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Abstract— This paper explores two different algorithms de-
signed for quick triangulation in the face of numerous incorrect
measurements. The incorrect measurements can be randomly
faulty or maliciously converging to an incorrect answer. Both
algorithms require the number of correct measurements to
exceed a user defined consensus threshold. Both algorithms
will correctly terminate in an environment possessing more
than 50% faulty beacons, as long as the number of correct
measurements exceed the consensus threshold.

I. INTRODUCTION

Automated Dependent Surveillance Broadcast (ADS–B)
is the state of the art technology employed for inter-aircraft
communication in today’s National Airspace System. With
many ADS-B equipped aircraft in an area, the aircraft form
a sensor network continually broadcasting the position of
ADS-B equipped aircraft.

Location information, based on the position of sensor
nodes, is useful in networks with varying node capabilities.
Distributive networks must handle different types of incorrect
nodes. The research application studied in the following
paper is the ADS-B aircraft communication network. The
network was selected because of the available data (accurate
time, position, speed) and the fact that there is some level of
government oversight over this emerging technology.

GPS has seemingly solved the positioning problem for
many users, but shortcomings still exist [1]. A variety of
methods relying on alternative broadcast data have been
proposed to overcome these shortcomings [2]. Triangulation
based on existing signals must undergo more robust metrics
to filter out faulty or seemingly malicious data. ADS-B infor-
mation is available anywhere there is significant commercial
air traffic, including most large urban areas. Beyond ADS-
B, the ideas within this paper can be applied to numerous
triangulation applications, such as undersea buoy navigation
systems [3].

In this paper, we will outline two algorithms that are
fault tolerant to both malicious and accidental faulty air-
craft broadcast messages. In the face of purely accidental
faulty aircraft (non-colluding), the algorithms are able to
terminate correctly even when the number of faulty aircraft
significantly outnumbers correct aircraft. The algorithms
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are also able to terminate correctly when the number of
colluding byzantine beacons remains less than the correct
beacons. Both algorithms have regimes where one is more
efficient than the other, depending on the outliers model and
user requirements. The execution time of each algorithm is
explored with respect to inputs and model of the incorrect
beacons.

II. POSITION ESTIMATION AND CONSENSUS

Several popular position estimation algorithms that do
not use GPS-like infrastructure are presented in [4], [5],
[6]. Li et al. propose the use of robust outlier detection
statistical models to achieve robust position estimation [7].
They propose a probabilistic approximation to the least
median of squares (LMS) approach [8] in order to circumvent
computational complexity. Liu et al. presented a greedy
algorithm to filter out the attacker’s data on the basis of
a consistent minimum mean square error (MMSE) criterion
between received measurements from multiple beacons [9].
As shown in [10], the approach of Kiyavash and Koushanfar
removes the anomalies in a shorter runtime than both the
greedy algorithm of [9] and LMS with superior accuracy. In
the context of sensor networks, randomized consensus has
been applied to distributed object tracking [11] and time-
synchronization [12].

The Byzantine generals problem is one of the most studied
scenarios in computer science [13],[14], [15], [16]. The semi-
nal paper of Lamport [17] demonstrated that consensus under
the presence of failures could be reached in a distributed
synchronous system only if the number of faulty agents was
less than one third of the correct agents.

III. PROBLEM STATEMENT

The vast majority of aircraft, particularly general aviation
are not ADS-B enabled. Since ADS–B is, at present, an
unencrypted broadcast, general aviation aircraft can access
the messages broadcast by ADS–B enabled aircraft. If a
general aviation aircraft is equipped with an ADS–B receiver
it can theoretically eavesdrop on all ADS-B traffic within
broadcast range. Based on these eavesdropped messages, it
becomes possible for general aviation aircraft to triangulate
their position, as long as there are sufficient ADS–B enabled
aircraft within their proximity.

The ADS–B broadcast contains a number of different
parameters that are updated for each new packet. The pa-
rameters included are still being finalized, but the position,
velocity and time (based off GPS) form the most basic
layer [18]. When many aircraft are broadcasting ADS–B
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information within range of a receiver, they form a sensor
network of beacons that can be utilized by receivers. By
combining time stamp and location information the receivers
can triangulate their own location within the sensor network
of aircraft.

