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Abstract— Optimal control problems are formulated and
solved in which the manipulation is distributed over a three-
dimensional (3D) spatial field with constraints on the spatial
variation. These spatial field control problems that arise in
applications in acoustics, structures, epidemiology, cancer treat-
ment, and tissue engineering have much higher controllability
than boundary control problems, but have vastly higher degrees
of freedom. Efficient algorithms are developed for computing
optimal manipulated fields by combination of modal analysis
and least-squares optimization over a basis function space. Small
minimum control error is observed in applications to distributed
parameter systems with reaction, diffusion, and convection.

I. INTRODUCTION

Spatial field control is a class of control problems for
distributed parameter systems (DPS) in which manipulation
occurs as a spatial field, in contrast to the more commonly
studied problem of boundary control (e.g., [15]) in which
manipulation only occurs at the boundaries. The interior of
a spatial domain provides much more controllability than the
boundary, which can be quite limited depending on the shape
of the desired spatial field and the spatiodynamics of the DPS.
At the same time, spatial field control problems have much
more degrees of freedom than the corresponding boundary
control problem. The manipulated variable for 3D spatial field
control is u(x, y, z, t), compared to boundary control which
is only defined on the 2D external surface. While the brute-
force application of control vector parameterization [14] may
be applied to boundary control and most other optimal control
problems, spatial field control problems need to be formulated
with care to arrive at a computationally feasible solution.
Below is the formal definition of a prototypical problem.

Definition 1: The optimal spatial field control problem is
the minimization of the quadratic cost

min
u(x,y,z,t)∈U(x,y,z,t)

∫ tf

0

∫
V

(R(x, y, z, t)− C(x, y, z, t))2dV dt,

(1)
where V is the spatial domain of interest, R(x, y, z, t) is the
reference (desired) field, C(x, y, z, t) is the controlled field
which is related to the manipulated field u(x, y, z, t) by a
known partial differential equation (PDE), and U(x, y, z, t)
is the set of allowable manipulated fields, which can be
continuous or discrete in space or time.

Spatial field control problems arise in a variety of applica-
tions including
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1) minimization of vibration throughout a structure by
using internally placed piezo-actuators [11],

2) minimization of noise in acoustic enclosures using
internally placed loudspeakers and/or microphones [12],

3) control of the spread of disease by placement of
insecticide-treated targets or by insecticide spraying to
reduce the disease carrier population to zero over large
tracts of land [5],

4) control of the differentiation of stem cell populations by
internal release of growth factors to produce biological
tissues for clinical use [6], and

5) the controlled release of drug cocktails for optimized
cancer treatment therapies [16].

The spatial field control literature includes many theoretical
results on controllability and the structure of the optimal
control for certain classes of PDEs when the spatial field is
continuous or consists of a finite number of point sources
(e.g., see [2], [8], [9] and citations therein) but has relatively
few contributions that compute the optimal control for specific
applications. An exception is [11] that computes H2- and
H∞-optimal vibration controllers for the case in which the
manipulation is restricted to discrete positions in the spatial
domain. H2- and H∞-control for the spatially distributed
formulation of the problem results in better performance than
the lumped-parameter representation.

This paper presents a computationally efficient solu-
tion to the optimal spatial field control problem for the
reaction-diffusion and reaction-diffusion-convection equa-
tions in which the manipulation u(x, y, z, t) is continuously
distributed throughout the spatial domain with constraints
on the spatial variation. These particular control problems
are motivated by biomedical control problems [6], [16],
in which molecules are released within a biological tissue
from fixed embedded polymer nano- and microparticles de-
signed to provide controlled release. The transport of these
molecules is described by 3D reaction-diffusion or reaction-
diffusion-convection equations, and the control problem is
to provide a desired spatial and temporal uptake of these
molecules throughout the biological tissue. More details on
the biological motivation for the optimal control problem,
including numerous references to the biomedical literature,
was provided in a previous paper [6].

The approach taken in this paper is based on modal analysis
and least-squares optimization over a basis function space
[10]. This approach does not involve the discretizations of
the spatial variables or problem-independent basic function
expansions (e.g., proper orthogonal decomposition) that have
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become popular in the applied PDE control literature (e.g.,
[7]) but are much more computational expensive when applied
to spatial field control problems. Also, this paper considers
3D optimal nonlinear control problems, in contrast to the
literature that primarily considers 1D linear problems, and
the paper also considers coupled systems of PDEs. The algo-
rithmic discussions are followed by two numerical examples
and the conclusions.

II. SPATIAL FIELD CONTROL OF THE
REACTION-DIFFUSION EQUATION

The following descriptions of the system and control prob-
lem hold throughout the paper unless stated otherwise.

