
  

  

Abstract— This paper develops a simple nonlinear control 

model to represent the dynamics of a coupled vehicle-driver 

system.  It is  applied to an analysis of delay and preview time 

in closed-loop control. The model is a reduced-order non-linear 

model based on a separation between kinetic and kinematic 

driver control components.  In kinetic control, vehicle 

dynamics and compensatory actions are represented in a 

fashion similar to the well-known linear “crossover” model; 

kinematic control takes the form of a reference velocity derived 

from the local roadway. Analytic stability results are 

developed, providing specific relationships between minimum 

preview, speed, time-delay and disturbance amplitude. The 

analysis is developed quite generally, but is applied in detail to 

straight-line path following on a flat horizontal road. 

Predictions are validated using results from one specific 

experimental study. The model is suitable for developing high-

level control methods relating to active safety, as in automated 

collision avoidance systems. 

I. INTRODUCTION 

HIS paper develops a simple nonlinear control model to 

represent the dynamics of a coupled vehicle-driver 

system.  The driver sub-model may be applied to any level 

of vehicle dynamics model; however the aim of the paper is 

to derive fundamental relationships between various 

operating and performance parameters.  A particular aim is 

to improve understanding of the steering control aspects of 

handling control under conditions of limited road friction. 

The classical literature on driver modeling focuses on 

linear dynamics, with application of classical control [3, 6, 

8, 10] or optimization [5, 7 9].  In these studies it is 

commonly assumed that a desired path is pre-defined; in fact 

this is not necessary, provided some visually-based 

reference is available [1, 2] – for example this could be for 

remaining with a road boundary, just as easily as from the 

tracking of a lane center or optimal path.  In reference [4] an 

artificial neural network is used to model the recorded 

behavior of human drivers in a “black-box” form; here we 

take the opposite approach, developing a new type of model 

from the perspective of a simple nonlinear control 

formulation of the driving task. 

Consider a simple concept model for controlling the 

motion of a ground vehicle - Figure 1. This vehicle motion 

is considered planar, the road surface is assumed horizontal, 

and other degrees of freedom such as roll, pitch and sideslip 

are considered secondary. Thus the mass center acceleration 
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Fig. 1.  Concept Model for the Overall Driving Task 

 

Driver inputs )(tq comprise steering, throttle and brake 

application. Control is separated into two nested loops. In 

the outer “kinematic control loop”, the feedback is related to 

visual preview of the road geometry and other relevant 

objects (vehicles, obstructions etc.), and includes motion 

cues derived from the motion of the subject vehicle;  

position and velocity of the subject vehicle are essentially 

filtered by the road scene to provide the necessary visual 

information to control the vehicle.  Localized effects of 

vehicle pitch and roll on the visual road scene are naturally 

regarded  as being filtered out by the driver.  In other words, 

we assume the driver executes an ongoing transformation 

between vehicle and world coordinates; the model can then 

be defined in global coordinates, even though in practice the 

driver only directly perceives relative position and motion. 

The net result is a visually derived reference, passed to 

the inner “compensatory” control loop; this in turn activates 

the control (steering, braking and throttle) while making use 

of feedback from vehicle accelerations, steering torque, 

pedal force, plus any other relevant vehicle dynamic 

responses such as roll and pitch [9].  Note that vehicle yaw 

response, while relevant to both control loops, can be 

excluded from a simplified model of the process; assuming 

vehicle lateral (slip) velocities are small, yaw angle is 

directly related to 
Gv , while yaw velocity is proportional to 

Ga . For this reason we need not explicitly refer to yaw 

response, when a reduced-order model of the overall closed-

loop control is developed in the next section. 

II. MODEL REDUCTION  

In Figure 1, the driver model integrates information from 

the road scene and vehicle response in some general way; 

we now make some more specific assumptions to develop 

the model. The driver is assumed to convert visual 

information into a kinematic reference for inner-loop control 

of the vehicle dynamics – Figure 2. 
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Fig. 2.  Kinematic Policy as a Pre-Filter for Steering Control 

 

 

The kinematic policy is a key part of the reduced-order 

model: it takes the previewed road scene as input and 

provides a vehicle velocity reference as output. In the case 

where road geometry and motion constraints are static (e.g. 

there is collision avoidance goal with respect to other 

vehicles) we presume the desired velocity vector is a 

function of position only; in this case the combination of 

given road geometry and kinematic policy can be 

represented as a stationary vector field )(xw  which is the 

desired vehicle mass center velocity vector at any point on 

the roadway. Here ),( yx=x  is represented as an 

independent spatial variable, while in application in the 

driving control loop we set )(tGrx = . 

