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Abstract— Unmanned aerial vehicles (UAVs) are being in-
creasingly used for surveillance missions in civil and military
applications. These vehicles can be heterogeneous in the sense
that they can differ either in their motion constraints or
sensing/attack capabilities. Given a surveillance mission that
require a group of heterogeneous UAVs to visit a set of targets,
this paper addresses a resource allocation problem of finding
the optimal sequence of targets for each vehicle such that 1)
each target is visited at least once by some vehicle, and 2)
the total cost travelled by all the vehicles is minimized. This
problem can be posed as a Heterogeneous, Multiple Depot,
Multiple Traveling Salesman Problem (HMDMTSP). This pa-
per presents a transformation of a Heterogeneous, Multiple
Depot, Multiple Traveling Salesman Problem (HMDMTSP) into
a single, Asymmetric, Traveling Salesman Problem (ATSP). As
a result, algorithms available for the single salesman problem
can be used to solve the HMDMTSP. To show the effectiveness
of the transformation, the well known Lin-Kernighan-Helsgaun
heuristic was applied to the transformed ATSP. Computational
results show that good quality solutions can be obtained for the
HMDMTSP relatively fast.

Index Terms— Unmanned Aerial Vehicle, Heterogeneous
Multiple Traveling Salesman Problem, Vehicle Routing.

I. INTRODUCTION

Multiple, autonomous, Unmanned Aerial Vehicles

(UAVs) are being developed for several civil and military

applications for surveillance purposes. In these applications,

multiple, heterogeneous UAVs with different sensing

capabilities can be used to accomplish a given mission.

Apart from the sensing capabilities, the UAVs can also have

different motion constraints. Therefore, the cost of traveling

between two locations can depend on the type of the UAV.

This paper addresses a fundamental routing problem that

arises in surveillance applications involving a team of

heterogeneous UAVs. Given a set of heterogeneous vehicles

and targets, the objective of the routing problem is to assign

a sequence of targets to each vehicle such that each target

is visited by some vehicle, and the total cost of traveling for

all the vehicles is minimized. The cost of traveling between

any two targets is a function of the vehicle and the pair of

targets involved. It may be also assumed that these costs

are part of the given data.

The routing problem can be formally stated as follows:

Let there be n targets and m vehicles. Each vehicle starts
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at a distinct starting point or “depot”. Let V be the set

of vertices that correspond to the initial locations of the

vehicles (or depots), with the m vertices, {V1, . . . , Vm} = V ,

representing the vehicle starting position, or depot (i.e., the

vertex Vi corresponds to the depot of the ith vehicle). Let

(T ) be the set of vertices representing the targets with n

vertices, {T1, . . . , Tn} = T representing the targets. Let

V
i = Vi

⋃
T be the set of all the vertices corresponding

to the ith vehicle. Let Ei = V
i × V

i denote the set of all

edges (pairs of vertices) corresponding to the ith vehicle

and let Ci : Ei → ℜ+ denote the cost function with

Ci(a, b) representing the cost of traveling from vertex a to

vertex b for vehicle i. We consider all the cost functions

to be asymmetric, i.e., Ci(Tj , Tk) may not be equal to

Ci(Tk, Tj) for all j, k ∈ V
i, i = 1, . . . ,m. A vehicle either

does not visit any target or visits a subset of targets in T .

If the ith vehicle does not visit any targets, then its tour,

TOURi = ∅ and its corresponding cost, C(TOURi) = 0.

If the ith vehicle visits at least one target, then its tour

may be represented by an ordered set, {Vi, Ti1 , . . . , Tiri
, Vi},

where Til
, l = 1, . . . , ri corresponds to ri distinct targets

being visited in that sequence by the ith vehicle. There is a

cost, C(TOURi), associated with a tour for the ith vehicle

visiting at least one target and is defined as C(TOURi) =
Ci(Vi, Ti1) +

∑ri−1

k=1
Ci(Tik

, Tik+1
) + Ci(Tiri

, Vi). This pa-

per addresses the following Heterogeneous, Multiple depot,

Multiple Traveling Salesman Problem (HMDMTSP): find

tours for the vehicles so that

• each target is visited exactly once by any one vehicle,

and,

• the overall cost defined by
∑

i∈V C(TOURi) is

minimized.

