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Abstract— We analyze the observability of the continuous
and discrete states of discrete-time jump linear systems (JLSs)
with deterministic inputs. We consider several definitions of
observability for JLSs depending on whether some or all inputs
are considered. Unfortunately, checking these definitions can
involve an exponential number of rank tests on the parameters
of the JLS when the discrete state sequence is arbitrary. Our key
contribution is to demonstrate that when there is a minimum
separation between consecutive switches, one can verify observ-
ability by checking a number of rank tests that is only quadratic
in the number of discrete states. The observability conditions
we derive are natural generalizations of the well known rank
test for linear systems. Moreover, they can be related to the
Markov parameters of the individual linear systems.

I. INTRODUCTION

A critical aspect in observer design and identification
algorithms for hybrid systems is observability, i.e., the study
of the conditions under which the continuous and discrete
states of a system can be computed uniquely from input-
output measurements. Existing works on observability of
hybrid systems can be divided in two main categories.
The first class proposes computationally simple observability
conditions, often in the form of rank tests, but requires strong
assumptions on the hybrid system, such as measured discrete
states, autonomous systems, minimum dwell time, etc. The
second class addresses the observability of more general
classes of hybrid systems, such as switched or piecewise
affine systems with inputs, but requires computationally
expensive algorithms for checking observability, such as an
exponential but decidable number of rank tests or mixed
integer and quadratic programming.

Paper contributions and outline. The goal of this paper
is to develop several notions of observability for discrete-
time jump-linear systems (JLSs) with deterministic inputs,
as well as computationally efficient tests for verifying when
a JLS is observable. In §II we present several definitions of
observability for JLSs. The first two definitions are mode
observability [1], [2] and strong mode observability, which
refer to the ability of uniquely reconstructing the discrete
state for some or for all inputs, respectively. The other two
definitions are observability and strong observability, which
refer to the ability of uniquely reconstructing both continuous
and discrete states for some or for all inputs, respectively.

Unfortunately, checking the observability of a JLS with
N discrete states for all possible discrete state sequences of
length T can involve O(NT ) rank tests. To deal with this

exponential complexity, we assume that the switching times
are separated by a minimum dwell time that depends on the
order of the JLS. Under this assumption, we show that the
computational complexity reduces from O(NT ) to O(N2).
The proof is done in three steps.

In §III we consider the simple case of a JLS whose discrete
state sequence is constant, i.e., the sequence has no switch.
We show that the observability of the discrete and continuous
states before the first switch can be verified by checking
O(N2) rank tests on the parameters of the JLS. We also
show that some of these rank tests are equivalent to certain
conditions on the Markov parameters of the linear systems.

In §IV we consider a JLS whose discrete state sequence
contains only one switch and study conditions under which
the switching time can be detected after one or more steps.
We show that detectability of a switch can be verified with
O(N2) rank tests on the JLS model parameters.

In §V we consider a JLS whose discrete state sequence
has multiple switches separated by a minimum dwell time.
We show that such a JLS is observable when it is observable
before the first switch and the switching times are detectable
after one step. As a consequence, verifying observability
requires only O(N2) rank tests, as claimed. §VI provides
some numerical examples that show the simplicity and
effectiveness of the proposed observability conditions.

It is worthwhile mentioning that the observability condi-
tions for JLSs that we propose are only sufficient, but not
necessary. While other works have proposed weaker defi-
nitions of observability or derived observability conditions
under weaker assumptions, verifying such weaker notions
is often computationally very complex. Therefore, our work
offers a balance between the generality of the observability
definitions and conditions, and the computational complexity
of the tests for verifying such definitions.
Related work. Among the existing works on observability
of discrete-time JLSs, the ones that are more closely related
to our approach are [1], [3], [4], [2]. In comparison to the
work of [3], the main contribution of this paper is that
the switching sequence is viewed as an unknown parameter
which needs to be estimated, rather than as a measured
input. With respect to the work of [4] on observability of
autonomous JSLs, the main contribution of our work is to
consider more general definitions of observability for JLSs
with inputs. In fact, our results can be seen as a natural
generalization of those in [4] to non-autonomous systems.
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With respect to the work of [1], [2], which also considered
JLSs with inputs, there are two fundamental differences.
First, we consider several different concepts of observability.
Second, the conditions we obtain are simpler to check, thanks
to the additional assumption of a minimum dwell time.

Prior work. For continuous-state linear systems, it is well
known that the observability problem can be reduced to
analyzing the rank of the so-called observability matrix [5].

For discrete-event systems, a definition of current-location
observability was proposed in [6] as the ability to estimate
the location of the system after a finite number of steps. A
similar definition was given in [7] together with a polynomial
test for observability, the so-called current-location tree,
which depends on properties of the nodes of a finite state
machine associated with the discrete-event system.

For hybrid systems, one of the first attempts to characterize
observability can be found in [8], though the condition given
in the paper is somewhat tautological. [9] addresses the
observability and controllability of switched linear systems
with known and periodic transitions. [10] gives conditions for
the observability of a particular class of linear time-varying
systems where the system matrix is a linear combination
of a basis with respect to time-varying coefficients. [3]
gives a condition for the observability of switched linear
systems where the switching is assumed to be a measured
input. [11] gives conditions for observability of bilinear
and linear hybrid systems in continuous time, where the
discrete states change according to a finite automaton and the
discrete events are measured external inputs. [12] proposes
the notion of incremental observability for piecewise affine
systems, which can be tested by solving a mixed-integer
linear program. [13] derives different rank tests for the weak
observability of jump-Markov linear systems. [4] derives
conditions for the observability of autonomous discrete-time
JLSs that can be tested using simple rank tests on the
structural parameters of the model. Such conditions are nat-
ural generalizations of well-known results for linear systems
and can be extended to continuous-time JLSs [14] and to
piecewise affine hybrid systems [15]. [16] gives observability
conditions for stochastic linear hybrid systems in terms of the
covariances of the outputs. [17] shows that the observability
notions based on state indistinguishability do not imply state
reconstructability and proposes new definitions of observ-
ability, and a weaker notion of detectability, based on the
possibility of reconstructing the system state for discrete-
time switching systems. [1] proposes various concepts of
observability for autonomous and non-autonomous JLSs
without imposing constraints on time separation between
switches. [18] studies the observability of autonomous and
non-autonomous continuous-time switched linear systems
and shows that the observability of the discrete mode is
equivalent to controlled-discernibility of pairs of different
modes.

