. THE PROPOSED APPROACH

A. Constructing a reduced-size approximate problem

We first state some graph theoretic concepts recapped from

[13]. These concepts are necessary for constructing small-

size monomial bases, which leads to construction of a small-

size approximate problem. A directed graph consists of the

set of vertices and the set of arcs, where an arc connects two

vertices in either direction. A vertex α is said to be reachable

from a vertex β if either α = β or the directed graph has a

path emanating from β to α through the arcs in the directed

way.

We next consider the following directed graph (V0, A0) in

R
p for a given (d1, d2, . . . , dp) ∈ Z

p
+: the set of vertices is

V0 = {α ∈ Z
p
+|0 ≤ αi ≤ di for i = 1, 2, . . . , p}; the set of

arcs is A0 = {(α, β)|α, β ∈ V0, αi + 1 = βi for some i =
1, 2, . . . , p, and αj = βj ,∀j �= i}. Namely, the arcs are

the line segments of length one connecting two vertices and

directed away from the origin. An arc (α, β) is said to be

parallel to the ith axis, if it satisfies αi + 1 = βi.

For a given nonempty set S ⊆ V0, consider a subgraph

(V,A) of (V0, A0) such that (i) V contains any vertex in

S and the origin; (ii) any vertex in V is reachable from the

origin through a unique path. Such a graph (V,A) is called a

rectilinear Steiner arborescence [17], [22] for S. An example

of a rectilinear Steiner arborescence is given in Section IV.

Let di’s in the directed graph (V0, A0) being the degree

of F (x, θ) in θi for i = 1, 2, . . . , p. We write F (x, θ) =
∑

α∈S Fα(x)θα, and let S be the support of F (x, θ) defined

as S := {α ∈ V0|Fα(x) �≡ O}. Since F (x, θ) is not

independent of θ, the support S contains at least one element

different from the origin.

For construction of the desired monomial bases, we con-

sider a rectilinear Steiner arborescence (V,A) for S, which

is desired to have a small length. It is obvious that 2 ≤ |V | ≤
|V0|. We number the vertices in V as α(1), α(2), . . . , α(|V |)

in the way that a vertex α(r) is reachable from a vertex α(q)

only if q ≤ r. It follows that α(1) is the origin. We now

define

m(θ) =
[

θα(1)

θα(2)

· · · θα(|V |)
]T

and m̃(θ) as a vector constructed by removing redundant

elements in
[

mT(θ) θ1m
T(θ) · · · θpm

T(θ)
]T

. We then

consider the following monomial bases for P (∆):

u0(θ) = m̃(θ), ui(θ) = m(θ), i = 1, . . . , p. (3)

In a word, all the elements of the above monomial bases

correspond to the vertices in V .

Here, we discuss on the size of the approximate problem.

For a fixed division ∆, the size of the approximate problem

P (∆) depends on the size of chosen monomial bases. It can

be seen that the size of the new monomial bases in (3) is

|V |, while the size of the monomial bases in [7] is |V0|.
Since |V | ≤ |V0|, the size of the new approximate problem

is not larger than that of the conventional one. Note here that

the difference between |V | and |V0| is apparent when |S| is

small and di’s are large [13].

The remaining task is to verify the quantitative property

of P (∆) with the monomial bases in (3): there exists an

upper bound on the approximation error | inf P (∆) − vopt|.
This property leads to the convergence of the region-dividing

approach with the reduced-size approximate problem. The

details are discussed in the next subsection.

B. An upper bound on the approximation error

In this subsection, we provide an upper bound on the ap-

proximation error of the reduced-size approximate problem.

This result is a generalization of that in [7], which is for the

full-size approximate problem.
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We first need the following assumption [11] in order to

obtain the result.

Assumption 1:

(a) The robust SDP (2) is strictly feasible, that is, there exists

x ∈ R
n such that

F (x, θ) ≻ O, ∀θ ∈ Θ.

(b) For any v, the level set

{x ∈ R
n | cTx ≤ v, F (x, θ) � O, ∀θ ∈ Θ}

is bounded.

