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Abstract—We address the output feedback sliding mode

control problem for a sampled data linear system with distur-
bances. By taking into account the disturbance compensation,

a deadbeat high gain output feedback control strategy with
additional dynamics is able to attenuate the disturbances. It

is shown that the closed loop system exhibits both singularly
perturbed and weakly coupled characteristics. A numerical

example of an aircraft attitude output feedback control is
provided to demonstrate the effectiveness of the proposed

approach.

I. INTRODUCTION

The problem of output feedback sliding mode control with

disturbances has been extensively studied for years [1], [2],

[3], [4], [5], [6]. EL-Khazali and DeCarlo [3] provided a

general framework for constructing a static sliding surface

in the output space. A switching type of continuous-time

variable structure control law was used to achieve the sliding

mode. Zak and Hui [2] considered a generally accepted case

when the number of output variables is greater than or equal

than that of the input variables. It was pointed out that the

problem of choosing the desired poles of the sliding mode

dynamics can be approached by using the classical ”squared-

down” techniques [7]. In order to attain a global attraction

to the sliding surface, Heck et. al. established numerical

methods that adjust the switching gain to compensate for

the unknown state and disturbance variables [4]. Edwards

and Spurgeon [5] proposed a procedure to construct a sliding

surface based on the output information by taking advantage

of the fact that the invariant zeros of a system appear in the

dynamics of the sliding motion. The remaining eigenvalues

of the sliding mode dynamics can be chosen appropriately

in the framework of a static output feedback pole placement

problem for a subsystem [2], [5].

In this paper, we consider the output feedback sliding

mode control for sampled-data linear systems. It is well-

known that the exact continual sliding motion cannot be

achieved in the discrete-time case due to the sample/hold

effect [8]. Specifically, the system trajectory only travels in

a neighborhood of the sliding surface forming a boundary
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layer [9]. Several approaches were proposed to address the

problem of discrete-time output feedback sliding mode con-

trol [10], [11], [12], [13]. Some of them are devoted to sliding

mode control of sampled-data systems. In [12], Xu and Adibi

employed a disturbance observer and a state observer with

an integral sliding surface to address the output tracking

problem for sampled-data systems. Under their proposed

control approach, the stability of the closed-loop system is

guaranteed and the effect of external disturbances is reduced.

An application of their method was realized for the problem

of discrete-time output feedback control for a piezomotor-

driven linear motion stage [13].

The deadbeat control strategy proposed in [16] is able

to decouple external disturbances with an O(ε) accuracy,

where ε is the sampling period. In [9], an one-step delayed

disturbance approximation approach has been shown to be

effective in dealing with disturbances that exhibit certain

continuity characteristics. We shall exploit the continuity

attribute of the state variables and the disturbances by using a

similar approach to deal with the similar estimation problem

encountered above.

A dynamic output feedback discrete-time control approach

that takes into account the disturbance compensation as in

[9] is proposed. It is pointed out that with high gain feedback

control, the system exhibits the two-time scale behavior [14],

[15], [16], [17]. By using singular perturbation analysis, we

show that the sliding surface will be remained in an O(ε2)
accuracy when disturbances affect the system. Since we do

not employ observers, our proposed approach is simpler than

the one in [12], while obtaining the same characteristics such

as the accuracy of sliding motion and the ultimate bound of

state variables.

The structure of the paper is organized as follows. Section

II presents the formulation of the problem, followed by

Section III where the sampled-data system is transformed

into a convenient form. A procedure to construct output

feedback control with stability and accuracy analysis is

shown in Section IV. Section V presents a numerical example

to illustrate the effectiveness of the proposed method. Some

conclusions are given in the final section.

Throughout the paper, λ(A) denotes the spectrum of

matrix A, while Im stands for an identity matrix of order

m. A vector function f(t, ε) ∈ Rn is said to be O(ε) over

an interval [t1, t2] [18] if there exists positive constants k
and ε∗ such that

‖f(t, ε)‖ ≤ kε ∀ε ∈ [0, ε∗], ∀t ∈ [t1, t2]

where ‖.‖ is the Euclidean norm. Moreover, it is said to be
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O(1) over [t1, t2] if

‖f(t, ε)‖ ≤ k, ∀t ∈ [t1, t2].