II. PROBLEM FORMULATION

A. Jump Linear Systems

A discrete-time jump linear system (JLS) with determin-
istic inputs is a system whose evolution is determined by a
collection of linear models with continuous state xt ∈ Rn
connected by switching among a number of discrete states
or modes qt ∈ Q , {1, . . . , N}, N > 1. The evolution of
the continuous state xt is described by the linear system

Σ :
{
xt+1 = A(qt)xt +B(qt)ut
yt = C(qt)xt,

(1)

where A(k) ∈ Rn×n, B(k) ∈ Rn×nu and C(k) ∈ Rny×n,
for k ∈ Q, are the system parameters, xt0 is the deterministic
initial continuous state, ut is a deterministic input, and qt ∈
Q is an unknown, deterministic and finite-valued input which
is called the discrete state (or mode).

Notice that the output of a JLS can be written explicitly in
terms of the model parameters {A(·), B(·), C(·)}, the initial
continuous state xt0 , the input ut and the discrete qt as

yt = C(qt)A(qt−1) · · ·A(qt0)xt0+
C(qt)A(qt−1) · · ·A(qt0+1)B(qt0)ut0 + · · ·+
C(qt)A(qt−1)B(qt−2)ut−2 + C(qt)B(qt−1)ut−1.

(2)

As in this paper we are interested in analyzing the input-
output behavior of Σ on a finite time horizon [t0, t0 +T −1]
of length T , we will restrict our attention to input sequences
of length T −1, ut0ut0+1 · · ·ut0+T−2, and output sequences
of length T , yt0yt0+1 · · · yt0+T−1, and stack them into the
vectors

UT , [u>t0 , u
>
t0+1, · · · , u>t0+T−2]>,

YT , [y>t0 , y
>
t0+1, · · · , y>t0+T−1]>.

(3)

Also, we will write a sequence of T discrete states as
w , qt0qt0+1 · · · qt0+T−1, and denote the set of all mode
sequences of length T as

QT = {q0q1 · · · qT−1 | q0, . . . , qT−1 ∈ Q}. (4)

With this notation, we can write the output of Σ in [t0, t0+
T − 1] as

YT , OT (w)xt0 + ΓT (w)UT , (5)

where

OT (w) ,


C(qt0)

C(qt0+1)A(qt0)
...

C(qt0+T−1)A(qt0+T−2) · · ·A(qt0)

 (6)

will be called the observability matrix of the JLS and

ΓT (w) ,


0 · · · 0

C(qt0+1)B(qt0) · · · 0

C(qt0+2)A(qt0+1)B(qt0)
. . . 0

...
...

C(qt0+T−1)B(qt0+T−2)


(7)
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will be called the non-symmetric Toeplitz matrix of the JLS.
Observe from (5) that the output vector YT can be thought of
as the value of the input-output map Y(xt0 , w,UT ) induced
by (xt0 , w) for the input sequence UT . Notice that in the
proper system-theoretic sense, the state of Σ is the pair
(xt0 , w), where xt0 ∈ Rn is the initial continuous state and
w ∈ QT is the sequence of discrete modes.

Remark 1: Notice that whenever the mode sequence is
constant, i.e., w = q · · · q ∈ QT , the matrices OT (w) and
ΓT (w) reduce to the the well known extended observability
matrix and non-symmetric Toeplitz matrix of the linear
system (A(q), B(q), C(q)). With an abuse of notation, we
will write these matrices simply as OT (q) and ΓT (q).

B. WT -Observability of JLSs

Given a JLS of the form (1) with known parameters
{A(k), B(k), C(k); k ∈ Q}, we focus our attention on the
study of the conditions under which the state of the system
(xt0 , w) can be uniquely determined from measurements of
the input/output data UT and YT .

For linear systems, it is well known that the input has no
effect on whether the continuous state xt0 can be determined
uniquely. Also for a JLS in which the mode sequence w is
measured, the initial state xt0 can be determined uniquely
if and only if the matrix OT (w) is full rank, as shown
in [1]. However, notice that checking this condition is not
straightforward, as it involves checking O(NT ) rank tests.

In this paper we are interested in the more general situation
in which w is not measured. Notice that in this case the
input does have an effect on whether the continuous and
discrete states can be uniquely determined. This is because
the matrix ΓT (w) in equation (5) depends explicitly on the
sequence of discrete states w. Therefore, there are several
ways of defining observability for JLSs, depending on what
assumptions are made about the input sequence.

In what follows, we define several possible notions of
observability, which differ precisely on whether all or some
inputs are considered. For reasons that will become apparent
in the next subsection, we restrict the values of pairs of
discrete state sequences via a relation WT ⊆ QT × QT on
the set of sequences of discrete states of length T , QT . This
leads to the following notions of WT -observability for JLSs.