Our main result, which provides the desired upper bound,

is given in the following theorem.

Theorem 1: Suppose that Assumption 1 holds. Then, with

the monomial bases in (3), the approximate problem P (∆)
satisfies

| inf P (∆) − vopt| ≤ Crad ∆ (4)

for any division ∆ with rad ∆ ≤ C1, where C1 and C are

positive numbers independent of ∆.

Remark 1: The inequality (4) implies that if the original

robust SDP (2) is feasible, then P (∆) is always feasible

when the maximum radius rad ∆ is small enough.

Remark 2: When the support S is equal to the whole vertex

set V0, a rectilinear Steiner arborescence for S is actually the

same as the directed graph (V0, A0). In this case, we obtain

the full-size monomial bases presented in [7]. In this sense,

the result of Theorem 1 is a generalization of the main result

in [7].

A direct consequence of this theorem is the asymptotic

exactness of our approach. As we can see from (4), the

approximation error | inf P (∆) − vopt| converges to zero as

the maximum radius of the division goes to zero. Evaluation

of C1 and C is available in [11], [12], though the resulting

bound is often conservative. Once the value of C is obtained,

we can compute a priori a value of rad ∆ which can

guarantee a sufficiently accurate optimal value. Recall that

the existing sparse SOS approach does not provide such an

explicit quantitative result.

The upper bound (4) also gives a relationship between

the approximation error and the size of the approximate

problem. Namely, in order to reduce the approximation error,

we need to decrease the maximum radius. This increases

the number of subregions and, then, the number of the

LMI constraints. Especially when the parameter dimension

is high, this increase is rapid and makes the approximate

problem more difficult to solve. In order to reduce the

computational complexity, however, it is possible to apply

the adaptive division of the parameter region parallelly to

that in [7]. The details are omitted.

C. A proof on the main theorem

This subsection is devoted to prove Theorem 1. In order

to prove the statement, we need some results of the matrix-

dilation approach [11], [12], [13]. The key idea of the proof

is based on a relationship between a reduced-size version of

the SOS approach and that of the matrix-dilation approach.

Here, the procedure to compute the upper bound is performed

in the similar line as [7]. We first construct an auxiliary

approximate problem, say P1(∆), by utilizing the matrix-

dilation approach in [12]. Then we prove the existence of an

upper bound on the approximation error | inf P1(∆)− vopt|.
In the second step, we show some connection between P1(∆)
and P (∆), which gives a way to compute an upper bound

on | inf P (∆) − vopt| from that on | inf P1(∆) − vopt|.
We now give an overview on the matrix-dilation approach,

in order to construct the auxiliary approximate problem

P1(∆). First, we write F (x, θ) =
∑

α∈S Fα(x)θα and

consider its structure discussed in Section III-A. We next

consider a decomposition F (x, θ) = M(θ)TG(x)M(θ). The

matrix G(x) contains coefficient matrices of F (x, θ), while

M(θ) =
[

θα(1)

Im θα(2)

Im · · · θα(|V |)

Im

]T

= m(θ) ⊗ Im.

Moreover, we consider a matrix H(θ) such that the matrix

[M(θ) H(θ)] is nonsingular and the relation M(θ)TH(θ) =
O holds for all θ ∈ R

p. Such H(θ) is called an orthog-

onal complement of M(θ). An important fact is that the

orthogonal complement H(θ) can be chosen to be affine in

θ. Construction of H(θ) is discussed in [13].

For a given division ∆, pick up one subregion Θ[j],

which is a multi-dimensional interval Πp
i=1[θ

[j]
i , θ

[j]

i ] by

assumption. We define θc as the center of θ[j], that is

θc :=
[

θ
[j]
1 +θ

[j]
1

2
θ
[j]
2 +θ

[j]
2

2 · · ·
θ[j]

p +θ
[j]
p

2

]

. Since H(θ) is

affine in θ, it can be expanded around θc as

H(θ) = H(θc)+(θ1−θc
1)H1+(θ2−θc

2)H2+· · ·+(θp−θc
p)Hp,

where H1, . . . , Hp are constant matrices. We now consider
the constraints

G(x) + H(θc)(W [j])T + W
[j]