Consider the reaction-diffusion equation, which is the
parabolic PDE

∂C

∂t
= D∇2C−g(C)+u(x, y, z, t), ∀t > 0, (x, y, z) ∈ Ω

(2)
where C(x, y, z, t) is the concentration field, D > 0 is an
effective diffusion coefficient, g(C) is a sublinear algebraic
function that characterizes the net consumption of species by
chemical reactions, and the spatial domain Ω is the unit cube.
To simplify the presentation, suppose the Dirichlet boundary
condition

C(x, y, z, t) = 0, on ∂Ω, (3)

and zero initial condition,

C(x, y, z, 0) = 0. (4)

The control objective is to determine a smooth manipulated
field u(x, y, z, t) of constrained spatial variation that mini-
mizes the control error1

E =
∫ tf

0

∫
Ω

(R(x, y, z, t)− C(x, y, z, t))2dV dt, (5)

where R(x, y, z, t) is the reference concentration field with
R(x, y, z, 0) = 0. For solving this problem, first define
ū(x, y, z, t) = u(x, y, z, t)− g(C), then

∂C

∂t
= D∇2C+ ū(x, y, z, t), ∀t > 0, (x, y, z) ∈ Ω. (6)

For this PDE, it can be verified that the manipulated field

ū(x, y, z, t) = ūmnl(t) sinmπx sinnπy sin lπz, (7)

excites only the modes sinmπx, sinnπy, sin lπz, that is, the
solution to the PDE for that manipulated field is of the form

C(x, y, z, t) = cmnl(t) sinmπx sinnπy sin lπz. (8)

Additionally, ūmnl(t) and cmnl(t) are related by

ūmnl(t) =
dcmnl
dt

+D(m2 + n2 + l2)π2cmnl. (9)

1
∫
Ω dV =

∫ 1
0

∫ 1
0

∫ 1
0 dxdydz

With the manipulated field ū(x, y, z, t) parameterized in
terms of the eigenfunctions,2

ū(x, y, z, t) =
∑

ūmnl(t) sinmπx sinnπy sin lπz

≡ ūMNL(x, y, z, t), (10)

the spatial variation constraint is specified by selection of
finite values of M , N , and L.

By linearity of (6), the solution to the PDE (6) is

C(x, y, z, t) =
∑

cmnl(t) sinmπx sinnπy sin lπz

≡ CMNL(x, y, z, t), (11)

and it is useful to expand the reference field as

R(x, y, z, t) = RMNL(x, y, z, t) + ε(x, y, z, t), (12)

where

RMNL(x, y, z, t) ≡
∑

rmnl(t) sinmπx sinnπy sin lπz,
(13)

and

rmnl(t) = 8
∫

Ω

R(x, y, z, t) sinmπx sinnπy sin lπz dV.

(14)
When the reference field R(x, y, z, t) is continuously dif-
ferentiable, Dirichlet’s theorem [1] implies that the series
expansion converges pointwise in the domain Ω, and ε can
be written as a linear combination of the eigenmodes not
included in the summation.

With the above definitions and parameterization of the
manipulated field, the control error (5) can be written as

E =
∫ tf

0

∫
Ω

[(∑
(rmnl(t)−cmnl(t))sinmπx sinnπy sin lπz

)2
+ε2(x, y, z, t)

]
dV dt, (15)

which follows from orthogonality of the eigenfunctions. The
control error is minimized for rmnl(t) = cmnl(t) for all
m,n, l, which is obtained by setting

ūmnl(t) =
drmnl
dt

+D(m2 + n2 + l2)π2rmnl. (16)

Once ū(x, y, z, t) =
∑
ūmnl(t) sinmπx sinnπy sin lπz is

determined, the manipulated field for the original PDE (2)
for this basis function expansion can be determined from

u(x, y, z, t) = ū(x, y, z, t) + g(C), (17)

where C is inserted from (11). If the reaction term g(C) is
linear in C, then

u(x, y, z, t) =∑
(ūmnl(t) + gmnl(t)) sinmπx sinnπy sin lπz,

(18)

2The summations are over every integer from (m, n, l) = (1, 1, 1) to
(M, N, L) unless otherwise stated.
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for some gmnl(t), and the concentration field C(x, y, z, t)
and manipulated field u(x, y, z, t) share the same spatial
modes. Whether the reaction term g(C) is linear or nonlinear,
the optimization for determining ūmnl for each (m,n, l) is
independent. If the integral (14) can be solved analytically,
then (10) can be determined analytically from (16) and the
computational cost of computing the optimal manipulated
field is negligible. If the integral (14) cannot be solved
analytically, then the rmnl(t) can be computed efficiently by
sampling with a uniform mesh and applying available nu-
merical software for computing multidimensional fast Fourier
transforms [4]. This solution of the optimal control problem is
very closely related to spectral methods [3] for the numerical
simulation of PDEs.