Note that the cost functions for each vehicle in the

HMDMTSP are general and need not satisfy the trian-

gle inequality. If all the UAVs are identical, then the

HMDMTSP becomes the standard Multiple Depot, Multiple

TSP. HMDMTSP is a generalization of the standard single

TSP and is NP-Hard [1]. There are several approaches avail-

able in the literature to address a multiple TSP. They include

exact algorithms [2], approximation algorithms [3], [4] and

heuristics [2]. A multiple TSP can also be transformed to

a single TSP wherein the standard approaches available for

the single TSP can put to use. This objective of this paper

to present a transformation that can convert the HMDMTSP

into a standard single, asymmetric TSP.

Please refer to our companion paper [5] for an extensive
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literature review of the transformations available for the

single depot, Multiple TSP. For the homogenous MDMTSP,

a transformation was recently presented [5] with the as-

sumption that the costs satisfied the triangle inequality. For

the MTSP with 2 depots where there are no assumptions

on the costs satisfying the triangle inequality, Rao gives a

transformation in [6]. For the variant of the multiple depot

TSP where each vehicle need not return to its initial depot

and must visit at least one target, GuoXing [7] provides a

transformation to a single ATSP. The transformation given

in this paper is for multiple, heterogeneous vehicles with no

assumptions on the costs satisfying the triangle inequality

and is based on the transformation by Noon [8] for a

heterogeneous, single depot, MTSP.

II. TRANSFORMATION TO A SINGLE ATSP

The HMDMTSP can be transformed by first posing the

problem as a multiple, one in a set, ATSP. Then, the Noon-

Bean transformation [8] available for a single, one in a set

TSP is extended to transform the multiple, one in a set, ATSP

into a single ATSP. To pose the HMDMTSP as a multiple,

one in a set, ATSP, we replicate a distinct set of target

vertices for each vehicle. Let the new set of target vertices

replicated for vehicle i be denoted by T i
1, . . . , T

i
n. For each

k ∈ {1, . . . , n}, T i
k is the replicated-target of Tk for vehicle

i. Vehicle i is allowed to only visit replicated-targets in

{T i
1, . . . , T

i
n}. The cost of traveling from target, T i

j , to target,

T i
k, for vehicle i is Ci(Tj , Tk) for all j, k ∈ {1, . . . , n}. If

a target, T i
k, is visited by vehicle i, then it is required that

none of the targets in the set {T j
k : j ∈ {1, . . . ,m}\{i}} be

visited by any of its corresponding vehicles. Now, consider

the following multiple, one in a set, ATSP:

Find tours for all the vehicles such that

• for each k = 1, . . . , n, exactly one target in {T i
k : i ∈

{1, . . . ,m}} is visited by any one vehicle,

• for each i = 1, . . . ,m, the ith vehicle visits targets only

in the set {T i
1, . . . , T

i
n}, and,

• the total cost of all the tours is minimized.

Refer to Fig. 1 that illustrates the multiple, one in a set,

ATSP for 3 vehicles and 2 targets. It is clear that a feasible

solution for the HMDMTSP can be easily transformed to

a feasible solution of the multiple, one in a set, ATSP and

vice versa. Now, we adapt the Noon-Bean transformation

given in [8] for a single vehicle to the multiple, one in a set,

ATSP. To do this, it is necessary to add a terminal vertex for

each vehicle. Let V d
i be the terminal vertex corresponding to

vertex Vi. Now, there are essentially n+2 vertices denoted by

Vi, V
d
i , T i

1, . . . , T
i
n corresponding to vehicle i. Since, there

are m vehicles, the new transformed graph has m(n + 2)
vertices. The edges in the new transformed graph and their

corresponding costs are specified as follows:

