
 

Abstract— The Multiphase Latent Variable Model Predictive 
control (MLV-MPC) is developed based on the Principal 
component analysis (PCA) model. The proposed control 
methodology is capable of trajectory tracking as well as 
disturbance rejection. The model that is used in the course of 
MPC is a multiphase PCA model that is constructed based on 
the available data from the measurements on the process. 
Different data arrangements are studied and their effects on 
the performance of the control algorithm are evaluated.    

I. INTRODUCTION

HE operation of processes in batch mood brings forth 
several distinguishing characteristics as opposed to 

continuous processes. Specifically, batch processes are 
characterized by a specific beginning and end time over the 
course of which the process variables often change by 
significant amounts. Additionally, the process variables at 
the end of the batch need not be at equilibrium, but rather 
correspond to desirable product properties. Both of these 
features have significant impact on the way batch processes 
are modeled, monitored and controlled. Another difficulty 
with the control of batch processes is that the nonlinearity 
and time varying characteristics cannot be ignored as the 
operating point is changing continuously. On the other hand 
the acceptable product quality is a tight range that makes the 
application of a high performance control methodology 
necessary. Predictive controllers are capable of doing this 
important job as long as a reliable model of the process is 
available. For nonlinear batch processes this has usually 
meant the use of fundamental nonlinear models embedded 
within an optimization.  The problem with this approach is 
that the modeling effort is large, the computation time is 
unacceptable, and the solvers are complex. In this paper we 
present an approach using empirical Latent Variable models 
that capture the benefits of these nonlinear MPC’s without 
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implementation difficulties mentioned above.  
Selection of the type of empirical model to be used is 

important as some of them are nonlinear without an 
important benefit. Choice of nonlinear empirical models 
brings forth several concerns such as computation time, 
convergence uncertainty and nonconvex optimization 
problem. On the other hand some linear models have a 
number of shortcomings. They are valid locally and include 
oversimplified assumptions. The aim is to come up with a 
model that can have the benefits of a linear model and can 
avoid the aforementioned drawbacks.  

In dealing with empirical models, the only information 
one can count on is the measurements on the process 
variables which are collected repeatedly for a number of 
batches. However, most batches just have historical data on 
the process operated in normal way and may not have 
enough information about causal relationships among the 
variables. Usually, one has the opportunity to generate few 
batches according to designed experiments. Hence, a small 
number of tools are in hand to extract the most information 
out of the process.  

The paper is organized as follows: in the next section the 
new control methodology is briefly explained. Next, the role 
of different data arrangements and considering multiphase 
models, in system identification and control is explored. 
Results from control simulations are then provided to 
illustrate the main issues involved with different approaches. 
Finally, the conclusion and recommendations are drawn.  

II. LATENT VARIABLE (LV) MODELING APPROACH

The data set for a batch process is a cube as the 
information is distributed in three dimensions (No. of 
Batches × No. of Variables× Time duration of Batches). In 
order to make the PCA model a data rearrangement is 
necessary. Several data arrangement approaches are studied 
in the literature [4]. A well known approach is batch-wise 
unfolding as shown in fig.1 where variables of different 
sample times are placed beside each other. An alternative 
unfolding approach is Variable-wise unfolding approach in 
which variables of different sample times are placed 
underneath each other. The batch-wise unfolding approach 
can model the nonlinearity and time varying properties of 
the process, but it requires many observations to build a 
PCA model. On the other hand, in the Variable-wise 
unfolding approach one can get the great advantage of 
building an LV model using a small number of  batch runs 
by considering each time step during a batch as an 
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observation. However, the underlying assumption is that the 
correlation structure among the dataset does not vary with 
time and a static average model is enough to explain the 
process.  However, time varying property is quiet common 
in batch processes. As a result a combination of the variable-
wise and batch-wise unfolding approach includes time-lag in 
the variable-wise unfolded dataset [6]. This approach is 
called Variable-wise with Time-lag unfolding [1]. Hence, an 
average dynamic PCA model is obtained for the batch 
process. During this study two different approaches are 
analyzed. The first approach is the batch-wise unfolding 
approach as shown in fig. 1. 