The behavior of the minimum control error as (M,N,L)
increases can be derived from well-known properties of
Fourier series [1]. The minimum control error obtained using
the finite Fourier sine series expansion (10) is

E =
∫ tf

0

∫
Ω

ε2(x, y, z, t)dV dt, (19)

which is independent of the diffusion coefficient and reaction
rate, and is only a function of the portion of the reference
field not described by the selected eigenfunctions. Relaxing
the spatial variation constraint increases the number of terms
in the series and decreases the minimum control error.

By the Riesz-Fischer theorem, a Fourier series expansion
converges in the space l2 if the corresponding function is
square integrable [1]. This result can be applied to show the
above manipulated field converges in l2 at each time t as the
number of eigenmodes approaches infinity. Define

Ē(t) =
∫

Ω

ε2(x, y, z, t)dV, (20)

then
lim

M,N,L→∞
Ē(t) = 0, ∀t > 0, (21)

if R(x, y, z, t) is square integrable.3 Although the Fourier
series of a continuous function need not converge pointwise
in general [13], it can be shown that if

∞∑
m=1

∞∑
n=1

∞∑
l=1

|cmnl| <∞, (22)

then
C(x, y, z, t) ≡ lim

M,N,L→∞
CMNL(x, y, z, t) (23)

and

lim
M,N,L→∞

∣∣∣R(x, y, z, t)− CMNL(x, y, z, t)
∣∣∣ = 0. (24)

3This result generalizes to any problem in which R(x, y, z, t) is odd or
the spatial domain Ω is a box in the positive quadrant bordered on three sides
by the x = 0, y = 0, and z = 0 planes, so that the Fourier series collapses
to a Fourier sine series. The spatial coordinates can always be rotated and
shifted so that the latter condition holds. Other boundary conditions may
involve the other Fourier series expansions.

Equations (21) and (23) can be used to show that the
minimum control error approaches zero as the number of
terms approaches infinity:

lim
M,N,L→∞

∣∣∣ ∫
Ω

(R(x, y, z, t)− CMNL(x, y, z, t))2
dV

−
∫

Ω

(R(x, y, z, t)− C(x, y, z, t))2
dV
∣∣∣ = 0 (25)

by application of the triangular inequality. By a similar
argument, if

∞∑
m=1

∞∑
n=1

∞∑
l=1

|umnl| <∞, (26)

then
u(x, y, z, t) ≡ lim

M,N,L→∞
uMNL(x, y, z, t), (27)

and, if u(x, y, z, t) is square integrable,

lim
M,N,L→∞

∫
Ω

(u(x, y, z, t)− uMNL(x, y, z, t))2
dV = 0.

(28)

III. SPATIAL FIELD CONTROL OF THE
REACTION-DIFFUSION-CONVECTION EQUATION I

Consider the same control problem as in the previous sec-
tion except with the PDE replaced by the reaction-diffusion-
convection equation

∂C

∂t
= D∇2C − v · ∇C − g(C) + u(x, y, z, t), (29)

where v 6= 0 is the vector velocity field assumed to be
spatially uniform. By using a standard transformation method,

C̄(x, y, z, t) ≡ C(x, y, z, t)e−αx−βy−γz+θt, (30)

ū(x, y, z, t) ≡ û(x, y, z, t)e−αx−βy−γz+θt, (31)

with
û(x, y, z, t) = u(x, y, z, t)− g(C), (32)

α =
vx
2D

, β =
vy
2D

, γ =
vz
2D

, θ =
v2
x + v2

y + v2
z

4D
,

(33)
the PDE (29) is reduced a forced diffusion equation

∂C̄

∂t
= D∇2C̄ + ū(x, y, z, t), (34)

with the boundary condition (3) and initial condition (4)
remaining in the same form, respectively:

C̄(x, y, z, t) = 0, on ∂Ω, (35)

C̄(x, y, z, 0) = 0. (36)

Then ū is related to C̄ in the same way that ū is related to
C in the previous section. The cost function is

E =
∫ tf

0

∫
Ω

(
R(x, y, z, t)e−(αx+βy+γz−θt) − C̄(x, y, z, t)

)2
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e2(αx+βy+γz−θt)dV dt.
(37)

The optimal control problem can be solved as a least-
squares optimization over a Hilbert space. First write