Ĉ (Vi, T
i
k) = C

i(Vi, Tk) + M, for all i ∈ {1, . . . , m},

k ∈ {1, . . . , n},

Ĉ (Vi, V
d

i ) = M, for all i ∈ {1, . . . , m},

Ĉ (V d
i , Vi+1) = 0, for all i ∈ {1, . . . , m − 1},

Ĉ (V d
m, V1) = 0,

Ĉ (T i
j , T

i+1
k ) = C

i+1(Tj , Tk) + M, for all i ∈

{1, . . . , m − 1}, j, k ∈ {1, . . . , n}, j 6= k,

Ĉ (T m
j , T

1
k ) = C

1(Tj , Tk) + M, for all

j, k ∈ {1, . . . , n}, j 6= k,

Ĉ (T i
j , T

i+1
j ) = 0, for all i ∈

{1, . . . , m − 1}, j ∈ {1, . . . , n},

Ĉ (T m
j , T

1
j ) = 0, for all j ∈ {1, . . . , n},

Ĉ (T i
j , V

d
i+1) = C

i+1(Tj , Vi+1) + M, for all i ∈

{1, . . . , m − 1}, j ∈ {1, . . . , n},

Ĉ (T m
j , V

d
1 ) = C

1(Tj , V1) + M, for all j ∈ {1, . . . , n}.

(1)

In the above equations, M is a large positive constant

chosen to be equal to 2(n+m)maxm
i=1 maxn

j,k=1
Ci(Tj , Tk).

Since the HMDMTSP can have a maximum of (n + m)
edges, the constant M is greater than the optimal cost of

the HMDMTSP. An edge does not exist in the transformed

graph if it is not assigned a cost in the equations (1). Refer

to Fig. 2 for an example illustrating the transformation for

3 vehicles and 2 targets. Now, the main result of this paper

is in the following theorem:

Theorem 2.1: Given an optimal tour, x
opt
atsp, for the ATSP

on the transformed graph, one can construct a set of tours

TOUR1, . . . , TOURm that are optimal for the HMDMTSP

in n + m steps.

Without loss of generality, we assume that the optimal

tour x
opt
atsp starts from the vertex corresponding to the first

vehicle, V1. To prove theorem 2.1, we first state a list of

facts about the optimal tour, x
opt
atsp, in the following lemma:

Lemma 2.1: The optimal tour, x
opt
atsp, for the single ATSP

on the transformed graph satisfies the following conditions:

• I Consider the set of all the replicated-targets corre-

sponding to target Tj , i.e., Rj = {T i
j : i = 1, . . . ,m}.

Then, both the in-degree and the out-degree of the set

Rj in x
opt
atsp is equal to 1. Essentially, there is exactly

one edge entering and leaving the set Rj .

• II Let T i
j be the first replicated-target in the set Rj

visited by the directed path from V1 in the optimal

tour. After reaching T i
j , the directed path visits all the

remaining vertices in Rj before leaving Rj .

• III The directed path, PATHi, from a depot vertex, Vi,

to its corresponding terminal vertex, V d
i , in the optimal

tour, x
opt
atsp, will not visit any other depots or terminal

vertices.

• IV The cost of the optimal tour, Ĉ(xopt
atsp), is equal

to the sum of the cost of all the directed paths,∑m

i=1
Ĉ(PATHi).

Proof: The cost of any incoming or outgoing edge
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C1(V1,T1)

C1(V1,T2)

C1(T2,V1)

C1(T1,V1)

C1(T2,T1)

C1(T1,T2)

V2

T2
2

T2
1

C2(V2,T1)

C2(V2,T2)

C2(T2,V2)

C2(T1,V2)

C2(T2,T1)

C2(T1,T2)
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2
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1

C3(V3,T1)

C3(V3,T2)

C3(T2,V3)

C3(T1,V3)

C3(T2,T1)

C3(T1,T2)

Fig. 1. Example illustrating the formulated multiple, one in a set, ATSP for 3 vehicles and 2 targets.
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1