Figure 1- batch process dataset and batch-wise unfolding 

The other approach is Variable-wise with Time-lag 
unfolding approach as shown in fig. 2. 

Figure 2- Variable-wise with time-lag Unfolding 

If the unfolded matrices of Figs. 1 and 2 are considered 
as matrix X(a×b), the PCA model is of the form: 
X = TPT +E                   (1) 
T = X P                    (2) 
Where T is a (a×A) matrix (A�b) of latent variable scores 
that summarizes the major differences among the batch 
trajectories, and P is a (b×A) matrix of loadings that show 
how the latent variable scores are related to the trajectory 
data (X).  The score values of the A latent variables for each 
batch summarize the time varying behavior of its trajectories 
relative to all the other batches.  

III. MULTIPHASE LV MODELING

a. Multiphase Batch-Wise Unfolding 

In the batch-wise unfolding algorithm, data on each 
variable at all time intervals are included in a row. Thus, 
with mean centering a PCA model [1] is capable of 
explaining the time varying and nonlinearity characteristics 
of the batch. However, the resulting unfolded matrix 

contains many variables (JK variables). One such very large 
global LV model is less desirable as it requires more latent 
variables (which implies more batches may be needed in the 
training set, it leads to more ill-conditioned matrices in the 
control computations and does not focus as well on the local 
behavior of the trajectories. 

In order to have more resolution on the local variations, 
the LV-MPC is conducted using a multiphase modeling 
approach.  In this approach some phases are identified along 
the batch and the single batch-wise unfolded dataset is 
partitioned in many phases. Then for each phase the LV-
MPC algorithm is implemented. This algorithm is regarded 
as Multiphase LV-MPC (MLV-MPC).  

The phases should be selected in a way that the 
correlation structure among the data of the same phase has 
the minimum variation and the number of variables in each 
phase is in balance with the number of observations. For 
example, variables in the preheating step in a reactor and 
reaction step are likely to have different behaviors and can 
be considered as different phases. The better the phases are 
selected, the fewer principal components are needed for the 
PCA model.  

b. Multiphase Variable-wise with Time-Lag Unfolding 

 By including time-lags in the variable-wise unfolding, 
dynamics are introduced into the PCA model. However, the 
model is still an average model over the range of sample 
times included in each column and the order of the dynamics 
increases by increasing the number of lagged data.  

The main problem with the time-lagged unfolding 
approach is that it provides an averaged dynamic model that 
may decrease the model prediction ability which is crucial in 
the course of MPC. However, the Multiphase approach can 
alleviate this problem as well. The phase construction is to 
find phases along the batch in a way that minimum change 
of correlation structure is included in each phase. Then, the 
resulting phases are rearranged according to Variable-wise 
with Time-lag unfolding approach. Figure 3 shows the 
schematic of the phase selection. 

Figure 3- Phase construction and overlapping on a batch dataset 

In both unfolding approaches an overlap is considered 
between two adjacent phases for smooth (bumpless) 
switching between phases. After determining the borders of 
the phases, one should use data over as many sample times 
as the selected model future horizon (fh) from the next phase 
and the data of as many sample times as the selected model 
past horizon (ph) from the previous phase as shown in figure 
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3. Then the current phase must be augmented with these two 
wings and the PCA model must be build based on the 
augmented phase. Now the algorithm can switch between 
phases as soon as the batch reaches the sample time 
corresponding to the border of the original phases. As a 
result the algorithm will never face the expanding past 
horizon and shrinking future horizon except at the beginning 
and end of the batch, respectively. The values of the fh and 
ph depend on the type of the process. The range 10-30 
sample times is typical. 

IV. METHODOLOGY

A. Identification 
The training data can be the data from the previous 

batches run in normal conditions augmented with additional 
batches executed according to identification experiments to 
provide information on the causal relationship between the 
manipulated variables and the controlled variables at every 
time interval throughout each phase. The direct 
identification approach based on closed loop data is used in 
this study. Closed loop identification is preferred over open 
loop identification for batch processes in order to maintain 
the process close to its desired trajectories and to minimize 
the final product quality variations. A PRBS signal was 
added on top of the manipulated variable trajectories coming 
from an existing controller (PID) to provide some additional 
excitation of the process. 