Definition 1: We say that a JLS is WT -mode observable
on the interval [t0, t0 + T − 1] if for any two different
sequences of discrete states w 6= w̄, (w, w̄) ∈ WT , there
exists some input vector UT such that for all pairs of initial
continuous states (xt0 , x̄t0) 6= 0 the corresponding outputs
YT =Y(xt0 ,w,UT)and ȲT =Y(x̄t0 ,w̄,UT)are not equal, i.e.,

∀(w, w̄) ∈WT , w 6= w̄, ∃UT , ∀(xt0 , x̄t0) 6= 0⇒ YT 6= ȲT .
Notice that our definition of mode observability differs

from the definition of mode observability of [1], [2] in the
way the quantifiers are placed.1 There, it is required that

1More precisely, [1] used the expression strong mode observability, while
[2] uses the expression mode observability. For the sake of simplicity,
we will refer to the observability concept of both [1] and [2] as mode
observability.

there exists a universal input, i.e., an input independent
of the switching sequences, such that for any two distinct
switching sequences, the outputs corresponding to the inputs
are different. In contrast, in Definition 1, the input UT may
depend on the sequences w and w̄. Therefore, a system
might be mode observable according to Definition 1, but not
according to the definition of [1], [2]. Moreover, the sufficient
conditions of [1], [2] are also sufficient conditions for mode
observability in our setting.

Definition 2: We say that a JLS is WT -strong mode ob-
servable on the interval [t0, t0+T−1] if for any two different
sequences of discrete states w 6= w̄, (w, w̄) ∈ WT , for all
input vectors UT and for all pairs of initial continuous states
(xt0 , x̄t0) 6= 0, the corresponding outputs are not equal, i.e.,

∀(w, w̄) ∈WT , w 6= w̄, ∀UT , ∀(xt0 , x̄t0) 6= 0⇒ YT 6= ȲT .
Again, our definition of strong mode observability is

different from the definition of mode observability of [1],
[2]. The main difference is that strong mode observability in
the sense of Definition 2 requires that all distinct sequences
of discrete modes yield different outputs for all inputs, while
the concept of [1], [2] requires only that there exists an
input such that all distinct sequences of discrete modes yield
different outputs for that particular input.

Definition 3: We say that a JLS is WT -observable on the
interval [t0, t0 + T − 1] if for all states (xt0 , w) 6= (x̄t0 , w̄)
with (w, w̄) ∈ WT and (xt0 , x̄t0) 6= 0, there is some input
vector UT such that the corresponding outputs are not equal,
i.e.,

∀(xt0 , w) 6= (x̄t0 , w̄), (w, w̄) ∈WT , (xt0 , x̄t0) 6= 0,
∃UT ⇒ YT 6= ȲT .

The definition of observability from Definition 3 says
that there are no indistinguishable states, i.e., for any two
distinct pairs of continuous states and sequences of discrete
modes, there exists an input, possibly dependent on the initial
continuous states and the sequences of discrete modes, such
that the outputs corresponding to that particular input are
different.

Definition 4: We say that a JLS is WT -strong observable
on the interval [t0, t0 + T − 1] if for all states (xt0 , w) 6=
(x̄t0 , w̄), with (w, w̄) ∈ WT and (xt0 , x̄t0) 6= 0, and for all
input vectors UT , the corresponding outputs are not equal,
i.e.,

∀(xt0 , w) 6= (x̄t0 , w̄), (w, w̄) ∈WT , (xt0 , x̄t0) 6= 0,
∀UT ⇒ YT 6= ȲT .

Strong observability requires that any two distinct pairs of
continuous states and sequences of discrete modes yield dif-
ferent outputs for every input sequence. Strong observability
implies observability, but not vice-versa.

C. Minimum Dwell Time Observability of JLSs

If we let WT = QT × QT in Definitions 1-4, we obtain
definitions of observability for arbitrary discrete state se-
quence. Unfortunately, verifying observability for all possible
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discrete state sequences is not computationally straightfor-
ward, because the number of sequences in QT is NT . This
motivates us to analyze definitions of observability for a
subset of the discrete mode sequences of length T .

An important subset of QT is the set of discrete state
sequences that are separated by a minimum dwell time. More
precisely, let us denote by ti the ith switching time and by
τi the time spent in [ti, ti+1 − 1], i.e., τi = ti+1 − ti. Also,
let ν > 0 be an integer indicating the minimum dwell time.
The set of discrete state sequences of length T with switches
separated by a minimum dwell time ν ≤ T is defined as

QνT =
{
qτ11 · · · q

τ`

` | q1, . . . , q` ∈ Q, ` ≥ 1,∑̀
j=1

τj = T, ν ≤ τj ≤ T, for j = 1, 2, . . . , `
}
,

(8)

where qτ stands for qq · · · q (τ -times). After letting

W ν
T = QνT ×QνT , (9)

Definitions 1-4 can be specialized for JLSs with a minimum
dwell time ν > 0 as follows.

Definition 5 (Minimum dwell time observability): A JLS
is called [strong] [mode] observable with a minimum dwell
time ν if it is W ν

T -[strong] [mode] observable on the time
interval [t0, t0 + T − 1].

Notice that restricting our definitions of observability from
QT ×QT to W ν

T does not necessarily eliminate the issue of
computational complexity, because the number of sequences
in QνT is still O(NT/ν). This is precisely the key contribution
of this paper: to find sufficient conditions for observability
with minimum dwell time ν that involve checking only
O(N2) rank tests.

The proof of our main result will be done in three
main steps. First, we will consider the problem of uniquely
determining the continuous and discrete states of a JLS
before the first switch occurs. In §III, we will show that
the observability of the initial continuous and discrete states
before the first switch can be verified by checking O(N2)
rank tests on the parameters of the constituent linear systems.
The precise definitions of [strong] mode observability and
[strong] observability before the first switch involve the set

WT
T = {(qT , q̄T ) | q, q̄ ∈ Q}, (10)

and can be stated as follows.