H(θc)T −

p
∑

i=1

V
[j]

i � O, (5)

V
[j]

i � −(θ
[j]
i − θ

c
i )(Hi(W

[j])T + W
[j]

H
T
i ), i = 1, . . . , p, (6)

V
[j]

i � (θ
[j]
i − θ

c
i )(Hi(W

[j])T + W
[j]

H
T
i ), i = 1, . . . , p. (7)

By following the idea of Ben-Tal and Nemirovski [2], it is

easy to see that if there exist V
[j]
1 , V

[j]
2 , . . . , V

[j]
p satisfying

the inequalities (5)–(7), then (x,W [j]) satisfies the constraint

G(x) + H(θ)(W [j])T + W [j]H(θ)T � O (8)

for any vertex of Θ[j]. Hence, (x,W [j]) satisfies (8) for any

point in Θ[j]. Premultiplication of M(θ)T and postmultipli-

cation of M(θ) to this inequality give F (x, θ) � O, ∀θ ∈
Θ[j].

Define S1(Θ
[j]) as the set of all (x,W [j], {V

[j]
i }p

i=1)
such that (5)–(7) hold. We now obtain the following new

approximate problem:

P1(∆) : minimize cTx

subject to (x,W [j], {V
[j]
i }p

i=1) ∈ S1(Θ
[j])

∀j = 1, 2, . . . , J.







By construction, the feasible region of P1(∆) is included in

that of (2), which implies inf P1(∆) ≥ vopt.
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The result on the approximation error of the problem

P1(∆), i.e., | inf P1(∆) − vopt| is given in the following

proposition, which is a reduced-size counterpart of Theorem

7 in [12].

Proposition 2: Under Assumption 1, there exist constants

C1 and C such that, if a given division ∆ satisfies rad ∆ ≤
C1, then

| inf P1(∆) − vopt| ≤ Crad ∆.
Proof: The result of Theorem 11 in [13] is needed

for the proof of this proposition. An upper bound on

| inf P1(∆) − vopt| can be derived from that in [13] using

a similar technique to the proof of Theorem 7 in [12]. This

technique is based on magnification of each subregion Θ[j]

by some factor dependent of the size of G(x), together with a

connection between the constraints (5)–(7) and the constraint

(8) with respect to the magnified subregion. In this case, we

choose the magnification factor of π
√

|V |m/2, and obtain

the result along the same line as in Theorem 7 in [12].

We next prepare the following two lemmas to explain the

relationship between the problem P1(∆) and the problem

P (∆). The subscript [j] is omitted in the following lemmas

for convenience.

Lemma 1: [7] If there exist x,W and {Vi}
p
i=1 such that

G(x) + H(θc)WT + WH(θc)T −

p
∑

i=1

Vi � O,

Vi + (θi − θc
i )(HiW

T + WHT
i ) � O, i = 1, . . . , p,

Vi − (θi − θc
i )(HiW

T + WHT
i ) � O, i = 1, . . . , p,

(9)

then there exist an SOS matrix Ŝ0(θ) of degree two, and

constant matrices Ŝi � O, i = 1, 2, . . . , p with

G(x)+H(θ)WT+WH(θ)T = Ŝ0(θ)+

p
∑

i=1

(θi−θi)(θi−θi)Ŝi.

(10)

The SOS representation of G(x) + H(θ)WT + WH(θ)T

leads to that of F (x, θ) as shown in the next lemma.

Lemma 2: If there exist an SOS matrix Ŝ0(θ), and con-

stant matrices Ŝi’s such that the condition (10) holds, then

there exist SOS matrices S0(θ), S1(θ), . . . , Sp(θ) satisfying

F (x, θ) = S0(θ) +

p
∑

i=1

(θi − θi)(θi − θi)Si(θ). (11)

Moreover, the monomial bases u0(θ), u1(θ), . . . , up(θ) for

the SOS matrices are expressed as in (3).

Proof: The proof is rather straightforward and pro-

ceeded in the same line as in Lemma 2 in [7]. Details are

omitted due to space limitation.