B. Prediction 
For most linear and nonlinear dynamic models used for 

MPC, the future prediction is calculated using integration of 
the dynamic model over the prediction horizon (fh) and 
adapting it assuming a simple random walk type disturbance 
model is affecting the controlled variable (CV). The 
prediction step for the PCA latent variable model is  
accomplished via statistical missing data imputation 
methods. These methods use all past data up to the current 
point in time and the time varying batch model to impute the 
future (missing data) in any batch phase. Several missing 
data imputation methods have been proposed for latent 
variable models in the literature [2,3]. The method used in 
this study is the Trimmed Score Regression (TSR) method. 
It can be briefly stated as follows: 

Any new observation (z) can be divided in two parts as 
shown in figure 4: 

zT= [z*T z#T]                  (3)  
Where, z* is the known data and z# is the missing data. For 

the batch process analysis z* corresponds to the past data 
and future setpoints and z# corresponds to the future data. 
The loading matrix can also be divided into two parts in the 
same way as z. 

PT= [P*T P#T]                 (4) 
The PCA score is computed based on the assumption that 
the known part of the data is the complete data in the 
observation. Thus,  

* *   TP zτ =                  (5) 

The final scores are then estimated by regressing the real 
scores (�) from the training data on the fake scores (�*). 
Finally, the score estimation formula is [3]: 

1
1: 1: 1: 1: 1: 1: 1: 1: 1:( ) *     

T T T T

A A A A Q Q Q A AP P P P P P P zτ ∗ ∗ ∗ ∗ ∗ ∗ − ∗= Θ Θ    (6) 
Where, � is the covariance matrix of the scores 
( ( ) /TT T IΘ = × ) in the PCA model, where “I” is the 
total number of batches in the dataset. The number of scores 
considered in � (Q) can be more than or equal to A. 

Z* Z#

PT

Tτ

Figure 4- An observation containing missing data and its corresponding 
PCA model 

C. Control 
During this study, two control formulations are selected 

that are elaborated in [1]. They are briefly presented here to 
maintain continuity.  

C.1. Control in Latent Variable Space 
The objective of the control is to run a new batch to 

follow desired trajectories on the CV’s. Assume the control 
algorithm is in the middle (sample time k) of a new batch 
and �k is defined by equation (7).  

, , , ,[ , , , ] T T T T T
k me k cv k c k sp kx y u yζ =

   
      (7) 

Where xme, ycv, uc, and ysp are measured variables, 
controlled variables, manipulated variables, and set point 
variables respectively. The existing information in the 
current batch can be rearranged as follows: 

1 2

1: 1 , , , , 1,...,

, , 1,..., , 1,..., , 1,...,

1 2 1 2

[ , ,..., ,..., ]

[ | , , ,   |

, | , |  | ]

=[ , ; , ]

T T T T T
k K

T T T T T
j j k me k cv k sp k sp j j k k PH

T T T T
c k c j j k k CH me j j k k PH cv j j k k PH

T T T T
P P f f

x
x y y y

u u x y

x x x x

ζ ζ ζ ζ
ζ = − = + +

= + + = + + = + +

= =

(8) 

Where, CH and PH are Control and Prediction (Model) 
horizons respectively and may be determined according to 
the general guidelines. The corresponding loadings, P matrix 
in the PCA model, can also be separated in the same way. 
The past data can be used to estimate the score of the current 
batch, ��, which summarizes the current position of the batch 
using missing data imputation methods discussed earlier. 
Then a correction to the score, k̂τΔ  can be computed to 
bring the batch trajectories closer to their desired values by 
optimizing the following quadratic objective: 

( ) ( )
( ) ( )

1 2
ˆ

2 2 1 2 2 2

1
2

1       =   2

min
k

T T
cv sp cv sp f f

T T
f P f P f f

y y V y y u V u

x x V x x u V u

τΔ
− − +

− − +
 (9) 

Comparing equations (9) and (7), ycv and ysp correspond to 
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x22 and x12 respectively. Using the PCA model it can be 
shown that x22 and uf can be written as a function of the 
decision variable, k̂τΔ . 