II. PROBLEM FORMULATION

We consider a linear system described by

ẋ0(t) = A0x0(t) + B0u(t) + D0f(t) (1)

y(t) = C0x0(t)

where x0(t) ∈ Rn is the state, u(t) ∈ Rm is the control,

y(t) ∈ Rp is the output, f(t) ∈ Rr is the unknown but

bounded exogenous disturbance, with m ≤ p < n. The

system matrices A0, B0, C0, D0 are constant of appropriate

dimensions with magnitudes O(1). The following assump-

tions are made:

1) Matrices B0 and C0 have full rank.

2) (A0, B0, C0) is controllable and observable [3].

3) The invariant zeros of system (1) are stable.

In addition, D0 satisfies the matching condition [19]

rank([B0|D0]) = rank(B0) (2)

In other words, there exists a matrix K such that

D0 = B0K. (3)

The sliding surface under consideration is

s(t) = Hy(t) = HC0x0(t) = 0, (4)

where H is a full rank m × p matrix, designed to render

stable sliding dynamics. It is shown that the eigenvalues of

the sliding mode dynamics include the invariant zeros of

the system (1) [6]. One can place the remaining eigenvalues

of the zero dynamics of the sliding surface (4) if the

Davison-Kimura condition [20] is satisfied [6]. In the case

the Davison-Kimura condition is not satisfied, a dynamic

compensator is constructed to produce a tractable structure

for the sliding surface design [6]. Refer to [3], [2], and [6] for

design of H . Note that HC0B0 is nonsingular. Our objective

is to construct a discrete-time sliding mode controller given

an output sliding surface s(t) = 0.

III. DISCRETE-TIME REGULAR FORM

In this section, we will use several similarity trans-

formations to facilitate system design and analysis. Since

rank(B0) = m, there exists a coordinate transformation T0

such that

B = T0B0 =

[

0
B2

]

.

where B2 is a nonsingular square matrix of dimension m.

The new variables are defined as

x =

[

x1

x2

]

= T0x0.

The similarity transformation T0 brings the original system

(1) into the regular form [21]

ẋ1(t) = A11x1(t) + A12x2(t)

ẋ2(t) = A21x1(t) + A22x2(t) + B2u(t) + D2f(t),(5)

where D2 = B2K. The sliding surface (4) is now described

as

s(t) = HC0x0(t) = HC0T
−1
0 x(t)

= Cx(t) = C1x1(t) + C2x2(t) = 0, (6)

where

HC0T
−1
0 = C.

The zero dynamics of the sliding mode is represented by

the eigenvalues of matrix Ac = A11 − A12C
−1
2 C1. Note

that H has been chosen in (4) to render a sliding surface

coefficient matric C such that C2 is invertible and Ac is

stable [21].

Sampling the continuous-time system (5) with the sam-

pling period ε results in the following discrete-time model

x(k + 1) = Φx(k) + Γu(k) + d(k) (7)

where

Φ = eAε, Γ =

∫ ε

0

eAτdτB,

d(k) =

∫ ε

0

eAτBKf((k + 1)ε − τ )dτ. (8)

The system matrices, Φ and Γ, of the sampled-data system

(7) can be reformulated by taking the Taylor series expansion

as

Φ = eAε = I + εA+
ε2

2!
A2 + · · · = I + ε(A+ ε∆A) = O(1)

(9)

and

Γ =

∫ ε

0

eAτdτB = ε(B + ε∆B) = O(ε), (10)

where

∆A =
1

2!
A2 +

ε

3!
A3 + · · · = O(1) (11)

and

∆B =
1

2!
AB +

ε

3!
A2B + · · · =

[

∆B1

∆B2

]

= O(1), (12)

where the dimensions of ∆B1 and ∆B2 are (n − m) × m

and m × m, respectively. Furthermore, since B =

[

0
B2

]

,

Γ can be written as

Γ =

[

ε2∆B1

εB̄2

]

, (13)

where

B̄2 = B2 + ε∆B2. (14)

Due to the sampling process, the disturbance in the sampled-

data system (7) exhibits unmatched components, as demon-

strated by the following lemma [22].