A. Limitations and Ordering of ADS-B Broadcast

The ADS–B protocol is designed to broadcast at a fre-
quency of 1 Hz. There is an implicit assumption of syn-
chronicity, as all ADS–B aircraft are assumed to be broad-
casting at the same rate

The order that the messages are received, as well as the
unique identifier that is associated with a beacon, cannot be
altered. Thus, under ADS-B, the aircraft implement a totally
ordered broadcast protocol. Messages are processed in the
order in which they arrive.

B. Triangulation

Existing triangulation methods [19] are implemented to
resolve the GPS positioning problem. They take the location
of each broadcast beacon (satellite) along with a time stamp
and calculate a travel time between the beacon and receiver.
The travel time is proportional to the distance between the
two nodes. The intersection of four spheres can uniquely
define a single point in three dimensional space and is used to
define a GPS location [20]. Triangulation in two dimensions
is done using the intersection of three circles to uniquely
define a single point [21]. There are a number of degenerate
cases where the intersection does not result in a point (i.e.
two of the circles are identical, etc.). The geometry is shown
in figure 1 and the triangulation algorithm [22] is outlined
below.

Fig. 1. The geometry of circle-circle intersection

The two circles centered at x01, y01 and x02, y02 with radii
r1 and r2 are defined by equations:

(x− xo1)2 +(y− yo1)2 = r2
1 (1)

(x− xo2)2 +(y− yo2)2 = r2
2 (2)

First, the distance between the circle centers is found

xd = xo2− xo1, yd = yo2− yo1 (3)

d =
√

(y2
d + x2

d) (4)

The points of interest are on a line perpendicular to the line
that connects the circle centers. The two lines intersect at a
point labeled H. This point is distance a from the center of
the first circle.

a = (r2
1− r2

2 +d2)/(2d) (5)
Hx = xo1 +(xda/d), Hy = yo1 +(yda/d) (6)

The length of v (see figure 1) can be found using a and the
radius of the first circle. The points of intersection are:

px = Hx± v(yo2− y01), py = Hy± v(xo2− x01) (7)

The pair of points of intersection, referred to as p and p′,
are used extensively in one of the algorithms as outlined in
Section IV-B. Once the two points are found, the correct
point can be selected by verifying the distance from each
potential point and the third circle. The point that lies on the
third circle is the point of intersection. If the three circles
do not result in an intersection, then the triangulation fails
to find a common point and generates an error with no point
of intersection.

C. Colluding Strategies

Correct beacons generate position and distance informa-
tion that is consistent with the receiver’s true position.
Incorrectly performing beacons do not generate information
that is consistent with the receiver’s true position. Incorrect
beacons fall into two subcases. In the first case, faulty
beacons have independent random errors that result in the
beacon’s broadcasts not conforming with receiver’s true
position. The second case involves multiple beacons being
consistent with a point other than the beacon’s true position.
Multiple beacons may be collusive in nature and select a
single coherent estimated position that is consistent with
all of their messages. Colluding beacons do not have to be
malicious, but may simply be faulty in a similar manner. For
instance, an airline wide mistake or aircraft specific bug may
cause sets of ADS-B beacons to experience identical faults
resulting in behavior that looks malicious.

IV. OUTLINE OF ALGORITHMS

Unlike the previous approaches to fault tolerant position
estimation under consensus [8], [7], [9], which use as much
data as possible to estimate the unknown coordinates, our
approach starts by picking a small (but sufficient) subset of
the data and incrementally increasing the subset.

The first algorithm, referred to as Random Selection,
involves drawing three beacons in sets (called triples) until a
set of three correct beacons is drawn. The second algorithm,
Intelligent Redraw, processes beacons one at a time until
the correct estimate is found. Both algorithms run in a
distributed fashion on all triangulating aircraft, receiving data
from a buffer that ensures the totally ordered broadcast. The
algorithms process one time step of data at a time, calculating
the receiver’s true position.

4957



A. Random Selection Algorithm

The Random Selection algorithm starts by selecting a
small (but sufficient) subset of the data and subsequently
augments it with consistent data. The algorithm arbitrarily
selects an initial subset and employs a randomized algorithm
to determine the set of consistent measurements. The pseu-
docode is formally stated in Algorithm 1.