( ) 1

22 ,   T T
i icv f f p p iy P P P t t P x

∧ ∧− � �= + Δ −� �
� �

  (10) 

( ) 1

,
T T

i if uf f f p p iu P P P t t P x
∧ ∧− � �= + Δ −� �
� �

   (11) 

 Combining equations (9), (10), and (11) and following 
optimization procedures, one can obtain the optimum k̂τΔ . 

k̂τΔ contains information on the adjustments to all future 
inputs till the end of the batch (“infinite” horizon control 
[1]). The corresponding uf can be computed using PCA 
model. Then according to MPC algorithm its first element is 
implemented to the process. At the next sample time the 
same procedure will be repeated. 

C.2. Control in Space of MV’s 

The data for the current batch can be partitioned in a more 
explicit way with respect to the manipulated variable: 

1 2

1: 1 , , , , 1,...,

, 1,..., , 1,..., , ,..., 1

1 2 1 2

[ , ,..., ,..., ]

[ | , , ,   |

|   |   | ]

= [ , , , , ]

T T T T T
k K

T T T T T
j j k me k cv k sp k sp j j k k PH

T T T
me j j k k PH cv j j k k PH c j j k k CH

T T T T
P P f f f

x
x y y y

x y u

x x x x u

ζ ζ ζ ζ
ζ = − = + +

= + + = + + = + −

= =

(12) 

The main point of this method is to formulate the problem 
directly in terms of manipulated variables, uf. In this 
approach the future manipulated variable will be considered 
as known (past) information which will be later determined 
during the optimization process. The scores are again 
estimated using the trimmed score regression of equation 
(6). Once the score is estimated, the future controlled 
variables (ycv = xf2) can be estimated from the PCA model as 
in equation (10) 
It is evident that xf2 is a function of past data which includes 
xP1, xP2, and uf. Thus, 

2 1 1 2 2f P P P P uf fx C x C x C u= + +                (13) 
Where CP1, CP2, and Cuf are corresponding coefficients 

that come from combining equations (12) and (13). If the 
objective function (9) is modified using the new formulation 
for xf2 and replacing k̂τΔ  by uf as the decision variable, the 
following objective function is obtained: 

( ) ( )1 2
1 1         (14)2 2min

T T
cv sp cv sp f f

uf

y y V y y u V u− − +

By solving the above LQ problem, the optimal uf over the 
horizon CH will be obtained directly and its first element 
should be implemented to the process. At the next sample 
time, the same procedure can be repeated.  

It should be noted that in both of the aforementioned 

methods, it is possible to either solve the optimization 
problem analytically, if there is no hard constraint, or solve 
it by numerical optimization methods, in case of existence of 
hard constraints such as saturation elements using equation 
(11) in the first control formulation or direct uf in the second 
control approach as the hard constraint. However, 
constraints are generally much less of a problem in batch 
processes except in the initial start-up phase. 

In the above control formulations the LQ matrices (V1 and 
V2) should be chosen carefully. V1 is a diagonal matrix that 
can be exponentially weighted to put stress on the early 
future values rather than the far values. However, V2 matrix 
should be a derivative matrix to penalize the changes in the 
MV’s.         

V. CASE STUDY

A nonlinear model of a batch reactor is presented in the 
literature [7],[8]. This is a case study for temperature control 
problem of a batch reactor. The schematic figure of the 
reactor is shown in fig. 3. 

Figure 3- Schematic of the Reactor 

The objective is to control the reactor temperature. The 
manipulated variable is the set point of the jacket 
temperature as shown in fig. 3. Once the set point is 
calculated by the controller, by combination of hot and cold 
water, the desired jacket temperature is generated 
immediately. However, it takes time for the jacket 
temperature (Tj) to achieve the Tsp (input). It is assumed to 
be a linear dynamic.  

