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Abstract— Real-time control of a physical system necessitates
controllers that are low order. In this paper, we compare two
balanced truncation methods as a means of designing low order
compensators for partial differential equation (PDE) systems.
The first method is the application of balanced truncation to the
compensator dynamics, rather than the state dynamics, as was
done in [1]. The second method, LQG balanced truncation,
applies the balancing technique to the Riccati operators ob-
tained from a specific LQG design. We discuss snapshot-based
algorithms for constructing the reduced order compensators
and present numerical results for a two dimensional convection
diffusion PDE system.

I. INTRODUCTION

Practical methods that can be used to reduce the size of

a controller designed for an infinite dimensional system (in

particular, a partial differential equation system) have been

the focus of much research of the last decade. A challenge is

developing a method that preserves properties of the closed

loop system and does not discard important dynamics in the

reduction process. In this paper, we compare two reduction

methods that first compute a converged approximation to

the compensator for the infinite dimensional system, and

then reduce the compensator. Both methods apply balanced

truncation but in different ways. The first method applies it

to the Gramians for the compensator system; this method

was proposed for finite dimensional systems by Yousuff and

Skelton in [1]. The second method, LQG balancing, applies

balancing to the solutions of the Riccati equations. Although

these methods have been known for some time, only the

second appears to have significant theory developed in the

context of control design for infinite dimensional systems

[2], [3], [4]. The first method has been formally applied

to an infinite dimensional system in control of nonlinear

convection in [5]. The second method has been applied to

PDE systems in [6], [7]. Although there are many aspects

to consider in the comparison of such designs, we begin the

investigation in this paper by considering the methods as

applied to a two dimensional convection diffusion system.

The weakness of many model reduction techniques when

applied to systems that are modeled by partial differential

equations (PDEs) is that there are typically gaps in what

can be proven with regard to convergence of computed
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controllers to the PDE controllers. In [2], it was shown that

LQG balanced truncation followed by a central controller

design for the low order model could yield a robust enough

controller to handle the lost dynamics in truncation. In this

investigation, we instead focus on the two approaches out-

lined above: (1) balancing and truncating the LQG compen-

sator directly, and (2) computing a reduced LQG controller

using an LQG balanced truncated model.

The first step for both of these methods is to compute

an approximation to the infinite dimensional compensator.

Then, the two balanced truncation methods are applied

to this controller to yield low order compensators. Much

recent research has focused on algorithms for large-scale

matrix equations and model reduction problems for large-

scale systems resulting from the discretization of infinite

dimensional systems (see, e.g., [8], [9] and the references

contained therein). In this work, we use snapshot-based

algorithms to construct approximations to the PDE controller

and the reduced order models. The algorithms used here are

related to those proposed by Wilcox and Peraire [10] and

Rowley [11] for finite dimensional systems.

II. THE MODEL PROBLEM

To study the effects of balancing the compensator and

LQG balancing, we consider the model problem given by

a convection diffusion equation with nonconstant convection

coefficients over the spatial domain Ω = [0, 1] × [0, 1]. The

model problem is given by

wt = µ(wxx +wyy)−c1(x, y)wx−c2(x, y)wy +b(x, y)u(t),

with Dirichlet boundary conditions on the bottom, right, and

top walls:

w(t, x, 0) = 0, w(t, 1, y) = 0, w(t, x, 1) = 0,

a Neumann boundary condition on the left wall:

wx(t, 0, y) = 0,

and initial condition

w(0, x, y) = w0(x, y).

System measurements are taken of the form

η(t) =

∫

Ω

c(x, y)w(t, x, y) dx dy.
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We assume the convection coefficients c1(x, y) and c2(x, y)
are bounded, and we assume the functions b(x, y) and c(x, y)
are square integrable over Ω.

We chose this model problem to investigate the feasi-

bility of using the two compensator reduction methods for

linearized incompressible fluid flow problems. This model

problem shares similarities to linear flow problems, but is

a simpler testing platform. In anticipation of using such

controller reduction techniques on more complex problems,

we use special numerical methods to compute the reduced

order compensators.