To allow effective path following, the driver must be 

aware of the path curvature.  This is conveniently encoded 

within the model by the kinematic policy to provide a 

velocity gradient reference, ∇w , in addition to the reference 

velocity w.  This is then sufficient to define a reference 

acceleration 

 wwa )( ∇⋅=ref . (1) 

We assume that the driver directly commands the vehicle 

acceleration with a constant time-delay – Figure 3.  The 

driver command com

Ga  is limited according to available road 

friction: 

 a
com (t) ≤ a  (2) 

Suppose, as a special case, the intention is to follow a 

straight-line reference using a fixed preview distance L – 

Figure 4.  Using the (x, y) coordinates shown, the reference 

velocity is given by 
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where 22 yLD +=  and the reference speed U is assumed 

constant.  In this case we can easily derive the reference 

acceleration (1): 

 a
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The kinematic control block in Fig. 3 is now a sub-

process providing target mass-center accelerations to the 

reduced driver-vehicle model.  We develop some generic 

control laws in the next section using only local information 

– all roadway data is distilled into the reference field and its 

spatial derivatives, )(xw and )(xw∇ . 

One adaptation assumed in Figure 3 is the scalar gain (τ ) 

which represents the only explicit forward predictive 

element of the model.  Because of the known time delay in 

the vehicle-driver block, the desired vehicle control is based 

on a predicted vehicle position:   

 ˜ r G = rG + τ vG . (5) 

An extended predictor might be considered, making use 

of the acceleration vector GGGG avrr
2

2
1~ ττ ++=  , but this 

would only be relevant if the mass center accelerations were 

large. Some values typical of normal highway driving are 

2.0=τ , 120 −= msGv
24 −= msGa , and in this case the 

magnitude of the acceleration term is only 2% that of the 

velocity term; not only would compensation for the 

acceleration term be difficult for a human driver to execute, 

under normal conditions its effect would be negligible. 

III. CONTROL LAW 

The control aim is to minimize the instantaneous error 

between the vehicle mass-center velocity and the reference 

velocity derived from kinematic road preview: 

e(t) = vG (t) − w(rG (t)).  In the absence of disturbances the 

driver commands vehicle acceleration 

 )(tG uv =�  (6) 

and the control input u is to be a function of the mass center 

velocity and reference vector field terms: 

  u = f (vG ,w,∇w). (7) 

When ))(()( tt GG rwv =  the vehicle accurately follows 

the reference field, and the control 
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Fig. 4.  Fixed Preview Distance for Straight-line Driving 
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Fig. 3.  Nonlinear Crossover Model of the Vehicle-Driver System 
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 ))(()(0 tt G

ref
rau ≡  (8) 

is required to maintain tracking, e.g. to provide lateral 

acceleration in following a curve.  To compensate for errors  

we introduce a residual control )(~ tu  in the form 

 )()()()(~
0 tkttt euuu −=−=  (9) 

yielding the simple (nonlinear) control law 

 euuuu k−=+= 00
~ . (10) 

IV. LINEAR STABILITY ANALYSIS 

Linear analysis of tracking a straight-line path is now 

considered, assuming path deviations are small: Ly << , 

Uy <<� .  Combining equations (3), (4) and (9) provides the 

following control law: 

 
°¿

°
¾
½

°̄

°
®
­

¸̧
¹

·
¨̈
©

§
−¸̧
¹

·
¨̈
©

§
−¸̧
¹

·
¨̈
©

§
=

y

L

D

U

y

x
k

L

y

D

LyU
t

�

�

4

2

)(u  (11) 

which reduces to the following equations for longitudinal 

and lateral control 

 )()( Uxktux −−= �  (12) 