Algorithm 1. Random Selection
Input: set S of N messages,
CI: the δ -consistency interval
Ct : the consensus threshold,
imax: maximum number of iterations .

1. Initialize i=1, L = /0;
2. While (i < imax) {
3. Randomly draw a unique subset Si of size 3 from S\L1;
4. Use Si to estimate the position ŝ0;
5. Calculate K, the number of δ -consistent beacons with

respect to the estimate ŝ0 in S\Si ;
6. If (K > Ct ) {
7. Form new estimate ŝ0 from K consistent points;
8. Terminate the program and return ŝ0;}
9. Increment L← Si; }
10. Increment i; }
11. Terminate program by announcing failure

In light of the algorithm’s minimalist methodology, the
approach first estimates the position of the unknown node
ŝ0 from some randomly selected unique subset of beacons,
Si (Steps 3 − 4). The motivation for keeping record of
already picked triplets (Step 3) is to save on computational
complexity. Thus, every subsequent triple drawn is compared
against the list of stored triples, and discarded if it already
appears, leading to another drawing, without incrementing
i. If a lexicographical order is applied to each triple as it
is stored, then comparison and storage can be reduced to
the act of inserting unique items into an ordered list. The
triangulation process outlined in subsection III-B is then
applied (Step 4), and an estimate for the position, ŝ0, is
calculated, and stored in a linked fashion. Using the new
position, ŝ0, the consensus with all beacons is checked (Step
5). The check compares the δ -consistency of each beacon’s
reported measurement with the estimated ŝ0. To check if
a consensus is reached, the number of beacons , K, in
consensus with the estimated position, is compared against a
threshold Ct . Once a consistency set has been identified, the
algorithm uses all points in the consensus set to form the final
estimate of ŝ0, then terminates (Steps 7-8). If the algorithm
performs imax iterations and does not find a consensus set of
at least size Ct , it declares a failure and terminates (Step 11).

On the surface, imax and Ct are fixed input quantities, and
the computational complexity of the algorithm is a function
of these two variables. The storage complexity is a function
of imax. These quantities depend on the size of S (i.e. N).

1With abuse of notation, we will use S\L to denote the set of beacons
excluding the triplets already chosen. More precisely, this does not exclude
picking an already selected node, but prevents picking an already selected
triplet.

B. Intelligent Redraw Algorithm

The Intelligent Redraw algorithm starts by selecting a
pair of messages, then incrementally augments this set with
additional messages until an estimated position reaches con-
sensus. The pseudocode is formally stated in Algorithm 2.

Algorithm 2. Intelligent Redraw
Input: set S of mi:N messages,
CI: δ -consistency interval,
Ct : number of delta consistent points to achieve consensus.
Internal variables: Listo f Points list containing estimated,

positions
mi message contains a unique Beacon ID, (x,y) position and

distance.

1. Initialize Listo f Points;
2. For i = 2 : N {
3. If mi agrees with no elements in Listo f Points2{
4. For j = 1 : i−1; {
5. Calculate p and p′ from intersection of mi and m j
6. Append listo f Points with p and p′;
7. Calculate K, the number of δ -consistent beacons

with respect to the estimate p;
8. If (K > Ct ) {
9. Form new estimate ŝ0 from K consistent beacons;
10. Terminate the program and return ŝ0;}
11. Calculate K, the number of δ -consistent beacons

with respect to the estimate p′;
12. If (K > Ct ) {
13. Form new estimate ŝ0 from K consistent beacons;
14. Terminate the program and return ŝ0;}

} } }
15. Terminate program by announcing failure;

This algorithm uses a data structure that contains all
estimated positions. The Euclidean distance between a bea-
cons’s position and an estimated position is defined as de.
A notion of agreement is used in this algorithm to define
when de is within a margin of error of the beacon’s reported
distance. The margin of error is the δ -consistency metric.
The algorithm processes each beacon incrementally from the
list of all beacons (Step 2). If the selected beacon agrees
with any previously estimated positions then Steps 4-14 can
be skipped, since position has already been checked. The
algorithm then returns to step 2.