Lemma 1: If the disturbance f(t) in (1) and its first

derivative are bounded, then

d(k) =

∫ ε

0

eAτBKf((k + 1)ε − τ )dτ

= ΓKf(k) +
ε

2
ΓKv(k) + ε3∆d

d(k) − d(k − 1) = O(ε2)

d(k) − 2d(k − 1) + d(k − 2) = O(ε3) (15)
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where v(t) = df(t)/dt.
To facilitate discrete-time sliding mode control design, we

put (7) into a discrete-time regular form, which is similar to

(5). To this end, we employ the following transformation for

(7)

T1 =

[

In−m −ε∆B1B̄
−1
2

0 Im

]

(16)

with new variables

z =

[

z1

z2

]

= T1

[

x1

x2

]

. (17)

The inverse transformation of T1 is

T−1
1 =

[

In−m ε∆B1B̄
−1
2

0 Im

]

. (18)

The m × m matrix B̄2 is an ε perturbed version of the

nonsingular matrix B2 as seen in (14), hence it is nonsingular

so that the transformation matrices T1 and T−1
1 both exist.

Under the transformation T1, the discrete-time system in

its regular form is given by

z(k + 1) = Φ̄z(k) + Γ̄u(k) + d1(k), (19)

in which the new system matrix Φ̄ still keeps it original form

as an ε-perturbed identity matrix as in (9)

Φ̄ = T1ΦT−1
1 = T1(I + εA + ε2∆A)T−1

1 = I + εĀ (20)

Ā = T1(A+ε∆A)T−1
1 =

[

A11 + ε∆Ā11 A12 + ε∆Ā12

A21 + ε∆A21 A22 + ∆Ā22

]

(21)

while the first n − m rows of the new control coefficient

matrix Γ̄ are nullified

Γ̄ = T1Γ =

[

0
εB̄2

]

. (22)

Moreover, all the matched portion in the original disturbance

vector d(k) is now transferred to the bottom m row of

the new disturbance vector d1(k), leaving only the O(ε3)
mismatched portion in the first n − m rows

d1(k) = T1d(k) = T1(ΓKf(k) +
1

2
ΓKv(k) + ε3∆d)

=

[

0
εB̄2

]

(Kf(k) +
ε

2
Kv(k)) + ε3T1∆d =

[

d11(k)
d12(k)

]

(23)

where

d11(k) = O(ε3) (24)

d12(k) = εB̄2K(f(k) +
ε

2
v(k)) + O(ε3) = O(ε). (25)

The sliding surface vector in the new coordinates is now

described as

s(k) = CT−1
1 z(k) = C1z1(k) + C̄2z2(k) (26)

where the m×m matrix C̄2 is an ε perturbed version of the

original nonsingular matrix in (6):

C̄2 = C2 − εC1∆B1B̄
−1
2 . (27)

Therefore, C̄2 is nonsingular if ε is small.

IV. MAIN RESULTS

A. Output Feedback Control Design

In this section, we develop a control strategy that forces

the state to reach the sliding surface (4) in a finite time.

Applying the transformation

T2 =

[

In−m 0
C1 C̄2

]

(28)

with state variables
[

z1(k)
s(k)

]

= T2

[

z1(k)
z2(k)

]

(29)

recasts the sampled-data system (19) into

z1(k + 1) = Asz1(k) + εĀ12C̄
−1
2 s(k) + d11(k)

s(k + 1) = εΩ1z1(k) + (Im + εΩ2)s(k)+

εC̄2B̄2u(k) + C1d11(k) + C̄2d12(k), (30)

where

As = In−m + ε(Ā11 − Ā12C̄
−1
2 C1) (31)

Ω1 = (C̄1Ā11 + C̄2Ā21) − (C̄1Ā12 + C̄2Ā22)C̄
−1
2 C̄1 (32)

Ω2 = (C̄1Ā12 + C̄2Ā22)C̄
−1
2 . (33)