 )()( 12 yTykyTtu y

−− +−= �  (13) 

Longitudinal control simply maintains a constant vehicle 

speed, is decoupled from the lateral control, and is of little 

interest here.  The lateral control law is to be applied within 

the Nonlinear Crossover Model: if )(ty  represents the 

instantaneous deviation, according to equation (5), the 

displacement ‘presented’ to the kinematic policy is actually  

 yyy �τ+=ˆ  (14) 

So, replacing y in (13) by ŷ  while making no change to y� - 

as above, accelerations terms are not used: 

 ykTykTykyTyTtu y
��� ττ 1122)( −−−− −−−+=  

where 1−= LUT  is the preview time;  this can be re-written 

 yKyKtu DPy
�−−=)(  (15) 

with 

 21 −− −= TkTKP , 21 −− −+= TTkkKD ττ . (16) 

The linearized control thus reduces to a simple 

proportional-derivative feedback of the lateral deviation. 

The simple form of the control is directly comparable with 

steering control models from the classical literature [3, 8, 

10].  In particular, the separation into a feedforward ‘pursuit 

control’ component plus a ‘compensatory feedback’ control 

can be made explicit here by formally setting T → ∞  in 

equations (14), (15) to reduce the feedforward component to 

zero: 

 yktu comp

y
�−=)(  (17) 

This is also the specific linear form of the residual control 

in equation (9).  The open-loop transfer function for the 

plant-plus compensatory control for the linearized model is 

then 
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Thus the nonlinear control law presented in Section III, 

taken together with the simple preview point assumption in 

Figure 4, reduces to the well-known crossover model of 

human control [10,11]. Hence the general model presented 

will be referred to as the nonlinear crossover model (NCM). 

Linearized stability of the NCM is now considered, with 

all terms in (16) fully included.  Assuming the proportional 

gain is positive 

 0>PK  (19) 

the Nyquist or Bode condition for positive phase margin is 

 πω −>))(arg( cjL  (20) 

 ( )21)( −−− +≡ sKsKesL PD

sτ . (21) 

Here L is the forward path (‘loop’) transfer function and cω  

is the crossover frequency (now including preview terms).  

From equations (16), (19) there is a lower limit on the 

compensatory gain: 

 1−> Tk  (22) 

which increases as the preview time becomes short.  

Alternatively the driver control bandwidth, as represented by 

the crossover frequency of the open loop compensatory 

control, must exceed the lower bound derived from preview: 

this is standard [6] and intuitively obvious.  In the next 

section a slightly stronger result is obtained using a 

nonlinear analysis 

Condition (21) provides an upper limit on k; from (21), 

the crossover frequency is easily found to be 

 { }242

2
12 4 PDDc KKK ++=ω  (23) 

and condition (20) reduces to 

 τω
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This condition constrains three independent control 

parameters ),,( τkT ; to analyze the result it is convenient to 

scale relative to the preview time to provide corresponding 

dimensionless variables, and hence reduce the constraint to 

two variables: 

τ = T −1τ , k = Tk , K D = TKD
 

K P = T 2KP
, ω c = Tωc

  (25) 

Equations (16), (23) and (24) are unchanged except for 

converting to dimensionless variables and formally setting T 

to unity.  The phase margin condition (24) is then easily 

expressed in terms ),( τk : 
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 tan−1 ω cτ +
ω ck 

k −1
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¸ > ω cτ  (26) 

where ω c(k , τ )  is found from (23), i.e. 

 2422 )1(4)()(2 −+−++−+= kkkkkc ττττω  (27) 

The stability region is plotted in Figure 5.  The shaded 

region represents an upper bound on the normalized 

compensatory gain.  From equation (25) the controller gain k 

is scaled linearly with respect to the preview time T, so as 

expected the upper limit becomes large for large previews.   

The figure includes a superimposed curve at the stability 

boundary. Based on least-squares curve fitting, the 

normalized gain stability condition is given by  

 
0094.0

2941.14808.0
)(

−

+−
≡<

τ

τ
τckk  (28) 

In this linear analysis, closed-loop stability is guaranteed 

based on these limits on k, while there is no independent 

limit on the preview time T. 
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 Fig. 5.  Phase Contours in the (k , τ )  plane- stability region shaded 

. 