For the snapshot algorithms below, we require an abstract

formulation of the problem. Briefly, this can be done as

follows. Let X be the Hilbert space L2(Ω) of square inte-

grable functions defined over the domain Ω with standard

inner product (f, g) =
∫

Ω
f(x, y)g(x, y) dx dy and norm

‖f‖ = (f, f)1/2. Define the convection diffusion operator

A : D(A) ⊂ X → X by

[Aw](x, y) = µ(wxx + wyy) − c1wx − c2wy,

Roughly, functions in D(A) are twice differentiable and

satisfy the above boundary conditions. Define B : R → X
and C : X → R by [Bu](x, y) = b(x, y)u and Cw = (w, c).
In this way, the PDE system can be written as the infinite

dimensional system

ẇ(t) = Aw(t) +Bu(t), w(0) = w0, y(t) = Cw(t),

where the dot denotes a time derivative.

III. BACKGROUND

We now discuss control design and model reduction for a

general infinite dimensional system

ẋ(t) = Ax(t) +Bu(t) +Dw(t), y(t) = Cx(t),

holding over a Hilbert space X . We assume the operator A :
D(A) ⊂ X → X generates a C0-semigroup, and the control

input operator B : Rm → X , the disturbance input operator

D : Rn → X , and the observation operator C : X → R
p

are all bounded.

A. Control Design for PDEs

We consider the control objective to minimize the cost

J =

∫

∞

0

‖Ex(t)‖2 + ‖u(t)‖2 dt,

where the controlled output operator E : X → R
q is also

bounded. Under certain assumptions, the solution to this

problem is the feedback control law given by

u(t) = −Kxc(t), ẋc(t) = Acxc(t) + Fy(t), (1)

where

K = B∗Π, F = PC∗, Ac = A−BK − FC,

and the bounded operators Π : X → X and P : X → X
are the solutions of the control and filter algebraic Riccati

equations (AREs)

A∗Π + ΠA− ΠBB∗Π + E∗E = 0, (2)

AP + PA∗ − PC∗CP +DD∗ = 0, (3)

where the asterisk (∗) denotes the Hilbert adjoint operator.

Once the gains are computed, a difficulty with the im-

plementation of this control law is that one must solve the

infinite dimensional linear differential equation for the state

estimate xc(t) in (1) in real time. Therefore, model reduction

is required to create a controller that is implementable in real

time.

Both model reduction methods considered below will

produce reduced order compensators of the form

u(t) = −Krx
r
c(t), ẋr

c(t) = Acrx
r
c(t) + Fry(t), (4)

where xr
c is a vector in Rr, and Kr, Acr, and Fr are matrices

of dimensions m×r, r×r, and r×p, respectively. To simulate

the performance of the low order compensator, we apply it to

the original system (without the disturbance for simplicity)

to obtain the closed loop system

[

ẋ(t)
ẋr

c(t)

]

=

[

A BKr

FrC Acr

] [

x(t)
xr

c(t)

]

, (5)

with appropriate initial data. Simulating this system is one

way to gain insight into the performance of the low order

controller in regulating the PDE.

B. Balanced Model Reduction for PDEs

Both of the controller reduction methods studied in this

paper use the standard balanced realization, coupled with

truncation. Balancing was applied to finite dimensional sys-

tems in [12], [13] and to infinite dimensional systems in [14],

[15]. It is typically used in the context of the state equations

on the premise that a good low order approximation to the

system can be obtained by eliminating any states that are

difficult to control and to observe. In particular, the balancing

transformation balances the Gramians for the state-space

system. In LQG balanced realization, balancing is applied to

the solutions of the control and filter Riccati equations. The

method was established for systems of ordinary differential

equations in [16], [17], [18]. Opmeer and Curtain have

extended these results to PDE systems in [2], [3], [4].

We note that there is a restriction to the structure of

the system that must be imposed in order to apply LQG

balancing that is somewhat impractical in certain situations.

Specifically, the measured output and controlled output op-

erators must be identical, C = E, and the actuator input

and disturbance operators must be identical, B = D. The

authors are unaware of results that exist that remove those

requirements, and that level of specificity of the character of

input and outputs limits the applicability of the method.