C̄(x, y, z, t) =
∑

c̄mnl(t) sinmπx sinnπy sin lπz

=
MNL∑
i=1

c̄i(t)si(x, y, z)

= sT c̄(t), (38)

where si(x, y, z) ≡ sinmπx sinnπy sin lπz and the vectors
s and c̄(t) have si(x, y, z) and c̄i(t) as their elements,
respectively. Define inner products by

〈a(x, y, z, t)|b(x, y, z, t)〉 =

8
∫

Ω

e2(αx+βy+γz−θt)a(x, y, z, t)b(x, y, z, t)dV, (39)

the Gram matrix by

G(t) =


〈s1|s1〉 · · · 〈s1|sMNL〉

〈s1|s2〉 · · ·
...

...
...

...
〈s1|sMNL〉 · · · 〈sMNL|sMNL〉


≡ He−2θt, (40)

and

r(t) =


〈Re−(αx+βy+γz−θt)|s1〉
〈Re−(αx+βy+γz−θt)|s2〉

...
〈Re−(αx+βy+γz−θt)|sMNL〉

 . (41)

The solution to the optimal control problem for the manipu-
lated field is given by c̄(t) that satisfies

G(t)c̄(t) = r(t)⇐⇒ He−2θtc̄(t) = r(t). (42)

For reference fields whose inner product with each eigenmode
can be determined analytically, the main computational cost
is the inversion of the scaled Gram matrix.

The scaled Gram matrix H is dense, which implies that
the optimal control solution is not decoupled into separate
optimal control problems for each eigenmode, as it was for
the convection-free case. The expression for the minimum
control error, which is substantially more complicated than
(19), depends on all of the model parameters D and v.

The solution to the optimal control problem is simplified
when the reference is separable in space and time:

R(x, y, z, t) = Rxyz(x, y, z)Rt(t), (43)

in which case
r(t) = qe−θtRt(t), (44)

where q is a constant vector, and

R(x, y, z, t)

=
∑

qmnlRt(t) sinmπx sinnπy sin lπz e−(αx+βy+γz)

+ε(x, y, z, t).
(45)

The remainder of this section assumes (43) to simplify the
presentation (the general expressions are somewhat more
complicated). From (42), the optimal concentration field is

C(x, y, z, t) =
MNL∑
i=1

si(x, y, z)c̄i(t)eαx+βy+γz−θt

=
∑

sinmπx sinnπy sin lπz(
H−1qeθt

)
mnl

Rt(t)eαx+βy+γz−θt, (46)

and the optimal manipulated field

u(x, y, z, t) = g(C)+eαx+βy+γz
∑

sinmπx sinnπy sin lπz

(H−1q)mnl

(
dRt
dt

+ (D(m2 + n2 + l2)π2 + θ)Rt(t)
)

(47)
where (H−1q)mnl is the (mnl)th element of the product of
the inverse of a scaled (mnl) × (mnl) Gram matrix H of
the eigenmodes and q is a scaled vector of inner products
of the eigenmodes and the reference field. Again, if g(C)
is linear in C, then the concentration field C(x, y, z, t) and
manipulated field u(x, y, z, t) share the same spatial modes.
With this optimal control, the optimal control objective is

E =
∫ tf

0

∫
Ω

(∑
Rt(t) sinmπx sinnπy sin lπz e−(αx+βy+γz)

(qmnl−(H−1q)mnl)e2(αx+βy+γz)+ε
)2

dV dt. (48)

While the minimum control error decreases as more terms are
taken, its further characterization is more complicated than for
the convection-free case. Provided that the effects of diffusion
are significant (that is, the parameters in (33) are less than
1), low values of (M,N,L) in ū(x, y, z, t) directly translate
into low spatial variation on u(x, y, z, t).

IV. SPATIAL FIELD CONTROL OF THE
REACTION-DIFFUSION-CONVECTION EQUATION II

Consider the same system as the previous section. With the
definition

ū(x, y, z, t) = u(x, y, z, t)− v · ∇C − g(C), (49)

ū(x, y, z, t) can be determined in the same way as in Section
II and used to compute C(x, y, z, t) and the optimal manipu-
lated field from u(x, y, z, t) = ū(x, y, z, t) + v · ∇C + g(C).
With this approach, the optimal solution is

u(x, y, z, t) = g(C)+
∑

u1,mnl(t) sinmπx sinnπy sin lπz
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+
∑

u2,mnl(t) cosmπx sinnπy sin lπz,

+
∑

u3,mnl(t) sinmπx cosnπy sin lπz,

+
∑

u4,mnl(t) sinmπx sinnπy cos lπz, (50)

where

u1,mnl(t) =
drmnl
dt

+D(m2 + n2 + l2)π2rmnl, (51)

u2,mnl(t) = mπvxrmnl(t), (52)

u3,mnl(t) = nπvyrmnl(t), (53)

u4,mnl(t) = lπvzrmnl(t). (54)

These equations can be easily verified by inserting the ma-
nipulated field into the PDE (29). As in the previous sections,
superposition can be used to construct a solution to the
optimal control problem. With the form of the manipulated
field being the same as in the reaction-diffusion case, the
minimum control error, the computational cost of the optimal
control problem, and the other analyses are the same.