V. NONLINEAR STABILITY CRITERION 

Returning to the general control model, a nonlinear 

stability analysis was presented in [1].  That analysis 

assumed zero time delay (Figure 3) but will form the basis 

of an analytical result that includes the time delay.   In the 

following analysis we temporarily assume 0→τ .  From the 

above definitions of e and u~  

 ])[(~ weeueee ∇⋅⋅−⋅=⋅ � .  

This can be re-written 

 eeueee H
T−⋅=⋅ ~�   

where H is the symmetric 2×2 matrix with components 
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measuring the point-wise divergence of the field [1].  Since 

H is symmetric it has real eigenvalues,  which are assumed 

bounded below in the region Ω  of interest 

 cHeig −≥)(  for Ω∈x  (30) 

for some c > 0.  From equation (9) the control law is 

 

 ( ) ( ))()()()()( GGGG tkt rwvrwrwu −−∇⋅=   

and hence the error equation takes the form 

 eeee Hke T−−=⋅ 2
�   

where )()( tte e= .  Then, from (30) we obtain 

 ecke )( −−≤�  (31) 

which implies 

 ( ) 0)(})exp{( ≤− tetck
dt

d
  

 })(exp{)( 0 tckete −−<   

and hence the errors induced by an initial disturbance 

asymptotically tend to zero provided: 

 ck >  (32)  

In the absence of time delay, there is no upper gain limit, 

and the ability to satisfy this condition depends only on there 

being sufficient available surface friction and hence mass-

center accelerations.   We assume (c.f. equation (2))  

 at ≤)(u .  

Since the direction of e is unknown, and some control 

authority is needed for making corrective control, we 

assume a conservative limit on the reference control 

 ba −≤)(0 xu  (33) 

with corrective accelerations bounded by b , ab <<0 : 

 bt ≤)(~u . (34) 

Comparing equations (10) and (32), the lower limit on k is 

equivalent to placing an upper bound on the initial 

disturbance (velocity error): 

 
c

b
e <0  (35) 

Under the above control, )(te  is monotonic decreasing 

and the gain can be maintained above the limit in (32) 

without violating (34). 

VI. APPLICATION TO STRAIGHT-LINE TRACKING 

Using the reference field (3), which assumes constant 

speed and preview distance L, it is straightforward to 

calculate matrix (29) 
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which has eigenvalues 
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These are bounded below, as in (30) by c−≥λ , where 

 ( )23

3 22

)(
ξξ +=

+
=

L

U

D

DLUL
c  (38) 

where the dimensionless parameter DL=ξ  is used to 

define the dependence on y.  Since 10 ≤< ξ , it is clear that 

c attains its greatest magnitude at 1=ξ , which occurs on the 

target path itself (y = 0), and hence the global minimum is 

 1−== T
L

U
c  (39) 

In the following, (39) is used as a global bound for all y, 

and it is noticeable that equation (22) is “re-discovered” here 

in the nonlinear analysis by comparing equations (32) and 

(39).  The linear analysis included a pre-compensated time 

delay, while here the time delay in vehicle control (from 

previewed aspects of the road scene) is assumed to be absent 

or fully compensated by the driver. 

From equations (35) and (39) we determine a 

conservative upper bound on the initial disturbance:  

 bTe <0  (40) 

We now define a specific form for the initial disturbance 

in straight-line tracking, by assuming a pure lateral deviation 

y with unchanged initial velocity 

 »
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then from (3) 
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For simplicity, if we assume the lateral deviation is small 

compared to the preview distance, we obtain 

 yT
L

yU
e 1

0

−==   

and hence from (40) the minimum preview time is 

 
b

y
TT max

min =>  (41) 

In general, for large deviations, the bound is more 

complex (and easily derived), but it is clear that the preview 

must increase with the level of disturbance, and in the real 

world case the driver must adapt preview to increase with 

path offset, or disturbance  level. This general phenomenon 

is discussed by MacAdam in [5], where results from a 

simulator experiment are presented that indicate region of 

“preferred damping” just above a stability boundary - Figure 

6.  From the figure it can be seen that the boundary is 

estimated as a straight line with slope around 2.0 in the 

space of preview time vs. delay time. 