C1(V1,T1)+M

C1(V1,T2)+M

C1(T2,V1)+M

C1(T1,V1)+M

C1(T2,T1)+M

C1(T1,T2)+M

V2

T2
2T2

1

C2(V2,T1)+M

C2(V2,T2)+M

C2(T2,V2)+M

C2(T1,V2)+M

C2(T2,T1)+M

C2(T1,T2)+M

V3

T3
2

T3
1

C3(V3,T1)+M

C3(V3,T2)+M

C3(T2,V3)+M

C3(T1,V3)+M

C3(T2,T1)+M

C3(T1,T2)+M

zero cost edge

M

M

M

Vd
1

Vd
2

Vd
3

terminal

Fig. 2. Example illustrating the transformed single ATSP for 3 vehicles and 2 targets.

of the set Rj has an additional cost M associated with it.

Without loss of generality, let an incoming edge be incident

on target T 1
j . The transformed graph is such that a directed

path from T 1
j can use just the zero cost edges and visit each

of the targets in {T 2
j , . . . , Tm

j }. That is the directed path can

visit T 2
j after T 1

j , T 3
j after T 2

j and so on. After reaching Tm
j

the directed path can leave the set Rj . If the directed path

from T 1
j leaves T i

j for any i < m, then the remaining vertices

in the set Rj can be only visited by any of the incoming

edges of Rj whose cost is at least greater than M . Since

M is a large constant (greater than the optimal cost of the

HMDMTSP), the optimal tour, would have a least number

of edges whose cost has a value M associated with it. For

this reason, the number of edges incoming or outgoing of the

set Rj in x
opt
atsp will be as minimum as possible. Therefore,

the in-degree and the out-degree of the set Rj in the optimal
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tour must be equal to 1. Hence claim I of the lemma is true.

Claim II just follows from the proof of claim I. The

directed path from Vi after visiting a subset of replicated-

targets must either visit V d
i or some other terminal vertex.

The transformation is such that this directed path can visit

any other terminal vertex only if claim II is violated.

Therefore, the directed path from Vi after visiting a subset

of replicated-targets must visit V d
i . Hence, claim III must be

true.

There is only one outgoing edge from each of the terminal

vertices in the transformed graph. Also, all these outgoing

edges are zero cost edges. Therefore, all the zero cost edges

in the set Z= {(V d
1 , V2), (V

d
2 , V3), . . . , (V

d
m, V1)} must be

chosen in the optimal solution x
opt
atsp. From claim III, re-

moving all the zero cost edges in Z from x
opt
atsp would

essentially leave a set of m disconnected directed paths,

PATH1, PATH2, . . . , PATHm, with each path starting

from a depot and reaching its corresponding terminal vertex.

Therefore, Ĉ(xopt
atsp) =

∑m

i=1
Ĉ(PATHi). Hence proved.

Lemma 2.2: Given an optimal solution x
opt
atsp for

the transformed graph, there exists a set o f tours,

TOUR1, TOUR2, . . . , TOURm, for the HMDMTSP such

that the total cost of the tours,
∑m

i=1
C(TOURi), is equal to

Ĉ(xopt
atsp)− (n+ m)M . Also, these tours can be constructed

in n + m steps.

Proof:

From lemma 2.1, the directed path corresponding to the

ith vehicle, PATHi, does not visit any other depot or

terminal. Also, each replicated-target set Rj in the optimal

solution, x
opt
atsp, has an in-degree and out-degree equal to

1. Let αi denote the number of distinct replica-target sets

visited by the directed path, PATHi, from depot Vi to V d
i

in the optimal tour.

Case αi > 0:

If αi > 0, let the distinct sets visited by PATHi be

represented by Ri1, Ri2, . . . , Riαi
. The directed path first

visits the set Ri1, then Ri2, and so on. Also, let the tour of

the ith vehicle for the HMDMTSP constructed from PATHi

be TOURi = {Vi, Ti1, Ti2, . . . , Tiαi
, Vi}. In the following

argument, we first show that Ĉ(PATHi) = C(TOURi) +
(αi + 1)M if i is equal to 1.