Definition 6: We will refer to WT
T -[strong] mode observ-

ability and WT
T -[strong] observability on the time interval

[t0, t0 + T − 1] as [strong] mode observability before the
first switch on [t0, t0 + T − 1] and [strong] observability
before the first switch on [t0, t0 + T − 1], respectively.

Second, we will consider the problem of uniquely deter-
mining the time instant at which the first switch occurs. For
this purpose, let ν be the minimum dwell time and let η ≥ 1
be the number of time-steps needed to detect a switch in a
sequence of discrete modes. Consider also the set

W ν,η
T = {(qν+η, qν q̄η) | q, q̄ ∈ Q, ν + η = T}. (11)

We can now define the notions of [strong] mode detectability
and [strong] detectability of the first switching time.

Definition 7: Consider a JLS with minimum dwell time
ν. We say that the first switching time is [strong] mode
detectable after η steps with a minimum dwell time ν on
the time interval [t0, t0 +T − 1], if the JLS is W ν,η

T -[strong]
mode observable on the interval [t0, t0 + T − 1]. We say
that the first switching time is [strong] detectable after η
steps with a minimum dwell time ν on the time interval
[t0, t0 + T − 1], if the JLS is W ν,η

T -[strong] observable on
the interval [t0, t0 + T − 1].

Intuitively, [strong] [mode] detectability of the first switch
after η steps means that if a change in a sequence of discrete
modes occurs, then we can detect it in at most η steps after
its occurrence, provided that the switching sequence has a
minimum dwell time of ν. In §IV, we will derive conditions
to uniquely recover the first switching time. As before, our
conditions will involve checking O(N2) rank tests.

Third, we will show in §V that the combination of observ-
ability before the first switch and detectability of the first
switch gives a sufficient condition for minimum dwell time
observability of a JLS. As a consequence, minimum dwell
time observability can be checked with O(N2) rank tests.

III. OBSERVABILITY BEFORE THE FIRST SWITCH

In this section we study the observability of states before
a switch occurs. More precisely, we are interested in WT

T -
[strong] mode observability and WT

T -[strong] observability
on [t0, t0+T ], where WT

T is the set of pairs of discrete mode
sequences with constant discrete states as defined in (10).

For the sake of simplicity, throughout the section we
will omit the observability interval [t0, t0 + T − 1] when
speaking of [strong] [mode] observability before the first
switch. Also, for notational convenience, we will use qt0 to
refer to the sequence of discrete modes w = qt0 · · · qt1−1,
because qt0 = qt0+1 = · · · = qt1−1. Thus, (xt0 , qt0) and
OT (qt0) will refer to the state (xt0 , w) and the matrix OT (w)
with w = qt0qt0 · · · qt0 , respectively. Also we will write
YT = YT (xt0 , qt0 ,UT ) and ȲT = YT (x̄t0 , q̄t0 ,UT ). Thus,
according to (5), we can write

YT = OT (qt0)xt0 + ΓT (qt0)UT
ȲT = OT (q̄t0)x̄t0 + ΓT (q̄t0)UT .

(12)

A. Case 1: WT
T -Mode Observability

We first seek conditions under which a JLS is WT
T -mode

observable.

Lemma 1: Let T ≥ 2n. A JLS is mode observable before
the first switch if and only if for all qt0 6= q̄t0 ∈ Q

rank([OT (qt0) ,OT (q̄t0)]) = 2n, or (13)
rank([OT (qt0),OT (q̄t0),ΓT (q̄t0)− ΓT (qt0)])

> rank([OT (qt0) ,OT (q̄t0)]).
(14)

Proof: We start by showing that condition (13) or (14)
is sufficient. We do this by contradiction. Assume that (13) or
(14) holds, but the JLS is not WT

T -mode observable. Hence,
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there exist two sequences w = qt0 · · · qt0 , w̄ = q̄t0 · · · q̄t0 ∈
WT
T such that

∀UT ∃(xt0 , x̄t0) 6= 0 : YT = ȲT . (15)

After substituting YT and ȲT from (12) into (15) we obtain
that for every UT there exists (xt0 , x̄t0) 6= 0 such that

OT (qt0)xt0−OT (q̄t0)x̄t0 =(ΓT (q̄t0)−ΓT (qt0))UT . (16)

As (16) must hold for all UT , in particular it must hold for
UT in the kernel of ΓT (qt0)−ΓT (q̄t0). Hence we must have

rank([OT (qt0) ,OT (q̄t0)]) < 2n, (17)

so that equation (16) has a nonzero solution for the initial
continuous states (xt0 , x̄t0). Also in order for (16) to hold
for every UT not in the kernel of ΓT (qt0) − ΓT (q̄t0), the
range space of ΓT (qt0)− ΓT (q̄t0) must be contained in the
range space of [OT (qt0),OT (q̄t0)], i.e.,

rank([OT (qt0),OT (q̄t0),ΓT (q̄t0)− ΓT (qt0)])
= rank([OT (qt0) ,OT (q̄t0)]).

(18)

The two conditions (17) and (18), which must be simulta-
neously satisfied, are obviously in contradiction with (13) or
(14). This completes the proof of sufficiency.

We now show that if the JLS is WT
T -mode observable, at

least one of the conditions in (13) or (14) must be met. Again
we do this by contradiction. We assume that there exist qt0 6=
q̄t0 for which neither condition (13) nor (14) is satisfied,
so (17) and (18) simultaneously hold. Thus, for every input
vector UT , equation (16) admits nonzero solutions for the
initial continuous states (xt0 , x̄t0), which clearly contradicts
the definition of WT

T -mode observability.