IV. SNAPSHOT ALGORITHMS FOR FEEDBACK GAINS

AND BALANCED MODEL REDUCTION

We now describe snapshot algorithms to compute feed-

back gains and balanced reduced order models for infinite

dimensional systems over a separable Hilbert space X with

inner product (·, ·) and corresponding norm ‖x‖ = (x, x)1/2.

We assume the inner product is real-valued for simplicity.
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A. Snapshot Algorithms for Feedback Gains

To begin, we consider the computation of the feedback

gain operator K = B∗Π, where Π : X → X is the

solution of the algebraic Riccati equation (2). We assume

the operators B : Rm → X and C : X → R
p are bounded

and finite rank. The assumptions on B and C imply that the

operators must take the form

Bu =
m

∑

j=1

ujbj , Cx = [ (x, c1), . . . , (x, cp) ]T ,

for some vectors b1, . . . , bm and c1, . . . , cp in X (see [19,

Theorem 6.1]). For simplicity we focus on the case of a

single input and single output; i.e., m = 1 and p = 1; the

algorithms are easily modified for m > 1 and p > 1. As with

most large-scale algorithms for control and model reduction

computations, the snapshot algorithms require m and p to be

relatively small.

For the case m = 1, we have Bu = bu where b is a vector

in X . This assumption implies that the feedback operator

K : X → R given by K = B∗Π has the representation

Kx = (x, k), where k = Πb is a vector in X known as a

functional gain. This representation holds since B∗x = (x, b)
and therefore Kx = B∗Πx = (Πx, b) = (x,Πb), since Π
is self-adjoint. Below, we concentrate on approximating this

functional gain.

We first apply a Newton-Kleinman iteration as modified

by Banks and Ito [20] to obtain a sequence of Lyapunov

equations of the form

(A−BKi)
∗Si + Si(A−BKi) + E∗

i Ei = 0, (6)

where Ki is the ith approximation to K, E0x = [K0x,Cx]
T

with K0 the initial guess, and Ei = Ki − Ki−1 for i ≥
1. To advance to the next iteration, we need to compute

K1 = B∗S0 and then Ki+1 = Ki − B∗Si for i ≥ 1. In the

same manner as above, these operators can be represented

as follows: Kix = (x, ki), where k1 = S0b and ki+1 =
ki−Sib for i ≥ 1. Therefore, in each iteration we do not need

to compute the entire Lyapunov solution Si, we only need

the product Sib. We compute this product using a snapshot

algorithm below.

Consider a general infinite dimensional Lyapunov equation

A∗S + SA+ C∗C = 0, (7)

where we assume C : X → R is given by Cx = (x, c) with

c ∈ X . It is well known that the solution S : X → X is

given by

Sx =

∫

∞

0

eA∗tC∗CeAtx dt.

Using the above representation of C, it can be shown [21],

[22] that the solution may also be represented by

Sx =

∫

∞

0

(x, z(t))z(t) dt, (8)

where z(t) = eA∗tc is the solution of the infinite dimensional

linear differential equation

ż(t) = A∗z(t), z(0) = c. (9)

This representation leads to the following snapshot algo-

rithm.

Snapshot algorithm [21], [22] to approximate Sx,

where S solves the Lyapunov equation (7)

1) Compute an approximation zN (t) of the solution z(t)
of the differential equation (9).

2) Replace z(t) with zN (t) in the integral representation

of Sx in (8) and approximate the integral (by quadra-

ture or some other method).

If
∫

∞

0
‖zN (t) − z(t)‖2 dt → 0, then the resulting approxi-

mation converges to Sx [22].

The approximate solution zN (t) of the differential equa-

tion (9) need not be stored to approximate Sx. Instead, a time

stepping method can be used to approximate the differential

equation and the approximation to the integral can be updated

while simultaneously integrating the differential equation.

For example, using a piecewise linear approximation to z(t)
in time leads to the trapezoid rule to time step the differential

equation and the following approximation to the integral.

Trapezoid snapshot algorithm [22] to approximate Sx,

where S solves the Lyapunov equation (7)

1) Approximate the solution of the differential equation

(9) with the trapezoid rule:

(I − ∆tA∗/2)zn+1 = (I + ∆tA∗/2)zn,

where I is the identity operator.