∑

(u,v)∈Path1

Ĉ(u, v) = Ĉ(V1, T
1
11) +

α1−1∑

k=1

Ĉ(T m
1k, T

1
1(k+1))

+Ĉ(T m
1α1

, V
d
1 ).

Now, substituting for the transformed costs from equation

(1), we get,

∑

(u,v)∈Path1

Ĉ(u, v) =

C
1(V1, T11) + M +

α1−1∑

k=1

(C1(T1k, T1(k+1)) + M)

+C
1(T1α1

, V1) + M

= C
1(V1, T11) +

α1−1∑

k=1

C
1(T1k, T1(k+1)) + C

1(T1α1
, V1)

+(α1 + 1)M

= C(TOUR1) + (α1 + 1)M.

One can use a similar argument to also show that

Ĉ(PATHi) = C(TOURi) + (αi + 1)M for any i > 1.

Case αi = 0:

In this case, PATHi consists of only one directed edge

(Vi, V
d
i ) whose edge cost is M . Also, let TOURi = ∅ and

C(TOURi) = 0 when αi = 0.

As the optimal solution x
opt
atsp visits each of the replicated-

targets exactly once, any target j ∈ T must be present

in the tours of exactly one of the vehicles. There-

fore, TOUR1, . . . , TOURm, is a feasible solution to the

HMDMTSP. An example in Fig. 3 shows an optimal solution

of the ATSP and its corresponding tours for the HMDMTSP.

Now, we show the relation about the costs.

Ĉ(xopt
atsp) =

m∑

i=1

Ĉ(PATHi) (from lemma 2.1)

=

m∑

i=1,αi>0

Ĉ(PATHi) +

m∑

i=1,αi=0

Ĉ(PATHi)

=

m∑

i=1,αi>0

(C(TOURi) + (αi + 1)M) +

m∑

i=1,αi=0

M

=

m∑

i=1

C(TOURi) + mM + M

m∑

i=1,αi>0

αi

=

m∑

i=1

C(TOURi) + (m + n)M.

Note that for any i, TOURi can be constructed from

PATHi in αi + 1 steps. Therefore, all the tours can be

constructed from x
opt
atsp in n + m steps.

Lemma 2.3: Given a set of optimal tours, TOUR∗

1,

. . . , TOUR∗

m, for the HMDMTSP, one can construct a

feasible solution, x̂atsp, for the transformed graph such that∑m

i=1
C(TOUR∗

i ) = Ĉ(x̂atsp) − (n + m)M .

Proof: If TOUR∗

i is an empty set for any vehicle i, let
̂PATHi consist of exactly one edge (Vi, V

d
i ). If TOUR∗

i is

not an empty set for any vehicle i, let TOUR∗

i be denoted

by {Vi, Ti1, Ti2, . . . , Tiαi
, Vi}. Construct a directed path

̂PATHi that starts from Vi, visits all the replicated-target
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V1

T1
2

T1
1 C1(V1,T2)+M

V2

T2
2T2

1

V3

T3
2

T3
1

C3(V3,T1)+M

C3(T1,V3)+M

M

Vd
1

Vd
2

Vd
3

C1(T2,V1)+M

depot

target

zero cost edge

terminal

Fig. 3. Example illustrating an optimal ATSP tour on the transformed graph. Note that the optimal tour has 5 (i.e., m+n = 3+2 = 5) edges with additional
costs equal to M . The corresponding tours for the HMDMTSP in this example are: TOUR1 = {V1, T2, V1}, TOUR2 = ∅, TOUR3 = {V3, T1, V3}.

sets in the order of Ri1, Ri2, . . . , Riαi
and reaches the ter-

minal V d
i . By adding all the outgoing, zero cost, edges from

the terminals (i.e., Z= {(V d
1 , V2), (V

d
2 , V3), . . . , (V

d
m, V1)})

to all the directed paths ̂PATH1,. . . , ̂PATHm, one can

construct a feasible solution x̂atsp for the single ATSP on

the transformed graph. By using the same arguments of

lemma 2.2 in the reverse direction, we can also show that∑m

i=1
C(TOUR∗

i ) = Ĉ(x̂atsp)− (n+m)M . Hence proved.