Now, we show that the second condition of Lemma 1 can
be translated into a relation among the Markov parameters
of the constituent linear systems. To this end, we state the
following basic result, whose proof is left to the reader.

Lemma 2: Given two linear systems (A,B,C) and
(Ā, B̄, C̄) with extended observability matrices of order
µ ≥ 2n, Oµ = [C>, (CA)>, . . . , (CAµ−1)>]> and Ōµ =
[C̄>, (C̄Ā)>, . . . , (C̄Āµ−1)>]>, the kernel of [Oµ, Ōµ] is

M -invariant, where M ,

[
A 0
0 Ā

]
.

Lemma 3: Let T > 2n. A JLS is mode observable before
the first switch if and only if for all qt0 6= q̄t0 ∈ Q,

1) rank([OT (qt0) ,OT (q̄t0)]) = 2n, or
2) ΓT (qt0) 6= ΓT (q̄t0), i.e., ∃ k ∈ {0, 1, . . . , 2n− 1} such

that C(qt0)Ak(qt0)B(qt0) 6= C(q̄t0)Ak(q̄t0)B(q̄t0).

Proof: The first condition is the same as that in equation
(13) for WT

T -mode observability. So, we only need to show
that condition (14) in Lemma 1 holds if and only if at
least one of the Markov parameters of each linear system
is different from the Markov parameters of other linear
systems. This is equivalent to proving that condition (18)
holds if and only if the Markov parameters of any two
linear systems are equal to each other. First assume that the
first 2n Markov parameters of two different linear models

corresponding to qt0 and q̄t0 are equal to each other. By using
the Cayley-Hamilton Theorem [5], one can easily show that
ΓT (qt0)−ΓT (q̄t0) = 0 and we immediately get the condition
in equation (18). Next, assume that equation (18) holds but at
least one of the Markov parameters of the linear system qt0
and q̄t0 are different from each other. Let j be the first index
such that C(qt0)Aj(qt0)B(qt0) 6= C(q̄t0)Aj(q̄t0)B(q̄t0),
and C(qt0)Ai(qt0)B(qt0) = C(q̄t0)Ai(q̄t0)B(q̄t0) for i =
0, . . . , j − 1. Because of the rank condition in (18), each
column of ΓT (qt0)−ΓT (q̄t0) can be written as a linear com-
bination of the columns of OT (qt0) and OT (q̄t0). Therefore,
there exist Θj and Θ̄j such that:

C C̄
...

...
CAT−2 C̄ĀT−2

CAT−1 C̄ĀT−1


[

Θj

−Θ̄j

]
=


0
...
0

CAjB − C̄ĀjB̄

 . (19)

Here, for ease of notation, we used A to denote A(qt0) and Ā

to denote A(q̄t0) (similarly for other matrices). Since
[

Θj

−Θ̄j

]
is in the kernel of [OT−1(qt0), OT−1(q̄t0)] and T − 1 ≥
2n, Lemma 2 results in CAT−1Θj − C̄ĀT−1Θ̄j = 0, so
CAjB − C̄ĀjB̄ = 0, which is obviously a contradiction.
Thus we conclude that under condition (14), when T > 2n,
at least one of the Markov parameters of each linear model
is different from the Markov parameters of all other linear
systems.

B. Case 2 : WT
T -Strong Mode Observability

A JLS is strong mode observable before the first switch if

∀qt0 6= q̄t0 ∈ Q, ∀UT , ∀(xt0 , x̄t0) 6= 0⇒ YT 6= ȲT . (20)

Since the above relation must hold for all input vectors, we
have two different cases. When the input vector UT is in the
kernel of ΓT (qt0)− ΓT (q̄t0), we have that ∀qt0 6= q̄t0 ∈ Q,

∀(xt0 , x̄t0) 6= 0, OT (qt0)xt0 −OT (q̄t0)x̄t0 6= 0. (21)

This requires that for all qt0 6= q̄t0 ∈ Q

rank[OT (qt0),OT (q̄t0)] = 2n. (22)

When the input vector UT is not in the kernel of ΓT (qt0)−
ΓT (q̄t0), we must have that ∀qt0 6= q̄t0 ∈ Q, ∀(xt0 , x̄t0) 6= 0,

OT (qt0)xt0 −OT (q̄t0)x̄t0 6= (ΓT (q̄t0)− ΓT (qt0))UT . (23)

This is equivalent to requiring the intersection of the range
spaces of [OT (qt0),OT (q̄t0)] and (ΓT (qt0)−ΓT (q̄t0)) to be
trivial. Thus, we must have the following condition

rank[OT (qt0),OT (q̄t0),ΓT (qt0)− ΓT (q̄t0)] =
rank[OT (qt0),OT (q̄t0)] + rank(ΓT (qt0)− ΓT (q̄t0)).

(24)

Therefore, in order for a JLS to be WT
T -mode strong observ-

able, the conditions of the following lemma must hold.
Lemma 4: Let T ≥ 2n. A JLS is strong mode observable

before the first switch if and only for all qt0 6= q̄t0 ∈ Q
1) rank[OT (qt0),OT (q̄t0)] = 2n, and
2) rank[OT (qt0),OT (q̄t0),ΓT (qt0) − ΓT (q̄t0)] = 2n +

rank(ΓT (qt0)− ΓT (q̄t0)).
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C. Case 3: WT
T -Observability

Up to now, we have studied conditions that guarantee the
observability of the mode sequence before the first switch.
We now study conditions for recovering both the continuous
and discrete states before the first switch.