2) Update the approximation to Sx:

[Sx]n+1 = [Sx]n + ∆t[(x, zn+1)/3 + (x, zn)/6]zn+1

+∆t[(x, zn+1)/6 + (x, zn)/3]zn.

This updating procedure can be stopped when the norm

of the update to Sx (unscaled by ∆t) is below a certain

tolerance. We note that we used a constant time step for

simplicity; this is not necessary in general.

For the Lyapunov equations arising in the modified

Newton-Kleinman iterations (6), note that A∗ in the Lya-

punov equation (7) is replaced by (A−BKi)
∗. Thus, in the

trapezoid snapshot algorithm, we must invert operators of the

form As−BsKs, where As = I−∆tA∗/2, Bs = −∆tK∗

i /2
and Ks = B∗. To compute (As − BsKs)

−1z we use the

Sherman-Morrison-Woodbury formula (see, e.g., [23]):

(A−BK)−1z = (I +A−1B(I −KA−1B)−1K)A−1z.

B. Snapshot Algorithms for Balanced Model Reduction

Next, we consider snapshot algorithms for constructing

balanced reduced order models for infinite dimensional linear

systems. We consider two related model reduction prob-

lems: standard Lyapunov balancing and LQG balancing. As

mentioned above, we do not balance the uncontrolled linear

system here; rather, we balance and truncate the compensator.

The snapshot algorithm for balanced model reduction of

a system governed by ordinary differential equations was

proposed by Rowley in [11]. We extended his algorithm to

the class of linear infinite dimensional systems considered in

this work in [24]. The snapshot algorithm for LQG balancing
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is an adaptation of Rowley’s work, and it appears that it has

not been proposed elsewhere.

For a linear system

ẋ(t) = Ax(t) +Bu(t), y(t) = Cx(t), (10)

balancing involves Gramians LB and LC , which are the

solutions to the infinite dimensional Lyapunov equations

ALB + LBA
∗ +BB∗ = 0, A∗LC + LCA+ C∗C = 0.

We again assume for simplicity that Bu = bu and Cx =
(x, c) for vectors b and c in X . As above, the solutions to

these Lyapunov equations are given by

LBx =

∫

∞

0

(x,w(t))w(t) dt, LCx =

∫

∞

0

(x, z(t))z(t) dt,

where w(t) = eAtb and z(t) = eA∗tc satisfy the differential

equations

ẇ(t) = Aw(t), w(0) = b, ż(t) = A∗z(t), z(0) = c. (11)

In finite dimensions, the balanced realization can be

computed using the eigenvalues and eigenvectors of the

product of the Gramians LCLB . Rowley recognized that the

eigendecomposition for the finite dimensional problem could

be approximated using a variation of the proper orthogonal

decomposition. In the infinite dimensional case, this can also

be done as follows.

Approximate the Gramians with quadrature:

LBx ≈ Ln1

B =

n1
∑

j=1

α2
j (x,w(tj))w(tj) =

n1
∑

j=1

(x, w̃j)w̃j ,

LCx ≈ Ln2

C =

n2
∑

k=1

β2
k(x, z(tk))z(tk) =

n2
∑

k=1

(x, z̃k)z̃k,

where {α2
j} and {β2

k} are quadrature weights corresponding

to the sets of quadrature points {tj} and {tk}, w̃i = αiw(ti),
and z̃i = βiz(ti). The approximate Gramians can then be

factored as Ln1

B = PP ∗ and Ln2

C = Q∗Q, where the

operators P : Rn1 → X and Q : X → R
n2 are defined

by

Pa =

n1
∑

i=1

aiw̃i, Qx = [ (x, z̃1), . . . , (x, z̃n2
) ]T .

The eigenvalues and eigenvectors of Ln1

C Ln2

B can then be

computed using the singular value decomposition of Γ =
QP , which is an n2×n1 matrix of inner products of weighted

snapshots with ij entries Γij = (z̃i, w̃j). For the remaining

details of the algorithm, including the case of multiple inputs

and outputs, see [24].

For LQG balancing, the procedure is similar although

we must now solve Riccati equations instead of Lyapunov

equations. In finite dimensions, the balancing transformation

is given by the eigenvalues and eigenvectors of the product

of the solutions Π and P of the Riccati equations (2) and (3),

where we assume B = D and C = E as discussed above.

