
 
 

 

  

 
Abstract-  In this paper, a control allocation approach is 
developed for energetic swarm control.  This new approach 
allows sliding control of swarm temperature, swarm center 
position, and swarm potential energy.  Since the sliding control 
problem is highly over-actuated, a control allocation 
optimization problem can be formulated and solved including 
input saturation constraints.  Application to a group of wheeled 
mobile robots is used to demonstrate the approach.  For this 
class of systems, a low level trajectory controller based on 
dynamic feedback linearization is developed in order to 
improve the trajectory tracking performance of the individual 
swarm members. Together, these results allow energetic swarm 
controllers to be developed and applied for mobile robot 
systems with uncertainty and input saturation constraints. 
 

I. INTRODUCTION 

Recent research in the area of swarm control has examined 
using swarm temperature as a controlled output variable in 
order to alter properties such as area coverage, swarm size 
and member velocities [1], [2]. This has been based on 
important contributions such as the development of stable 
attractor repulsion functions [3], the development of swarm 
stability characteristics such as controlling swarm size and 
cohesion as in [4] or the use of potential functions to direct 
and control swarm geometry as in [5].  In earlier work [6], a 
multi-output controller is proposed for the simultaneous 
control of the swarm temperature, swarm center position and 
swarm potential. The work is extended in [7] such that a 
control allocation algorithm and sliding manifold controller 
are used for implementation of the multi-output controller. 
Sliding approach provides a higher degree of robustness to 
the proposed control scheme compare to the feedback 
linearization method used in [6]. Most important, the control 
allocation algorithm is used to develop a stable high level 
multi-output controller for the overactuated swarm model. 
The control allocation method is more compatible for 
overactuated model comparing to [6].   
Control allocation techniques are typically used for the 
control of overactuated systems, with much research having 
been done in the area of aircraft and ground vehicle control 
[8]. A straightforward technique to solve control allocation 
problems is the pseudo-inverse dynamics control law 
approach [7]. However, in order to consider constraints on 
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the solution dictated by the mechanical system under 
control, methods have been developed to solve the control 
allocation optimization problem such as using a dynamic 
update law [9], or using sequential quadratic programming 
as in [10].  
In the new approach developed in this paper, control 
allocation is used to combine the inputs from the swarm 
center position, swarm temperature, and swarm potential 
controllers. Initially an unconstrained pseudo-inverse 
approach is used. However in order to account for saturation 
effects of the swarm members, various optimization 
constraints need to be introduced. The SNOPT(c)

 [11] 
nonlinear programming software package was used in this 
application to provide a constrained optimal solution, 
allowing for the development of an operational envelope. In 
order to further improve the performance of the WMR 
swarm members under control, the outputs from the above 
high level swarm controller, are applied to a low level 
controller, which greatly improves the trajectory tracking for 
wheeled mobile robots. This low level controller was 
developed with the dynamic feedback linearization approach 
as provided in [12]. The proposed control scheme which 
combines high level controller and low level controller has 
more flexibility and robustness than the feedback 
linearization method proposed in [6].  Detailed results of a 
number of simulation cases are provided in the simulation 
results section.  

II. PROBLEM STATEMENT 

A. Swarm Theory Background 
In this paper, we consider the control of a heterogeneous 
energetic swarm, made of M members moving in an                 
n - dimensional space. The swarm motion is described by 
the following second order model represented as 
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where for each member i , Mi ,,2,1 K= , the position is 
expressed as n

i ℜ∈x , member velocity as n
i ℜ∈v , im  is 

the mass of the i th member, ext
iu is an external force, usually 

provided by a controller (as in our case) and in
iu  which 

represents the inter member repulsion-attraction force, ih  is 
the control coefficient, iib v−  represents the viscous 
damping and finally )(tid  is  a bounded  disturbance on the 
i th member. It is assumed that the disturbance is bounded as 

  0   ,)( >ββ≤ iii td  (2) 
The inter member repulsion-attraction force is given by (3) 

A Control Allocation Approach for Energetic Swarm Control 
R. Pedrami, S. Wijenddra, J. Baxter and B. W. Gordon  