For the sake of contradiction, assume that the JLS is not
observable before the first switch. This means that there
exist (xt0 , qt0) and (x̄t0 , q̄t0) not equal to each other and
(xt0 , x̄t0) 6= 0 such that for all input vectors UT their
corresponding outputs are equal, i.e.,

OT (qt0)xt0 −OT (q̄t0)x̄t0 = (ΓT (q̄t0)− ΓT (qt0))UT . (25)

We have the following two cases:

1) If qt0 = q̄t0 , then there exist two different initial
conditions xt0 6= x̄t0 such that OT (qt0)(xt0− x̄t0)=0.
This is equivalent to rank(OT (qt0)) < n for some
qt0 ∈ Q. As a consequence, if one of the linear systems
is not observable, then the JLS is not WT

T -observable.
2) If qt0 6= q̄t0 , then there exist (xt0 , x̄t0) 6= 0 such

that the left hand side of (25) is equal to the right
hand side for all UT . Since the left hand side does
not depend on UT , in order for (25) to hold for all
UT , both the left hand side and the right hand side
must be identically zero. We thus have that for some
(xt0 , x̄t0) 6= 0, OT (qt0)xt0 − OT (q̄t0)x̄t0 = 0, which
implies that rank[OT (qt0),OT (q̄t0)] < 2n. In addition,
we have that for all UT , (ΓT (qt0)− ΓT (q̄t0))UT = 0,
hence we must have ΓT (qt0) = ΓT (q̄t0). This means
that the Markov parameters of the two linear systems
are equal to each other.

Noticing that the condition rank[OT (qt0),OT (q̄t0)] = 2n
implies the condition of rank(OT (qt0)) = n, we have the
following lemma for the WT

T -observability of a JLS.
Lemma 5: Let T ≥ 2n. A JLS is observable before the

first switch if and only if for all qt0 6= q̄t0 ∈ Q,

1) rank[OT (qt0),OT (q̄t0)] = 2n or,
2) rank(OT (qt0)) = n and ΓT (qt0) 6= ΓT (q̄t0).

D. Case 4 : WT
T -Strong Observability

The analysis for this case is similar to what we did
for strong mode observability before the first switch. The
only difference is that, in addition, we have to consider the
case where qt0 = q̄t0 with xt0 6= x̄t0 , which results in
rank(OT (qt0)) = n. One can easily see that this condition
is satisfied whenever rank[OT (qt0),OT (q̄t0)] = 2n. Thus,
the conditions in this case are the same as the conditions for
strong mode observability before the first switch. That is:

Lemma 6: Let T ≥ 2n. A JLS is strong observable before
the first switch if and only if, for all qt0 6= q̄t0 ∈ Q,

1) rank[OT (qt0),OT (q̄t0)] = 2n, and
2) rank[OT (qt0),OT (q̄t0),ΓT (qt0) − ΓT (q̄t0)] = 2n +

rank(ΓT (qt0)− ΓT (q̄t0)).

IV. DETECTABILITY OF THE FIRST SWITCHING TIME

In the previous section, we derived conditions for recov-
ering either the discrete state or both the continuous and
discrete states before the first switch. Now, assuming that
these conditions are satisfied, we derive additional conditions
that enable us to recover the time instant at which the first
switch occurs. Once the first switching time is recovered,
we can repeat the procedure by finding the discrete (and
continuous) state after the first switch, recovering the second
switching time, and so on. We will discuss this case in §V.

Recall now the notion of [strong] [mode] detectability of
the first switching time after η steps with a minimum dwell
time ν in the interval [t0, t0 + T − 1] from Definition 7. For
the sake of simplicity, throughout the section we will omit
the observability interval [t0, t0 + T − 1] when referring to
[strong] [mode] detectability of the first switching time. We
have the following result.

Lemma 7: Consider a JLS with minimum dwell time ν ≥
2n. Assume that the JLS is observable before the first switch
on [t0, t0 + ν − 1]. For any sequence of discrete states w
of length T , let Γ̂η(w) be the matrix obtained by taking
only the last η× ny rows of ΓT (w) defined in (7). The first
switching time is detectable after η steps, if and only if for
all qt0 6= qt1 ∈Q,

rank((Oη(qt1)−Oη(qt0))Aν(qt0)) = n, or (26)

Γ̂η(qν+ηt0 ) 6= Γ̂η(qνt0q
η
t1). (27)

Proof: According to Definition 7, the first switching
time of a JLS is detectable after η steps if

∀(xt0 , q
ν+η
t0 ) 6= (x̄t0 , q

ν
t0q

η
t1), (qν+ηt0 , qνt0q

η
t1) ∈W ν,η

T ,

(xt0 , x̄t0) 6= 0,∃UT ⇒ YT 6= ȲT .
(28)

When xt0 6= x̄t0 , then by observability of the JLS before
the first switch, we have that YT 6= ȲT .

When xt0 = x̄t0 , we want to distinguish between the
outputs of (xt0 , q

ν+η
t0 ) and (xt0 , q

ν
t0q

η
t1). In order to derive

the conditions, we use the negation of (28) when x̄t0 = xt0 ,

∃(xt0 , q
ν+η
t0 ) 6= (xt0 , q

ν
t0q

η
t1), (qν+ηt0 , qνt0q

η
t1) ∈W ν,η

T ,

xt0 6= 0,∀UT ⇒ YT = ȲT .
(29)

Since the outputs of the system associated with (xt0 , q
ν+η
t0 )

and (xt0 , q
ν
t0q

η
t1) are the same in the interval [t0, t0 + ν− 1],

we have to search for conditions that yield equal outputs in
the interval [t0 + ν, t0 + T − 1]. To this end, we will denote
the system matrices (A(qti), B(qti), C(qti)) by (Ai, Bi, Ci)
for i = 0, 1. With this notation, let yt0+ν+k and ȳt0+ν+k
denote the outputs of the system at t0 +ν+k corresponding
to (xt0 , q