If the beacon agrees with none of the previously esti-
mated positions, the selected beacon is intersected with all
previously drawn beacons. For all intersections resulting in
estimated positions p and p′, these two points are appended
to Listo f Points (Steps 5–6) and the consistency metric K
is calculated for both estimated positions (Steps 7–11). If
K exceeds Ct , meaning enough beacons agree with the esti-
mated position to achieve the required consensus threshold,
the algorithm terminates returning that estimated position. If
not, i is incremented and the process is repeated with another
beacon being selected (Step 2).

2Agreement(mi, Listo f Pointsk)=False for all k,1 ≤ k ≤ cardinality of
Listo f Points
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C. Parameters

The δ -consistency metric, CI, allows the user to specify
the distance that an estimated position and beacon can
deviate and still be in agreement. In the real world, all
measurements include noise; the δ -consistency metric is
an Euclidean distance that should be large enough so all
correctly behaving beacons are δ -consistent with the correct
location.

Consensus is defined as having greater then a threshold, Ct ,
number of beacons in agreement with an estimated position.
Each estimated position will have at least two beacons in
agreement, and the true position will have all correct beacons
in agreement. Byzantine beacons can select a byzantine
position and coordinate their effort to be consistent. This
results in the preselected position being in agreement with
all byzantine beacons.

The user can select for the consensus threshold, Ct , any
value from 3 to the total number of beacons, N. Values
above N/2+1 ensure that all cases with byzantine beacons
numbering less than N/2− 1 terminate with the correct
position. With the threshold value (Ct ) set between 3 and
N/2 + 1 the algorithm terminates correctly in cases where
at least Ct beacons are correct, and no more than Ct − 2
beacons are byzantine. Simulations has shown the threshold
can be set as low as 10% in cases of 80% faulty beacons
(with no byzantine beacons). When the user selects values
less then N/2+1, the algorithm can no longer differentiate
between byzantine groups of beacons numbering more than
Ct and the correct beacons. When setting the threshold below
N/2+1 the user must keep the threshold above the maximum
number of anticipated byzantine beacons or risk selecting the
byzantine position.

V. DISCUSSION OF PERFORMANCE

The two triangulation algorithms have different computa-
tion and storage costs as outlined below. The algorithm that
performs best depends on the scenario for incorrect beacons.
The two scenarios explored to benchmark algorithmic per-
formance are as follows: (1) Up to 50% byzantine beacons
all in collusion with one another and (2) high percentages of
accidently faulty beacons in excess of 50% (ie 50%–80%).

A. Scenario Initialization

For basic triangulation, N beacons were randomly dis-
tributed in a 100 by 100 grid in a uniform manner. The
correct position and the byzantine position, when necessary,
for triangulating aircraft, were placed at different points.
Simulations were run varying N at 30, 50 and 100 beacons.
Correct beacons reported a position and distance that was
in agreement with the true position. Accident faulty bea-
cons, which were varied from 0% to 80%, reported random
positions and distances. Byzentine beacons reported correct
positions, but adjusted their distance to be consistent with the
byzantine position for the triangulating beacon. Byzentine
beacons all colluded towards one position and were varied
from 0% to 49% in number. The consensus threshold, Ct , was
set at N/2+1 in the Byzantine case and it was decreased for

cases involving only accidentally faulty beacons. Every point
on the graphs represents the average over 100 independent
runs.

B. Accidentally Faulty Scenario

In the case of solely faulty beacons, the time to terminate
with the correct position increases with the percentage of
faulty beacons. The algorithms require more draws to select
pairs or triples of correct beacons and estimate the correct
position when there are more faulty beacons. The cost of the
algorithm is measured via execution time.

For the Random Selection Algorithm two main compu-
tational steps contribute to the overall execution time: (1)
Triangulation and (2) Checking if an estimated position
reaches consensus. The primary contribution to execution
time comes from the triangulation operation. On average,
triangulating a triple takes 0.273 milliseconds. Thus, as the
percentage of faulty beacons increases, the number of incor-
rect triangulations increase, causing this component of the
execution time to scale with the percentage of faulty beacons.
The secondary contribution to the cost comes while checking
if an estimated position, ŝ0, is consistent with at least Ct
beacons. As Ct increases, so do the number of comparisons
that need to be made. On average, for Ct = N/2 + 1 and
N = 50, a consensus check takes 0.24 milliseconds, for 20%
faulty beacons. This portion of execition costs scales linearly
with Ct and percentage of faulty beacons. Figure 2 illustrates
how the overal execution time scales with N and percentage
of faulty beacons.