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrB14.3

978-1-4244-4524-0/09/$25.00 ©2009 AACC 5079



 
 

 

)(
,1

ji

M

ijj
ji

ij
rji

ij
a

in
i

gg xxxxxx

u

−⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛ −−⎟

⎠
⎞⎜

⎝
⎛ −−

=

∑
≠=

 (3) 

where the repulsion force ij
rg  and the attraction force 

ij
ag between members i  and j   are  given by (4) 
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where +ℜ∈BA, and the norm is the Euclidean norm. The 
repulsion function is unbounded which ensure inter-agent 
collision avoidance. Cohesive behavior of the swarm is 
ensured to some degree with the inter-individual attraction 
function. The repulsion function is more dominant in short 
distance than the attraction function. Finally, we define 
certain fundamental swarm properties such as the weighted 
swarm center position nℜ∈x  and weighted swarm center 
velocity nℜ∈v  by (5). 
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The swarm temperature ℜ∈T  is defined as  

( ))()(1)( vvv bk EE
M

T −=  (6) 

where kE  and bE  in (7) refer to the swarm weighted kinetic 
and the swarm weighted bulk energy respectively. 
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where iω~ is a positive weight coefficient for any i . The 
final variable introduced is a potential field force which is 
used to ensure swarm cohesion. A centrally connected 
potential function RJ ∈ is developed as in (8) 
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where iα  is the connection weight. Physically, this can be 
interpreted as the case in which each agent is connected to 
the swarm center.  

B. Energetic Swarm Control 
The swarm model can be viewed as a combined dynamic of 
all individual members. Suppose a combined position vector 

nMℜ∈x , a combined velocity vector nMℜ∈v and a 
combined control input vector nMℜ∈u as : 
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The n -dimensional swarm model proposed by (1)-(4) can 
be rewritten in a more compact form as: 
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where )(⋅diag is block diagonal matrix with −n dimensional 
identity matrix nn×I  as its diagonal elements. The control 
outputs are the weighted swarm center position, swarm 
temperature and potential function. Finally, the combined 
output vector can be constructed from equations (5), (6) and 
(8) as 
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The swarm model given by (9)- (11) construct Multi Input 
Multi Output (MIMO) control problem. Then, the behavior 
control of the energetic swarm can be achieved by solving 
the proposed nonlinear MIMO system. The next step is to 
find the reduced output dynamic. This can be achieved by 
differentiation of each output until one input appears; the 
number of differentiation shows the relative degree of each 
output. The reduced dynamic can be shown as:  
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Introducing new inputs such as:  
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Therefore, the newly introduced input vector 2+ℜ∈ nυ is 
given as T

JT
T

c
 ),,( υυ= υυ . The new control input vector 

is denoted as virtual input.  Substituting (15) into (12)-(14), 
the control problem is decomposed into three separate sub-
control problem with respect to new control input: 
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Since the proposed model (10) is linear with respect to 
control input u , the reduced output dynamic is also linear 
with respect to newly introduced input vector 2+ℜ∈ nυ . 
Moreover, the above equation shows that the dynamic of 

1y , 2y  and 3y  are decoupled from each other with respect 
to virtual inputs cυ , Tυ  and Jυ .As a result, the swarm 
control algorithm can be broken into two stages. In the first 
stage, virtual control inputs cυ , Tυ  and Jυ  are 
independently calculated using the sliding mode controller 
respectively for the tracking control, temperature control and 
potential control.  
We begin by discussing the swarm center trajectory tracking 
controller. Suppose desx  is a desired trajectory of swarm 
center. First let s  be the sliding surface for the trajectory 
controller defined as  

xλxs ~~ += &  (19) 
where desxxx −=~ is the tracking error vector and λ  is a 
strictly positive constant. Now the virtual controller 

n
c ℜ∈υ  for the tracking is derived as  
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where ck  is the nn× diagonal matrix of positive constant 
gain terms and ς  is defined as  
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)(⋅sat  is the saturation function and cε  is the thickness of 
the boundary layer.  
Next the temperature controller is developed. The sliding 
surface for the temperature is defined as 

desT TTs −= )(v  (22) 
where desT is desired temperature. The virtual controller 

ℜ∈υT  for the temperature controller is calculated as  
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where Tk  is a positive constant gain term, σ  is given as  
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ψ is defined as  
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Tε is the thickness of the boundary layer. 
Finally the potential force controller is developed. The 
sliding surface for the potential controller is given as  