ν+η
t0 ) and (xt0 , q

ν
t0q

η
t1), respectively. Then we have:

yt0+ν+k = C0A
k+ν
0 xt0 + C0A

k−1+ν
0 B0ut0+

· · ·+ C0B0ut0+ν+k−1,
(30)

ȳt0+ν+k = C1A
k
1A

ν
0xt0 + C1A

k−1
1 Aν0B0ut0+

· · ·+ C1B0ut0+ν+k−1.
(31)

By taking every possible k ∈ {0, 1, · · · , η − 1} in equations
(30) and (31), we obtain the following expressions for the
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outputs Yη and Ȳη on the interval [t0 + ν, t0 + T − 1]
corresponding to (qt0 , xt0) and (q̄t0 , x̄t0):

Yη = Oη(qt0)Aν0xt0 + Γ̂η(qν+ηt0 )UT , (32)

Ȳη = Oη(qt1)Aν0xt0 + Γ̂η(qνt0q
η
t1)UT . (33)

Thus, by equality of equations (32) and (33), we get

(Oη(qt1)−Oη(qt0))Aν0xt0 =(Γ̂η(qνt0q
η
t1)−Γ̂η(qν+ηt0 ))UT . (34)

Since this equation must hold for all UT , in an analogous
analysis to what we did in §III-C we get

rank((Oη(qt1)−Oη(qt0))Aν(qt0)) < n, and (35)

Γ̂η(qν+ηt0 ) = Γ̂η(qνt0q
η
t1) (36)

Thus, from the negation of the above conditions we get the
proposed conditions (26) and (27) of the Lemma.

In an analogous fashion, one can derive the following
conditions for strong detectability, mode detectability, and
strong mode detectability of the first switching time.

Lemma 8: Consider a JLS with minimum dwell time ν ≥
2n and which is strong observable before the first switch on
[t0, t0 + ν − 1]. The first switching time is strong detectable
after η steps, if and only if for all qt0 6= qt1 ∈ Q,

rank((Oη(qt1)−Oη(qt0))Aν(qt0)) = n, and

rank([(Oη(qt1)−Oη(qt0))Aν(qt0) , Γ̂η(qνt0q
η
t1)− Γ̂η(qν+ηt0 )])

= n+ rank(Γ̂η(qνt0q
η
t1)− Γ̂η(qν+ηt0 ).

Lemma 9: Consider a JLS with minimum dwell time
ν ≥ 2n. Assume that for each discrete mode q ∈ Q the
matrix A(q) is invertible and that the system (C(q), A(q)) is
observable. The first switching time is mode detectable after
η steps, if and only if for all qt0 6= qt1 ∈ Q,

rank[(Oη(qt0)−Oη(qt1))Aν(qt0)] = n, or

rank[(Oη(qt0)−Oη(qt1))Aν(qt0) , Γ̂η(qνt0q
η
t1)− Γ̂η(qν+ηt0 )]

> rank[Oη(qt0)−Oη(qt1)].

Lemma 10: Consider a JLS with minimum dwell time
ν ≥ 2n. Assume that for each discrete mode q ∈ Q the
matrix A(q) is invertible and the system (A(q), C(q)) is ob-
servable. The first switching time is strong mode detectable
after η steps, if and only if for all qt0 6= qt1 ∈ Q,

rank[(Oη(qt0)−Oη(qt1))Aν(qt0)] = n, and

rank[(Oη(qt0)−Oη(qt1))Aν(qt0) , Γ̂η(qνt0q
η
t1)− Γ̂η(qν+ηt0 )]

= n+ rank(Γ̂η(qνt0q
η
t1)− Γ̂η(qν+ηt0 )).

V. MINIMUM DWELL TIME OBSERVABILITY

In this section we show that [strong] [mode] observability
before the first switch and [strong] [mode] detectability of
the first switching time after one step are sufficient for
[strong] [mode] observability with minimum dwell time.
More specifically, we show the following (see the Appendix
for the proof).

Theorem 1: Consider a JLS with minimum dwell time
ν ≥ 2n + 1. Assume that for each discrete mode q ∈ Q,
the matrix A(q) is invertible. Assume also that
• the JLS is [strong] [mode] observable before the first

switch with minimum dwell time ν on the interval [t, t+
ν − 1] for any t, i.e., the JLS is W ν

ν [strong] [mode]
observable on the interval [t, t+ ν − 1] for any t; and

• the first switching time is [strong] [mode] detectable
after one step with a minimum dwell time ν on the
interval [t, t+ν] for any t, i.e., the JLS is W ν,1

ν+1 [strong]
[mode] observable on the interval [t, t+ ν], t ≥ 0.

Then the JLS is [strong] [mode] observable on [t0, t0+T−1],
i.e., it is W ν

T [strong] [mode] observable on [t0, t0 +T − 1].

Recall from §III-IV that both observability before the first
switch and detectability of the first switching time can be
characterized with O(N2) rank tests on the parameters of the
JLS. Therefore, it follows from Theorem 1 that the following
O(N2) rank conditions are sufficient for [strong] minimum
dwell time observability on the interval [t0, t0 + T − 1].

Corollary 1: (Minimum dwell time observability): A JLS
is observable with minimum dwell time ν ≥ 2n + 1 on
[t0, t0 +T − 1], if A(q) is invertible for every q ∈ Q and for
any pair of distinct discrete states q 6= q̄ ∈ Q,

1) rank[Oν(q),Oν(q̄)] = 2n, or
rank(Oν(q)) = n and Γν(q) 6= Γν(q̄); and

2) rank((C(q̄)− C(q))Aν(q)) = n, or
N (q, q̄) 6= 0.

where N (q, q̄) = (C̄ − C)
[
Aν−1B,Aν−2B, · · · , B

]
with

C̄ = C(q̄) and (A,B,C) = (A(q), B(q), C(q)).