A. Proof of theorem 2.1

Let the tours be constructed for the HMDMTSP as in

lemma 2.2. Now,

m∑

i=1

C(TOURi) = Ĉ(xopt
atsp) − (n + m)M (from lemma 2.2)

≤ Ĉ(x̂atsp) − (n + m)M

=

m∑

i=1

C(TOUR
∗

i ) (from lemma 2.3).

Therefore, the tours, TOUR1, . . . , TOURm, must be op-

timal for the HMDMTSP.

III. COMPUTATIONAL RESULTS

The objective of this section was to find the quality of the

solutions produced for the HMDMTSP by applying a well

known algorithm to the transformed problem. In particular,

we applied the modified LKH heuristic [9] which is one the

best heuristics [1] available to solve the single ATSP.

In all the simulations, the number of UAVs were fixed to

be equal to 6. The minimum turning radius (r) of all the

UAVs in the simulations was chosen to vary uniformly from

100 to 200 meters. Dubins’ [10] result was used to calculate

the minimum distance to travel for an UAV between any

two targets. Dubin’s [10] result states that the path joining

the two targets (x1, y1, θ1) and (x2, y2, θ2) that has minimal

length subject to the minimum turning radius constraints, is

one of RSR, RSL, LSR, LSL, RLR and LRL. Here, any

curved segment of radius r along which the vehicle executes

a clockwise (counterclockwise) rotational motion is denoted

by R(L), and the segment along which the vehicle travels

straight is denoted by S.

All the targets were uniformly generated in a square of

area 5 × 5 km2. For each generated target, an approach

angle was selected uniformly in the interval [0, 2π]. Each

vehicle was assigned a subset of targets (generated randomly)

that the vehicle cannot visit. In essence, heterogeneity among

vehicles was introduced in two ways: the Dubins’ distance

between any two targets will depend on the minimum turning

radius of a vehicle; the initial vehicle-target assignment will

also determine whether a vehicle can visit a target or not.

The number of targets were allowed to vary from 4 to

40. For a given number of vehicles (m) and targets (n), 20

instances were randomly generated. The solution quality of

an instance I is defined as

100(
CI

LKH − CI
LB

CI
LB − (n + m)M

),

where CI
LKH is the cost of the solution obtained by

applying the LKH heuristic on the transformed graph and

CI
LB is the lower bound for the single ATSP on the trans-

formed graph. The LKH program by Helsgaun available

at http://www.akira.ruc.dk/ keld/research/LKH/ was used to

solve the ATSP. The program was run on a Pentium 4 CPU

with 3GHz processing power and 1.24 GB RAM.

The results regarding the mean solution quality and their

computation times are shown in Fig.4 and Fig.5 respectively.

The results show that the quality of the solutions were

approximately 15% on an average. As expected, the mean
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computation times increased with the number of targets.

Fig. 6 shows the output of the tours found by applying the

LKH heuristic for a 5 vehicle, 20 target problem. In this

example, there were five UAVs used with their turning radius

uniformly spaced from 100 m to 200 m. Each vehicle was

assigned a distinct subset of targets that it is not supposed

to visit. The solution found by the LKH heuristic used only

two UAVs with a turning radius of 125 m and 175 m. The

solution quality for this example was approximately 16%.

Considering that a heterogeneous, multiple vehicle routing

problem is a difficult problem to solve, these results indicate

that the approach given in the paper is promising.

IV. CONCLUSIONS

A transformation was provided in this paper that con-

verts a Heterogeneous, Multiple Depot, Multiple Traveling

Salesman Problem (HMDMTSP) to a standard, Asymmetric

Traveling Salesman Problem (ATSP). The limitation of the

approach proposed in this paper is that the transformed graph
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Fig. 6. An example showing the dubins tours found by applying the LKH
heuristic on the transformed graph.

contains a large number of vertices (i.e., (n + 2)m vertices)

where n (m) is the number of targets (vehicles). If there are

large number of vehicles present in an instance, the trans-

formed graph could still be a computationally challenging

problem.
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