)( desJ JJJs −λ+= &
 (26) 

where desJ  is desired potential function. The virtual 
controller ℜ∈υJ  for the potential energy is calculated as: 
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where Jk  is a positive constant gain. Term ξ  is given as 
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Jε is the thickness of boundary layer and χ  is defined as  
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Full detailed equations as well as the choice of gains and 
boundary layer thicknesses for each sub-controller are found 
in [7], which are omitted here. 
Then in the second stage the actual force inputs are 
calculated from virtual inputs. The relation between virtual 
inputs and actual inputs are given by (15) which can be 
rewritten in a matrix format as 
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where nMn ×+ℜ∈ )2(B  is the control effectiveness matrix. It 
is composed of  three  block control effectiveness matrices: 

cB  is the nMn× control effectiveness  matrix  associated  

to the virtual control input n
c ℜ∈υ ,  TB  and JB  are  the 

−nM dimensional control effectiveness row vector  
associated  to virtual control inputs ℜ∈υT  and ℜ∈υJ  
respectively. Please refer to [7] for the definition of each 
term as a function of x  and v . 
The linear system of equation (30) has more than one 
solution.  As a result, choice of actual inputs is not unique. 
This shows the fact that the overall proposed model is 
overactuated.  In such a case, infinite solution exists. Hence 
a control allocation procedure is required to find the best 
solution which fits within the objective and limitation of the 
problem.  Since the relation between virtual and actual input 
are linear, a linear control allocation algorithm can be used 
to solve the problem. 
Now approaching the system as a control allocation problem 
we define the optimization problem as 

υBuWuu
u
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2
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where nMnM ×ℜ∈W  is a weighting matrix. The objective 
function is given by the quadratic function of the actual 
control inputs. The proposed allocation algorithm searches 
for a choice of actual inputs with minimum control effort. 
Initially a pseudo-inverse method as expressed in (32) is 
used to solve the control allocation problem.  

( )υBBWBWu  )( 111 −−−= TT  (32) 
However this approach was not able to account for the 
effects of input saturation or other constraints.  

C. Saturation 
In order to account for saturation on the inputs from the 
control allocation result the following inequality constraints 
(33) can be incorporated into the allocation algorithm as 
follows: 
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Now the above control allocation problem (33) with input 
saturation is solved using the SNOPT [11] optimization 
solver instead, replacing the pseudo inverse method of (32).  
However there is a threshold limit for the  maxmin , ii uu  
terms, otherwise the answer for the allocation problem will 
be not feasible i.e. (30) cannot be satisfied. That mean  

maxmin , ii uu  should be above a threshold value such that the 
allocation problem would be feasible. Also the maximum 
value of maxmin , ii uu  will be determined by the physical 
limits of the actuator. The threshold value depends on 
various factors such as initial condition, desired trajectory 

desx , desired temperature desT  and desired potential 
energy desJ . In this paper, the goal is to estimate the value of 

maxmin , ii uu  that can be used for the steady state phase. The 
steady state threshold limits do not depend on initial 
condition. The threshold limits for the general transient 
response of the system is a subject of the future research. 
The motion of the center of the cluster is not the key issue in 
terms of swarm behavior in comparison to temperature and 
potential energy. As a result, the dependency of saturation 
limits on steady state temperature and potential energy is 
studied.  This can be achieved by assuming fixed trajectory 
of swarm center throughout all simulations. The regulation 
problem for temperature and potential energy is studied first 
then the results are generalized for a tracking case.  The 
threshold value of maxmin , ii uu are calculated experimentally 
at different operating conditions over the domain 

0.200.5 ≤≤ T  (34) 
0.200.5 ≤≤ J  (35) 