As is well known, these Riccati equations can be rewritten

as

(A−BK)∗Π + Π(A−BK) +K∗K + C∗C = 0,

(A− FC)P + P (A− FC)∗ + FF ∗ +BB∗ = 0,

where K = B∗Π and F = PC∗. Now we proceed as above

with the representation of Π and P as the solution of these

Lyapunov equations.

We again assume Bu = bu and Cx = (x, c), where b
and c are vectors in X . Then Kx = (x, k) and Fy = fy,

where k = Πb and f = Pc are the functional gains. Once

we compute k and f , we proceed as above and express Π
and P in the form

Πx =

∫

∞

0

(x, z1(t))z1(t) + (x, z2(t))z2(t) dt,

Px =

∫

∞

0

(x,w1(t))w1(t) + (x,w2(t))w2(t) dt,

where

ż1(t) = (A−BK)∗z1(t), z1(0) = k, (12)

ż2(t) = (A−BK)∗z2(t), z1(0) = c, (13)

ẇ1(t) = (A− FC)w1(t), w1(0) = f, (14)

ẇ2(t) = (A− FC)w2(t), w1(0) = b. (15)

Approximate the above integrals with quadrature:

Πx =

n1
∑

j=1

(x, z̃j)z̃j , Px =

n2
∑

k=1

(x, w̃k)w̃k,

where now the “vectors” z̃ and w̃ contain weighted snapshots

of the solutions of the differential equations (12) and (13),

and (14) and (15), respectively.

Snapshot algorithm for LQG balanced model reduction

of the linear system (10)

1) Approximate the feedback gains K = B∗Π and F =
PC∗, where Π and P solve the AREs (2) and (3),

for example, using the snapshot algorithm outlined in

Section IV-A.

2) Compute approximate solutions of the differential

equations (12)-(15).

3) Form the matrix Γ, where Γij = (z̃i, w̃j) and the

weighted snapshots w̃j and z̃i are as above.

4) Compute the singular value decomposition of Γ:

Γ = UMV ∗ = [U1 U2]

[

M1

0

0

0

][

V ∗

1

V ∗

2

]

= U1M1V
∗

1 ,

where M1 ∈ R
s×s is diagonal and invertible, s =

rank(Γ), U∗

1U1 = Is = V ∗

1 V1, and Is is the identity

matrix in Rs×s.

5) Choose r < rank(Γ), and form the first r primary and

dual LQG balanced POD modes defined by

[ϕ1, . . . , ϕr ]T = M−1/2
r V ∗

r w̃,

[ψ1, . . . , ψr ]T = M−1/2
r U∗

r z̃,

where Mr, Ur, and Vr are truncations of M1, U1, and

V1.

823



6) Use the modes to form the matrices in the reduced

order model:

Ar = [ (Aϕj , ψi) ] ∈ Rr×r,
Br = [ (b, ψi) ] ∈ Rr×1,
Cr = [ (ϕj , c) ] ∈ R1×r,

It is straightforward to extend this algorithm to multiple

inputs and outputs. Convergence theory for the balancing

algorithms is underway and will be the subject of future

work.

V. NUMERICAL RESULTS

For our numerical experiments with the model problem

outlined above, we chose µ = 0.05, convection coef-

ficients c1(x, y) = −x sin(2πx) sin(πy) and c2(x, y) =
−y sin(πx) sin(2πy), control input function b(x, y) =
5 sin(πx) sin(πy) if x ≥ 1/2 and b(x, y) = 0 otherwise,

observation function c(x, y) ≡ 5, and initial condition

w0(x, y) = 5 cos(πx/2) sin(πy).
For the snapshot algorithms, we used standard piecewise

linear finite elements for the spatial discretization. For the

functional gain computations, we first computed functional

gains for µ = 0.1 (using a Newton iteration with K0 = 0)

and then used these as initial guesses in the Newton iteration

for µ = 0.05. In a similar fashion, we note that one could

use the result of one Newton iteration as the initial guess

in another Newton iteration with a finer spatial grid (see,

e.g., [25]) or time step for the snapshot algorithm. We used

the trapezoid rule for the time discretizations required in the

snapshot balancing algorithms.