Corollary 2: (Minimum dwell time strong observability):
A JLS is strong observable with minimum dwell time ν ≥
2n+1 on the interval [t0, t0 +T−1], if A(q) is invertible for
every q ∈ Q and for any pair of distinct modes q 6= q̄ ∈ Q,

rank[Oν(q),Oν(q̄)] = 2n,
rank[Oν(q),Oν(q̄),Γν(q)−Γν(q̄)]

= 2n+ rank(Γν(q)−Γν(q̄)),
rank((C(q̄)− C(q))Aν(q)) = n, and
rank[(C(q̄)− C(q))Aν(q),N (q, q̄)] = n+ rank(N (q, q̄)).

Analogous sufficient rank conditions can be formulated
for [strong] mode observability with minimum dwell time by
combining Theorem 1 with the rank conditions for [strong]
mode observability before the first switch and [strong] mode
detectability.

VI. NUMERICAL EXAMPLE

Consider a JLS of the form (1) with n = N = 2 and
ν = 5 where

A(1) = A(2) =
[
1 1
0 1

]
, C(1) =

[
1 0
0 1

]
, C(2) =

[
2 0
0 2

]
B(1) = [1 0]>, B(2) = [2 1]>.

Since C(1)B(1) 6= C(2)B(2), by Lemma 3 we have that
the JLS is mode observable before the first switch and since

3031



rank(O5(1)) = rank(O5(2)) = 2, according to Lemma 5,
the JLS is also observable before the first switch. However,
the JLS does not satisfy the conditions of Lemmas 4 and 6,
so it is not strong [mode] observable before the first switch
(rank([O5(1),O5(2)]) = 2 6= 4). One can easily form

Γ̂1(15+1) =
[
1 1 1 1 1 1
0 0 0 0 0 0

]
, Γ̂1(1521) =

[
2 2 2 2 2 2
0 0 0 0 0 0

]
and see that Γ̂1(15+1) 6= Γ̂1(1521) (similarly Γ̂1(25+1) 6=
Γ̂1(2511)). Thus the first switching time is mode de-
tectable after one step. In addition, because of the fact that
rank((O1(2)−O1(1))A5(1)) = 2, the first switching time is
detectable after one step according to Lemma 7. Since A(1)
and A(2) are invertible, and the JLS is [mode] observable
before the first switch and also the first switching time is
[mode] detectable after one step, according to Theorem 1,
the JLS is [mode] observable. However, the JLS does not
satisfy the conditions of Lemmas 8 and 10, so the first switch
is not strong [mode] detectable. Thus we cannot assert the
strong [mode] observability of the JLS, because the sufficient
conditions are not satisfied.

VII. CONCLUSIONS

We presented an analysis of the observability of the contin-
uous and discrete states of discrete-time JLSs. We considered
several definitions for observability of JLSs and derived
rank conditions for each definition. Future work includes
removing the assumption of minimum dwell time, as well as
addressing the observability conditions for stochastic inputs.
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APPENDIX: SKETCH OF THE PROOF OF THEOREM 1

To simplify the terminology, throughout the proof we will
omit the expression: with minimum dwell time ν on the time
interval [t, t+ ν] for any t.

We have to prove the following implications.
(a) If a JLS is [strong] observable before the first switch

and the first switching time is [strong] detectable after
one step, then the JLS is [strong] observable.

(b) If a JLS is [strong] mode observable before the first
switch and the first switching time is [strong] mode
detectable, then the JLS is [strong] mode observable.

We only prove (a) since the proof of (b) is similar to (a).
Recall the definition of W ν

T from (9) and consider two
sequences of discrete modes w, w̄ ∈W ν

T . Let xt0 , x̄t0 ∈ Rn
be two initial continuous states, (xt0 , x̄t0) 6= 0. We have to
show that if the system is [strong] observable before the first
switch and the first switching time is [strong] detectable after
one step, then for some [all] inputs the outputs of (xt0 , w)
and (x̄t0 , w̄) are different.

Two cases have to be distinguished: 1) w = w̄ with
xt0 6= x̄t0 , and 2) w 6= w̄. Case 1 follows from [strong]
observability before the first switch. Case 2 is more involved.

Notice that if w 6= w̄ then w and w̄ can be rewritten as
follows; w = vqis and w̄ = vq̄j s̄ where s, s̄ and v are
sequences of discrete modes such that each discrete mode
is repeated consecutively at least ν times, i, j ≥ ν, and the
following holds: either q̄ 6= q or q̄ = q with i 6= j, say i < j.
We will show that in both cases the outputs of (xt0 , w) and
(x̄t0 , w̄) are different for some [all] inputs.

First assume that q̄ 6= q. Then using [strong] observability
before the first switch we can show that (xv, qi) and (x̄v, q̄j)
generate different outputs for the some [all] inputs, where
xv and x̄v denote the states reached from xt0 and x̄t0 ,
respectively under the switching sequence v and constant
zero input [the corresponding initial segment of the input
UT ]. Notice that by invertability of A(i), i ∈ Q, we get
that (xv, x̄v) 6= 0, if (xt0 , x̄t0) 6= 0. In turn, this implies that
(xt0 , w) and (x̄t0 , w̄) generate different outputs for some [all]
inputs.

Now, assume that q = q̄ and i < j. Let q1 be the first
letters of s, i.e., s = q1s1 for some sequence s1. Then for
the pair (xt0 , w) there is a switch from discrete mode q to
q1, while for (x̄t0 , w̄) the system stays in q. Using [strong]
detectability of the first switching time, we can then show
that the outputs of (xt0 , w) and (x̄t0 , w̄) are different for
some [all] inputs.
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