It is important to note that all simulations are performed 
under the same initial condition. A surface plot of how the 
threshold value of maxmin , ii uu  varies with respect to 
temperature and potential terms is shown in Fig. 1.  
Surface plot shows that the threshold limits are larger at 
higher temperature. This can be physically justified. Swarm 

has more kinetic energy at higher temperature. Therefore, 
maintaining swarm at higher level of kinetic energy requires 
more control effort.  For instant, suppose a case in which the 
environment is viscous that is 0≠ib  for any i , having 
more velocity needs more control effort to overcome 
viscosity ψ -term in (25). Increase in dominant ψ -term 
makes virtual controller (23) larger. Finally, control 
allocation should assign larger values by accepting a larger 
saturation limit when virtual controller (23) gets larger. On 
the other hand, surface plot shows that threshold limits are 
getting larger at lower value of potential energy. This can be 
physically justified by the fact that lower level of potential 
energy introduces swarm with smaller size. Swarm of 
smaller size results in smaller inter-individual distance. At 
short distance, the unbounded inter-individual repulsion is 
more dominant than constant inter-individual attraction see 
(4) as mentioned in section II so members tend to repulse 
each other. Potential controller needs to put more effort to 
keep the members within a desired short distance. The 
following physical phenomena can be justified 
mathematically through (27) to (29) in a similar manner as 
temperature. The trend how a saturation threshold varies 
with respect to value of potential function highly depends on 
the choice of inter-individuals potential function.   
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Fig.1 Minimum saturation limit w.r.t temperature and potential   

 
Let minsatu be the minimum feasible value of maxiu . As 
mentioned, the major factors affecting minsatu  were the 
operating conditions of the swarm T , J . The feasible 
operating region of the swarm is given by satU  as 

( ) maxmin , satsatsat UJT uu ≤≤  (36) 
where maxsatu is the physical saturation limit of the swarm 
inputs. In general minsatu is a nonlinear function. However, 
based on the result of numerous simulations, the following 
approximate lower bound on the operating region was 
obtained as  

JcTccsat 210min ++≤u  (37) 
where 0c , 1c  and 2c  are determined from simulations 
over a number of different operating conditions over the 
domain (34)-(35). The coefficients were found to be 

0.120 =c , 45.11 =c , 20.02 −=c . Also the approximate 
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operating constraint below will also satisfy the operating 
constraint in (36). 

max210 satJcTcc u≤++  (38) 
The saturation threshold in steady state phase for a more 
general case in which the tracking problem for temperature 
and potential energy is desired is a given by nonlinear 
function: 

( )JJTJTsat
&&&& ,,,,minu  (39) 

However, based on the result of numerous simulations, the 
following approximate lower bound on the operating region 
was obtained as 

JcTcJcTccsat
&&&

43210min ++++≤u  (40) 
It was found that the major factors affecting minsatu  were 

the operating conditions of the swarmT , J  and T& , J&& . Note 
that T& and J&&  as of (23) and (27) has direct relation to Tυ  

and Jυ while the effect of J&  is less dominant. That’s the 

reason that J&  is missing in a linear approximation.  

III. APPLICATION TO WHEELED VEHICLE SYSTEMS 

A. Low Level Controller 
A low level controller is developed for each wheeled mobile 
robot (WMR) members to track a generated trajectory from 
high level controller. The proposed low level controller is 
used to track the center of the WMR as opposed to in [6,13] 
where the feedback linearization method is used to control 
the tip of a WMR. The kinematic equations of WMR agents 
are given by 

( ) ( )ωθθ=θ sincos cccc vvyx &&&  (41) 
where cv  is the surge speed of the WMR, ),( cc yx  denotes 
the position of the center of robot. The orientation of the 
robot is given by θ  and ω  is angular speed. Suppose the 
output of the swarm model (1) for the i th member as 

),( ii
T
Out yx=X . Now, integrating with our high level 

controller, the input to the kinematic model (41) is the 
output from the swarm model. That is the kinematic model 
should track the trajectory generated from the swarm model. 
This will be done as in [12] using dynamic feedback 
linearization. 