In view of (27), the inverse of C̄2 can be written as

C̄−1
2 = C−1

2 + ε∆C2i. (34)

where ∆C2i is a constant matrix. From (31) and (34), we

have

As = In−m + ε(Ac + ε∆Ac). (35)

where

Ac = A11 − A12C
−1
2 C1 (36)

and

∆Ac = ∆Ā11 − (∆Ā12C̄
−1
2 + A12∆C2i)C1. (37)

Rewrite the dynamics of s(k) in (30) as

s(k + 1) = (Im + εΩ2)s(k) + εC̄2B̄2u(k) + g(k), (38)

where g(k) contains the state variables in z1(k) and the

portion of disturbances lying in the control range space

g(k) = εΩ1z1(k) + d2(k) (39)

with

d2(k) = C1d11(k) + C̄2d12(k) = O(ε). (40)

By solving s(k + 1) = 0, we obtain the discrete-time

equivalent control law [23] as follows

ueq(k) = −
1

ε
(C̄2B̄2)

−1((Im + εΩ2)s(k) + g(k)). (41)

Since g(k) contains the unmeasurable state variables in z1(k)
and disturbances d2(k), it is unknown to the controller at

time step k, hence the equivalent control law (41) is not

realizable.

Nevertheless, equation (38) reveals that we are able to

approximate g(k) numerically by g(k − 1)

g(k−1) = s(k)−(Im+εΩ2)s(k−1)−εC̄2B̄2u(k−1). (42)
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Use of g(k−1) in place of g(k) in ueq(k) leads to a realizable

control law with additional dynamics in u(k)

u(k) = −
1

ε
(C̄2B̄2)

−1((Im + εΩ2)s(k) + g(k − 1))

= −
1

ε
(C̄2B̄2)

−1((2Im + εΩ2)s(k)−

(Im + εΩ2)s(k − 1)) + u(k − 1). (43)

A similar technique was employed by Su et. al. [9] for

state feedback discrete-time sliding mode control, where only

the external disturbances are to be approximated. In this

paper, however, the unknown term g(k) under consideration

includes both the external disturbances and the unmeasured

state variables.

B. Stability Analysis

The discrete-time equivalent control law (41) is also

known as a deadbeat control law that brings about a gigantic

control action leading to a fast-time system behavior in the

state vector s(k) of (30). It was also pointed out in [16],

[17], [24] that such a deadbeat high gain control will lead to

a singular perturbation behavior for sampled-data systems.

In this section, we will employ the singular perturbation

methodology to analyze the stability of the closed-loop

system driven by the proposed sliding mode control law (43).

The involvement of the past disturbance g(k − 1) in the

control law (43) produces additional m order dynamics for

the closed-loop system. Following a similar way as in [9],

we study an augmented dynamic system of z1(k), s(k), and

u(k). From (42) and (43), we have

u(k + 1) = −(C̄2B̄2)
−1(2Im + εΩ2)Ω1z1(k)

−
1

ε
(C̄2B̄2)

−1(Im + εΩ2)
2s(k) −

1

ε
(C̄2B̄2)

−1(Im + εΩ2)ε

C̄2B̄0u(k) − (C̄2B̄2)
−1(2Im + εΩ2)d2(k). (44)

Introduce a new variable

γ(k) = εC̄2B̄2u(k). (45)

Thus, the new augmented system of z1(k), ξ(k), and v(k) is

described by




z1(k + 1)
s(k + 1)
γ(k + 1)



 = Aaug





z1(k)
s(k)
γ(k)





+





d11(k)
d2(k)

−(2Im + εΩ2)d2(k)



 , (46)

where

Aaug =




As εĀ12C̄
−1
2 0

εΩ1 (Im + εΩ2) Im

−ε(2Im + εΩ2)Ω1 −(Im + εΩ2)
2 −(Im + εΩ2)



 .

(47)

The above augmented system is both a weakly coupled

system and a singularly perturbed discrete-time system [14],

[15], [25], [26] where the slow dynamics is represented

by z1(k), and fast dynamics is represented by s(k) and

γ(k). The slow and fast components affect each other by

a regular O(ε) perturbation (or by weak couplings). To see

this, partition the augmented matrix Aaug as

Aaug =

[

As O(ε)
O(ε) Af

]

and

Af =

[

(Im + εΩ2) Im

−(Im + εΩ2)
2 −(Im + εΩ2)

]

.