The execution time of Intelligent Redraw has three con-
tributing factors: (1) Pairwise triangulation (2) Checking if
an estimated position reaches the consensus threshold (3)
Checking if a beacon agrees with any previously estimated
positions.

The primary contribution comes from the pairwise trian-
gulation, which requires on average 0.171 milliseconds to
complete. Note, this is shorter than the full triangulation
required for Random Selection. Again, as the percentage of
faulty beacons increases, the required number of pairwise
triangulations increases, causing this component of execu-
tion time to scale with the percentage of faulty beacons.
As before, checking if an estimated position achieves the
consensus threshold scales the execution time linearly with
the number of beacons. The final component scales with the
number of valid intersections generated by the beacons. This
component of cost is most important in the byzantine case
and will be discussed in Section V-C. Figure 4 shows how
the execution time scales with N and the percentage of faulty
beacons.

Figure 3 shows the execution time for Intelligent Redraw
becomes faster then Random Selection when the percentage
of faulty beacons becomes high enough. The result for N =
30 is shown in figure 3. The percentage of faulty beacons
that results in this cross over depends on N. The consensus
check component of execution time depends on N, and since
Intelligent Redraw must perform two checks per pairwise
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triangulation, it scales with N. The cross over points are
tabulated for N = 30,50,100 in Table I.

Fig. 2. The Random Selection algorithm with differing N values and the
percentage of faulty beacons varied from 0–80%. The threshold is set at
Ct = 0.1N%.

Fig. 3. The Random Selection algorithm compared with the Intelligent
Redraw algorithm with the percentage of faulty beacons varied from 0–
80%. Note the cross over at 30%.

C. Collusive Case

Unlike faulty beacons which do not generate a consistent
point, byzantine beacons generate a consistent point upon
triangulation. Random Selection still must draw triples until
three correct beacons are selected. As with the faulty case
the number of draws required to achieve a correct triple
increases with the percentage of byzantine beacons (see fig.
5). The Random Selection algorithm is insensitive to the fact
of whether an incorrect beacon may be accidentally faulty
or byzantine. Figure 6 (with N = 50, Ct = N/2 + 1) shows
the execution of the Random Selection algorithm essentially
the same for colluding byzantine beacons and accidentally
faulty beacons.

TABLE I
PERCENTAGE OF FAULTY BEACONS ABOVE WHICH INTELLIGENT

REDRAW IS FASTER THAN RANDOM SELECTION

Number of Beacons Percentage
N = 30 23%
N = 50 30%
N = 100 50%

Fig. 4. The Intelligent Selection algorithm with differing N values and the
percentage of faulty beacons varied from 0–80%.

The Intelligent Redraw algorithm is more sensitive to
the byzantine case. Intelligent Redraw is designed to take
advantage of the fact that it is easier to draw two correct
beacons simultaneously than three. By generating a pair of
points for each combination of considered beacons, Intelli-
gent Redraw implicitly leverages the fact that intersections
involving any accidentally faulty beacons do not result in
estimated positions. If this is no longer the case it is
clear the Intelligent Redraw is combinatorial with respect to
each additional beacon considered. Thus Intelligent Redraw
performs poorly in the byzantine case (see fig. 7) and is
always dominated by the Random Selection algorithm.

D. Conclusions

The performance of triangulation in the presence of faulty
and malicious beacons depends directly on the percentage
of incorrect beacons along with the number of beacons. The
Random Selection algorithm presented scales linearly with
the number of beacons and exponentially in the percent-
age of faulty or byzantine beacons. The Random Selection
algorithm outperforms the Intelligent Redraw algorithm in
cases where there are low percentage of faulty beacons, as
well as the byzantine case. The Intelligent Redraw algorithm
is more resilient to higher percentages of faulty beacons
and executes more quickly in these cases than the Random
Selection algorithm.
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Fig. 5. The Random Selection algorithm with differing N values and the
percentage of byzantine beacons varied from 0–50%.

Fig. 6. The Random Selection algorithm with N = 30 plotted for both
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Fig. 7. The Intelligent Redraw and Random Selection algorithm’s execution
time compared for the byzantine case (0–50%).
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