To make a comparison with MacAdam’s experimental 

stability margin, we continue to represent the disturbance as 

an initial velocity error, but allow that disturbance to grow 

during the period of the time delay.  This corresponds to a 

situation where the driver cannot use preview to compensate 

for the disturbance, as would be the case for previewed path 

curvature.  In the case of a pure lateral path offset, the 

disturbance does not grow during this initial delay interval, 

so the above result (41) is unaffected by 0>τ .  On the 

other hand an initial yaw deviation would certainly amplify 

the initial error, and this case is considered now. 

 

 
 In Figure 7 we assume an initial error in the vehicle 

heading, 1<<θ .  Points P, Q and R lie on the target path –  

P is the vehicle mass centre position at time 0=t , and the 

vehicle moves to S at time τ=t .  Since the disturbance is 

initially unknown to the driver, the intervention (10) is 

applied at S, and R represents the target point in the 

kinematic policy.  The effect of the time delay is twofold: 

first the driver preview distance at which control initiates 

intervention is distance |PR| 

 τULLp +=  (42)  

with corresponding preview time 

 τ+= TTp  (43) 

However, the stability correction appropriate to the above 

analysis equates to the shorter preview time T. Secondly, the 

initial path deviation is amplified by the resulting path 

offset, so that at S the angular error is now φθ + .  

Assuming small angles and zero speed deviation, the initial 

velocity error is given by  

 φθ += Ue0  (44) 

and from the figure 

 
Fig. 6.  Empirical Stability Region - reference [6] 
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φ ==  (45) 

Comparing equation (40), the condition for stable tracking 

of the target line becomes 

 bTU <+φθ  (46) 

Defining a characteristic time  

 
b

U
T

θ
≡0 , (47) 

condition (46) reduces to  

 2

0 TTT p < . (48) 

In the limit 0→τ  (when pTT = ),  this implies 0TT >  

places a lower limit on the preview time – in other words a 

longer minimum preview is required at high speed, not just a 

great preview distance.  Also, the required preview increases 

with the amplitude of the disturbance and reduces when 

there available friction b increases.  More generally,  from  

(43), (48) is a quadratic inequality for T in terms  of 0T : 

 000

2 <−− τTTTT  (49) 

This is easily solved to give: 
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The expression further simplifies in the case where the 

time delay is small compared to the minimum preview time 

0T<<τ ; ignoring terms in 2

0

2 −Tτ  and smaller we obtain 

 τ20

min +≈ TTp  (51) 

 
 Fig. 8.  Theoretical Stability Boundary and Approximation 

 

In Figure 8, 0T  has been chosen to match the intercept of 

Figure 6, yielding an excellent match between theory and 

experiment. The model also predicts that for driver-vehicle 

delay τ  larger than about 0.2 seconds, the required preview 

time is slightly less than the linear boundary shows.  This is 

a testable hypothesis, applicable to a future driving simulator 

study. Note that the analysis here is specific to straight-line 

driving, while MacAdam’s results are based on driver 

performance on a ‘slalom-like course’; however the 

similarity in the results is striking. Further analysis of curved 

path tracking is feasible and currently ongoing. 

VII. CONCLUSIONS 

On the basis of a very simple “acceleration command with 

delay” model of the coupled dynamics of a highway vehicle 

plus driver, a number of analytical results have been 

obtained relating preview time, controller gain and preview 

distance.  The linearized control law reduces to a specific 

form of a proportional derivative, and pure compensatory 

component in this case reduces to the standard crossover 

model of human control – hence the term “Nonlinear 

Crossover Model” is used for the control system. 

Both linear and nonlinear analysis have been applied to 

the analysis of stable tracking, with appropriate agreement 

found at the low-gain limit. Predicted stability limits for the 

linearized model have been represented in a non-

dimensionalized form.  Nonlinear results relate time delay, 

preview time, acceleration limits and disturbance 

amplitudes.  Predictions have been verified against the 

findings of an earlier study of friction-limited dynamic 

control in a driving simulator. 
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