B. Dynamic Feedback Linearization 
As in [12] we define our linearizing output vector 
as ),( cc yx=η . Differentiating with respect to time yields  
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We need to differentiate once again as only cv  affects (42) 
and we need both inputs for controlling (41). Adding an 
integrator on the linear velocity input as av ccc =ξξ= &,  and 
differentiating (42) further we obtain 
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Defining the new input ),( ωa  as 
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and ),( 21 uu as 
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exponentially stabilizing feedback is obtained 
with )2,1(,0,0 =>> iKK dipi The initial state of integrator 

00 ≠ξc and the desired trajectory should be persistent in 
order to avoid the singularity in (44) when 0=ξc . For more 
details to avoid singularities please refer to [12] where the 
sufficient conditions are discussed in detail. 
For the practical implementation the high level swarm 
controller and the low level WMR controller swarm 
controller are combined in the following manner. 
1) First the swarm model is simulated from time 

],[ swarmii Tttt +=  where it  is the initial time and swarmT  is 
the update period of the swarm simulation. 
2) Next, the outputs from the swarm model from time 

],[ swarmii Tttt += are used as the desired trajectories for the 
low level controller. The outputs from the low level 
controller are applied input to the WMR for 
time ],[ swarmii Tttt += . The actual position and velocity of 
the WMR will be calculated. 
3) Now the swarm members in the swarm model will be re-
initialized with the WMR agents’ positions and velocity 
using the results of Step (2). There will be a difference at 
time swarmi Ttt += due to the tracking error. 
4)  Return to step (1).   
 
This procedure above combines the inner and outer control 
loops for certain values of swarmT . Furthermore, swarmT is an 
important parameter for good tracking performance. 
Additionally, careful adjustment of the gains of both inner 
loop and outer loop is required. The inner and outer loop 
controllers normally show good results when the inner loop 
is significantly faster than the outer loop.  
It is important to mention that saturation on control input 

ext
iu  besides selecting bounded inter individual repulsion 

function ensures that the generated trajectory during 
),( swarmii Ttt +  is a feasible trajectory for practical 

implementation.  

IV. SIMULATION RESULTS 
Swarm of 20 members in 2D space is considered in the first 
set of simulations. Control allocation without input 
saturation is considered at this stage. Control allocation can 
be characterized as the optimization problem given in (31). 
The SNOPT solver (optimization package) is used to solve 
the allocation problem. However, in a case that there is no  
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Fig. 2 Regulation of potential function and temperature outputs  
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Fig.3 High-level Control Input 
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Fig.4 WMR trajectory with disturbance 

  
input saturation, the solution is as same as an analytical 
solution of the problem, see pseudo inverse solution (32). 
Fig. 2 shows how temperature and fully potential function 
are regulated at their respective desired values 00.1  and 

00.200 . This shows the capability of the proposed scheme 
to control multi outputs.  
The purpose of the second set of simulation is to implement 
the energetic swarm controller for a group of wheeled 
mobile robot. Therefore, the swarm with six members 
moving in 2D is considered. The desired trajectory for the 
swarm canter is T

des ttx )]sin(0.5)cos(0.5[= .The 
disturbance in (1) is )sin(0.2 t . It is shown how saturation of 
control input can be integrated to control allocation 

algorithm for a practical case.  Fig. 3 shows how the high 
level control input varies. maxmin , ii uu are set to 0.17−  and 

0.17  respectively for all the members in steady state and 
0.25/−+  during the transient phase. In Fig. 4, it can be seen 

that the lower level controller makes a WMR follow the 
trajectory generated by the swarm model while a disturbance 
is applied.  

V. CONCLUSION 
In this work we have implemented a swarm controller for 
multiple control variables using a control allocation 
approach. The SNOPT solver is used in conjunction with 
optimization constraints to account for control input 
saturation. To improve results further a low-level controller 
is introduced, to enhance WMR trajectory tracking Future 
work includes a more systematic way to deal with the 
saturation and to develop a low level controller that is 
robust. 
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