It is then natural to expect (46) to be separated into distinct

slow and fast subsystems by using a decoupling transfor-

mation [14] provided that I2m − Af is nonsingular. The

following lemma shows that the existence of a decoupling

transformation is satisfied [14].

Lemma 2: The 2m × 2m matrix Af possesses 2m zero

eigenvalues.

Proof: The eigenvalues of Af are solutions of the

following equation

0 = det(λI2m −

[

(Im + εΩ2) Im

−(Im + εΩ2)
2 −(Im + εΩ2)

]

)

= det(

[

λIm − (Im + εΩ2) −Im

(Im + εΩ2)
2 λIm + (Im + εΩ2)

]

).

Premultiplying the first m rows by (Im +εΩ2) and adding

to the last m rows results in

0 = det(

[

λIm − (Im + εΩ2) −Im

λ(Im + εΩ2) λIm

]

)

= λmdet(

[

λIm − (Im + εΩ2) −Im

−(Im + εΩ2) Im

]

).

Adding the last m rows to the first m rows yields

0 = λmdet(

[

λIm 0
(Im + εΩ2) Im

]

) = λ2m (48)

The stability of system (46) is further investigated by

using a decoupling transformation [14], which is stated in

the following lemma.

Lemma 3: There exists a transformation P with new

variables
[

w(k)
η(k)

]

= P





z1(k)
s(k)
γ(k)



 (49)

where w(k) ∈ Rn−m and η(k) ∈ R2m, such that system

(46) is decomposed into reduced-order systems
[

w(k + 1)
η(k + 1)

]

=

[

As + O(ε2) 0
0 Af + O(ε2)

][

w(k)
η(k)

]

+ d3(k) (50)

where

d3(k) =





O(ε2)
d2(k) + O(ε2)

−(2Im + εΩ2)d2(k) + O(ε2)



 . (51)

760



Proof: Refer to [14].

Equation (50) implies that the stability of the closed-loop

system under the control law (43) depends on the eigenvalues

of As and Af . It is pointed in Lemma 2 that the eigenvalues

of Af lie in the origin of the unit circle. The positions of

the eigenvalues of As are justified in the following lemma.

Lemma 4: There exists a small enough ε such that the

eigenvalues of As lie in the unit circle.

Proof: From (35), we have

λ(As) = 1 + ελ(Ac + ε∆Ac). (52)

Since the eigenvalues of Ac have negative real parts, it is

strait forward to show that the eigenvalues of As lie in the

unit circle provided there exists a sufficiently small ε.

The decoupled system (50) shows that the eigenvalues

of the closed-loop (augmented) system can be dissected

into two groups. The eigenvalues of the first group lie in

an O(ε2) neighborhood of the eigenvalues of As. Note

that the eigenvalues of As which represent transmission

zeros of the sliding surface lie in the unit circle due to

Lemma 4. With sufficiently small ε, the eigenvalues of the

first group represent slow modes that are asymptotically

stable. The eigenvalues of the second group lie in an O(ε2)
neighborhood of the zero eigenvalues of Af . They represent

fast modes with sufficiently small ε; thus the fast dynamics

is asymptotically stable. Therefore, the closed-loop system

(46) is asymptotically stable with sufficiently small ε.

We summarize the above discussion in the following

theorem.

Theorem 1: The discrete-time output feedback sliding

mode control law (43) renders the sampled-data system (7)

asymptotic stability.

C. Accuracy Analysis

In this subsection, we deal with the accuracy issues of

the sliding mode when the closed-loop system is under the

influence of external disturbances. From (38) and (43), we

have

s(k + 1) = g(k) − g(k − 1). (53)

In view of (39) and (40), it follows that

s(k+1) = εΩ1(z1(k)−z1(k−1))+d2(k)−d2(k−1) (54)

From (30) and (31), we have

z1(k) − z1(k − 1) = ε(Ā11 − Ā12C̄
−1
2 C1)z1(k − 1)+

εĀ12C̄
−1
2 s(k) + d11(k) = O(ε). (55)

If the first derivative of the disturbance is bounded, then we

have

d12(k) − d12(k − 1) = εB̄2K(

∫ kε

(k−1)ε

v(τ )dτ )

+
ε2

2
B̄2K(v(k) − v(k − 1)) + O(ε3) = O(ε2). (56)

This implies

d2(k) − d2(k − 1) = O(ε2). (57)

From (54), (55) and (57), we obtain

s(k + 1) = O(ε2). (58)

Employing the same arguments and techniques as in [9], we

conclude that the system state x0(t) will stay in an O(ε2)
boundary layer of the sliding surface or s(t) = O(ε2). Our

findings are summarized in the following theorem.