V. SPATIAL FIELD CONTROL OF COUPLED
REACTION-DIFFUSION-CONVECTION EQUATIONS

Consider the optimal spatial field control of coupled
reaction-diffusion-convection equations:

min
ui(x, y, z, t)
∈ Ui(x, y, z, t)

∑
i

∫ tf

0

∫
V

(Ri(x, y, z, t)−Ci(x, y, z, t))2dV dt,

(55)
where

∂Ci
∂t

= Di∇2Ci− v · ∇Ci− gi(C1, . . . , CN ) + ui(x, y, z, t),
(56)

Ci(x, y, z, t) = 0, on ∂Ω, (57)

and
Ci(x, y, z, 0) = 0. (58)

With the definitions

ūi = ui(x, y, z, t)− gi(C1, . . . , CN ), i = 1, . . . , N, (59)

or

ūi = ui(x, y, z, t)− v · ∇Ci − gi(C1, . . . , CN ), (60)
i = 1, . . . , N,

the determination of the optimal ūi are decoupled. Once the
optimal ūi have been determined, the species concentration
fields Ci and untransformed optimal manipulated fields ui are
determined in the same way as in the previous section.

Fig. 1. The concentration isosurface C(x, y, z, t) = 0.009 for the reference
(convex) and controlled (lumpy) concentration fields for N = M = L = 5,
t = 0.5, and a spatial grid size of 0.025 used for plotting. The top plot
is the case of no convection (vx = vy = vz = 0) and for the case with
convection (vx = 0.8, vy = 0.5, vz = 0.3) obtained using the approach
described in Section IV (both cases result in the same figure). The bottom
plot is for the same problem with convection obtained using the approach
described in Section III.

VI. NUMERICAL EXAMPLES

Consider the optimal spatial field control of the reaction-
diffusion and reaction-diffusion-convection equations for the
reference concentration field

R(x, y, z, t) =

(e−x− e−3x)(e−y − e−4y)(e−2z − e−4z)(e−t− e−2t), (61)

for linear chemical reaction kinetics g(C) = kC with dimen-
sionless rate constant k = 0.1 and dimensionless effective
diffusion coefficient D = 1. In a stem tissue engineering
application, this reference field corresponds to 3D spatial
region and time in which a cellular uptake of growth factor is
desired to cause the stem cells in that region to differentiate
to form a specific type of cell (such as an islet cell in the
generation of a pancreas for treatment of a diabetic patient).
The reader is referred to a previous paper for a more detailed
discussion of these applications [6].

The isosurfaces for the reference and controlled concentra-
tion fields show good correspondence for 5 terms in each of
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Fig. 2. The value of the minimum control error E. The horizontal line
shows the control error when the manipulated field is zero. The plots have
the corresponding parameter values as in Fig. 1.

the three spatial directions, both for the cases with and without
convection and with application of several of the proposed
approaches (see Fig. 1). The controlled concentration fields
and the minimum control errors are very similar for both
PDEs and all three approaches. Most of the reduction in the
minimum control error occurs with only 1 term (see Fig. 2),
with a 90% reduction with 3 terms in each spatial direction
(33 = 27 total terms). The minimum control error decreases
monotonically as the number of terms in each spatial direction
increases, which is consistent with the theoretical analysis.

VII. CONCLUSIONS

A modal control approach is investigated for optimal con-
trol problems in which the manipulation is distributed over a
3D spatial field with constraints on its spatial variation. Appli-
cation to reaction-diffusion and reaction-diffusion-convection
equations demonstrated small minimum control error for a
3D time-varying reference field with modest spatial variation.
In the convection-free case, the minimum control error is
independent of the values of the model parameters and all
eigenmodes are decoupled. In the case with convection, two
approaches were proposed. The first approach produces a
manipulated field in terms of eigenmodes, which requires a
dense matrix inversion but has fewer summation terms for the

same (M,N,L) than the second approach. Depending on the
reference field, either approach could require higher values of
(M,N,L) to achieve a certain control error. The extension
of the proposed approach to coupled PDEs was also briefly
described.
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