The proof of our theorem is now given here.

Proof of Theorem 1. Suppose in the problem P (∆) that the

monomial bases u0(θ), u1(θ), . . . , up(θ) of the SOS matrices

S0(θ), S1(θ), . . . , Sp(θ) are chosen as (3). Lemmas 1 and

2 imply that, for each subregion Θ[j], the constraint of the

problem P1(∆) is just a sufficient condition of the constraint

of P (∆). Therefore, the feasible region of P1(∆) is included

in that of P (∆), and thus vopt ≤ inf P (∆) ≤ inf P1(∆). If

a given division ∆ satisfies rad ∆ ≤ C1, then we obtain

from Proposition 2 that

| inf P (∆) − vopt| ≤ | inf P1(∆) − vopt| ≤ Crad ∆,

and the proof is complete.

IV. NUMERICAL EXAMPLE

α(1) α(2) α(3)

α(4)α(5)

α(6)

α1

α2

Fig. 1. The directed graph (V0, A0) (gray) in the case of p = 2, d1 =
d2 = 2. The set S is shown by the large circles. A rectilinear Steiner
arborescence (V, A) for S is shown in black.

An example on polynomial optimization is exhibited in

this section. We apply the proposed approach to solve

the problem and compare the results with those from the

conventional approach. The software SOSTOOLS [16] with

SeDuMi [23] as an SDP solver is used for the computation.

Example: We maximize

f(θ) = −5θ2
1θ2 − 5θ1θ

2
2 + 9θ1θ2

over Θ = [0, γ]2, with γ = 1, 2, 3. The global maximum

1.08 is attained at θ = [0.6 0.6]T for all values of γ. This

problem can be formulated into the following robust SDP:

minimize x
subject to x − f(θ) ≥ 0, ∀θ ∈ Θ.

}

(12)

In this case, F (x, θ) = x−f(θ) = x+5θ2
1θ2+5θ1θ

2
2−9θ1θ2

with n = 1, m = 1, p = 2, d1 = d2 = 2.

The SOS-approximate problem for (12) is constructed as

follows:

minimize x

subject to x − f(θ) = s0(θ) +

2
∑

i=1

θi(γ − θi)si(θ),











(13)

where s0(θ), s1(θ) and s2(θ) are SOS polynomials with

monomial bases u0(θ), u1(θ) and u2(θ) respectively.

In order to choose the monomial bases of small sizes, we

consider the support S of F (x, θ), as well as a rectilinear

Steiner arborescence (V,A) for S as presented in Fig. 1.

Using the rectilinear Steiner arborescence, we obtain the

following monomial bases:

u1(θ) = u2(θ) =
[

1 θ1 θ2
1 θ2

1θ2 θ1θ2 θ1θ
2
2

]

,

u0(θ) =
[

u1(θ) θ3
1 θ3

1θ2 θ2
1θ

2
2 θ2 θ1θ

3
2

]

.

We apply the above monomial bases to the approximate

problem (13). For comparison, an approximate problem

with full-size monomial bases is also constructed. For each

approximate problem, the exact optimal value is attained with
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the coarsest division ∆ = {Θ}, for all values of γ. The

results are summarized in Table I.

We can see from Table I that the proposed approach with

the reduced-size monomial bases achieves the same quality

of approximation as the conventional approach with the full-

sized monomial bases. However, the computational cost in

the proposed approach is less than that in the conventional

approach as expected. This confirms the effectiveness of the

proposed approach.

TABLE I

COMPARISON BETWEEN THE TWO APPROACHES

Monomial bases Upper bound SDP size

Proposed 1.0800 194 33

[7] 1.0800 419 49

V. CONCLUSION

Reduction of the size of the approximate problem is

considered in the SOS approach to robust SDPs. The reduce-

sized monomial bases is constructed by exploitation of the

sparse structure of a given robust SDP. The asymptotic

exactness of the region-dividing scheme, as well as the

existence of an error bound are proved for the reduced-size

approximate problem. Application to control problems will

be a possible research direction in the near future.
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