Theorem 2: Consider the linear dynamic system

ẋ0(t) = A0x0(t) + B0u(t) + D0f(t)

y(t) = C0x0(t)

with the associated sliding surface

s(t) = Hy(t) = HC0x0(t) = 0.

If the exogenous disturbance f(t) and its derivative are

bounded, then the sampled-data output feedback control

u(k) = −
1

ε
(C̄2B̄2)

−1((2Im + εΩ2)Hy(k)

− (Im + εΩ2)Hy(k − 1)) + u(k − 1)

produces sliding motion in an O(ε2) boundary layer of the

sliding surface.

V. NUMERICAL EXAMPLE

We use the L-1011 aircraft model as in [4] for sampled-
data output feedback sliding mode control design where
parameters are given by

A0 =

2

6

4

0 0 1 0 0 0 0

0 −0.154 −0.0042 1.54 0 −0.744 −0.032

0 0.249 −1 −5.2 0 0.337 −1.12

0.0386 −0.996 −0.0003 −2.117 0 0.02 0

0 0.5 0 0 −4 0 0

0 0 0 0 0 −20 0

0 0 0 0 0 0 −25

3

7

5
(59)

B0 = D0 =

»

0 0 0 0 0 20 0

0 0 0 0 0 0 25

–

T

(60)

C0 =

»

0 −0.154 −0.0042 1.54 0 −0.744 −0.032

0 0.249 −1 −5.2 0 0.337 −1.12

1 0 0 0 0 0 0

0 0 0 0 1 0 0

–

. (61)

The coefficient matrix of the sliding surface s(t) = Hy(t) =
0 was chosen as

H =

[

−0.0067 0.0167 0.0033 0
0.0167 −0.0333 0 0.0333

]

. (62)

Consider the external disturbance vector

f(t) =

[

1 + sin(2t)
1.5 sin(4t)

]

, (63)

which satisfies the disturbance conditions in Lemma 1. The

sampling period is ε = 0.01 second. The initial condition is

x(0) = [1 − 2 2 − 4 3 4 − 1]T .

Employing the proposed control law (43) renders the evo-

lution of the seven state variables, the two sliding variables as

shown in Fig. 1–Fig. 2. It is observed in Fig. 1 that the state

variables converge to the origin asymptotically. Fig. 2 depicts

the particulars of the sliding motion, in which an accuracy

of O(ε2) can be seen. These numerical results agree with the

accuracy analysis in the previous section.
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disturbances (63)

0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6
x 10

−4

Time(sec)

s(
t)

 

 

s
1

s
2
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VI. CONCLUSION

We have investigated the output feedback sliding mode

control problem of sampled-data systems with external

disturbances. By some suitable linear transformations and

changes of variables, the closed-loop system under high

gain control law (43) is shaped into a two-time scale rep-

resentative. This paves way to the framework of discrete-

time singular perturbation analysis, by which the eigenvalues

of the closed-loop system are clustered into two groups:

the slow and fast eigenvalues. It is also pointed out that

the slow eigenvalues are located in an O(ε2) neighborhood

of transmission zeros of the sliding surface, while the fast

eigenvalues stay in an O(ε2) vicinity of the origin. Therefore,

the stability of the closed-loop system is guaranteed as

no external disturbances occur. The idea of approximating

disturbances by the past information equips the high gain

control law (43) with an ability to maintain the system

state in an O(ε2) boundary layer of the sliding surface.

In other words, the closed-loop exhibits good robustness

against exogenous disturbances. As an illustration, a numer-

ical example has been provided to show the efficiency of the

proposed method.
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