VI. RESULTS AND DISCUSSIONS

 In this section the proposed algorithms are implemented 
on a case study. In this study, PCA modeling approaches 
based on different data arrangements discussed in section II 
are analyzed in order to find the methods with the best 
performance. MLV-MPC on both batch-wise unfolding and 
variable-wise unfolding with time-lagging are presented.

a. MLV-MPC on Batch-wise Unfolded Dataset 

Figs. 4 and 5 show the results of implementation of the 
proposed algorithm on a batch-wise unfolding dataset. 
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Figure 4- Control based on scores, MLV-MPC on batch-wise unfolded 
dataset, 6 phases (SP is dashed line) 

Figure 5- Control based on U, MLV-MPC on batch-wise unfolded dataset, 6 
phases 

 It is of great importance to check the disturbance rejection 
power of the proposed algorithms. To provide a severe test of 
the disturbance rejection ability of the batch LV-MPC, a very 
large additional random walk disturbance was superimposed 
upon the measured temperature. This study was not intended to 
represent reality since such a noisy, nonstationary disturbance, 
unfiltered by passage through any part of the system, and 
appearing in no other measured variable would probably never 
occur in practice.  The study is intended only as a severe test of 
the ability of the LV-MPC to eliminate offset. Figs. 6a and 6b 
show the ability of the LV-MPC algorithm to reject a random 
walk disturbance superimposed on the temperature. 

Figure 6a- Control based on scores, MLV-MPC on batch-wise unfolded 
dataset, 6 phases and disturbance during control (SP is dashed line) 

Figure 6b- Control based on U, MLV-MPC on batch-wise unfolded dataset, 
6 phases and disturbance during control 

It is observed that the LV-MPC both algorithms are able 
to track the set point trajectory without offset even in case of 
a nonstationary disturbance. It should be mentioned that the 
manipulated variable is the set point of the jacket 
temperature, but the actual controlling variable is the jacket 
temperature that is in direct contact with the plant. Thus, the 
jacket temperature is also shown in the above figures. 

b. MLV-MPC on Time-Lag Unfolded Dataset 

The results of the MLV-MPC on time-lag unfolded 
dataset are shown in figs. 7 and 8. 

Figure 7- MLV-MPC based on on scores and time-lag unfolded dataset, 
5 phases 

It is seen that this modeling approach using the MLV-
MPC is capable of tracking the set point, with approximately 
the same performance and even with a smoother 
manipulated and controlled variables. It is promising 
because this approach also needs the fewest number of batch 
identification runs. It should be noted that the multiphase 
algorithm plays a very critical role in the variable-wise time 
lagged approach. The reason is that this approach builds a 
time invariant dynamic model that is assumed to hold over 
the entire phase. As an example, fig. 9 shows the single 
phase LV-MPC on the variable-wise time-lag unfolded PCA 
model with a fast time varying heat transfer coefficient. 
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Figure 9- Single phase LV-MPC on the time-lag unfolded dataset 

It is evident that the algorithm deteriorates considerably 
towards the end of the batch where the average model is 
poor. When a multiphase approach is used this poor late 
behavior disappears since different models are used for 
different phases and the time invariant phase models will 
stay reasonably valid during each phase. 

The following figure show the random-walk disturbance 
rejection for the MLV-MPC  on variable-wise with time-lag 
unfolding approach.  

Figure 10- Control based on scores, Multiphase time-lag unfolded 
dataset, 5 phases, and random walk disturbance in control

VII. CONCLUSION

Several approaches to Multiphase Latent Variable MPC 
(MLV-MPC) for batch processes have been presented in 
this paper. In particular, two different approaches for data 
arrangement are explored in terms of the ability of the 
resulting PCA model to explain the real underlying 
process and its prediction power. Each approach has its 
own benefits and drawbacks. The batch-wise unfolding 
approach directly accommodates the time varying non-
linearities within each phase, but has more stringent 
requirements for identification. The variable-wise 
unfolding with time lagging requires less data for 
identification, but assumes a time invariant linear model 
within each phase. However, with well chosen phases, 
both approaches appear to perform well in the MLV-MPC 
simulations. Two different control methodologies (control 
in the latent variable space and control in the manipulated 
variable (real) space) are presented.  Both are shown to 
perform well. Closed-loop system identification issues for 
developing these batch PCA models are under 
investigation by the authors.  
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