Figures 1 and 2 show approximations to the functional

gains k(x, y) and f(x, y) computed using the modified

Newton algorithm with the trapezoid snapshot algorithm. We

used ∆t = 0.01 for the time step and 41 equally spaced

finite element nodes in each coordinate direction. Further

refinement in space and time produced little change in the

approximations. We note that it may be desirable to use an

0

0.5

1

0

0.5

1
0

4

8

12

xy

Fig. 1. Approximate control functional gain k(x, y) computed using the
snapshot algorithm with ∆t = 0.01 and 41 equally spaced finite element
nodes in each coordinate direction.

adaptive time stepping algorithm and this will be explored

in future work.

0

0.5

1

0

0.5

1
0

1

2

3

4

xy

Fig. 2. Approximate observation functional gain f(x, y) computed using
the snapshot algorithm with ∆t = 0.01 and 41 equally spaced finite element
nodes in each coordinate direction.

Figure 3 shows approximations to the Hankel singular val-

ues of the compensator system computed using the balancing

snapshot algorithm with ∆t = 0.01 and various equally

spaced finite element grids. Many of the larger Hankel sin-

gular values are essentially converged on the coarse 21× 21
node grid. Further refinement in space caused the smaller

values to converge, however this is not needed since these

values are not required to reduce the compensator. Also,

further refinement in time produced little change. Figure

4 shows similar approximations to the LQG characteristic

values of the system computed using the LQG balancing

snapshot algorithm. The LQG values do not converge as

quickly and further refinement in space and time produced

change in most of the values. However, the larger values are

converged and only these are used to construct the reduced

order compensator. Again, adaptive time stepping algorithms

may be advantageous to use for these computations.

0 5 10 15 20 25 30
10

−20

10
−15

10
−10

10
−5

10
0

 

 

21 x 21 grid

41 x 41 grid

81 x 81 grid

Fig. 3. Approximate compensator Hankel singular values computed using
the snapshot algorithm with ∆t = 0.01 and 21, 41, and 81 equally spaced
finite element nodes in each coordinate direction.

To compare the two approaches to reducing the com-

pensator, we computed the L2 norm of the solution of

the controlled system. The uncontrolled system is stable,

however the solution tends to zero very slowly. The norm

of the uncontrolled solution at t = 20 is approximately 0.1.
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21 x 21 grid

41 x 41 grid

81 x 81 grid

Fig. 4. Approximate LQG characteristic values computed using the
snapshot algorithm with ∆t = 0.01 and 21, 41, and 81 equally spaced
finite element nodes in each coordinate direction.

Both reduced order controllers (with zero initial data for the

compensators) drive the solution to zero at a much faster rate.

We chose r = 4 states in each reduced order compensator

and found that the norm of the solution at t = 5 of each

closed loop system is on the order of 10−4. Integrating longer

in time showed that the controller constructed using LQG

balancing drove the solution to zero slightly faster than the

controller constructed by balancing the compensator.

Although the performance of the two controllers was very

similar, we note that the LQG balanced reduced model

was more computationally demanding to construct, and it

also converged at a slower rate. This is likely due to

the fact that the snapshot algorithm required approximate

solutions of the differential equations (13) and (15), whose

initial conditions (c(x, y) and b(x, y)) are not “smooth” in

the sense that they are not twice differentiable functions

satisfying the boundary conditions of the governing PDE.

Computing the reduced order controllers is done “offline”

and so computation time may not necessarily be an issue.

However, accurately computing the reduced controller may

be essential to guarantee controller performance. Therefore,

it appears more care may be required to construct the LQG

balanced reduced controller. This may be especially true of

more complex problems.

VI. CONCLUSIONS AND FUTURE WORK

We believe that model reduction based on these ap-

proaches following robust control design as demonstrated in

[2] holds much promise. Both reduced controllers performed

well on the model problem. A simple comparison showed the

controllers gave similar performance; further investigation is

required to give a more thorough comparison of the reduced

controllers. Other future work includes further development

and analysis of the snapshot algorithms for the controller

construction, and comparison of other types of reduced

controllers for PDE systems.
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