

 Abstract— Nonlinear Trajectory Generation (NTG),

developed by Mark Milam et. al. [1], is a software algorithm
used to generate trajectories of constrained nonlinear systems
in real-time. The goal of this project is to make NTG more
user-friendly. To accomplish this, we have programmed a
graphical user interface (GUI) in Java, using object oriented
design, which wraps the NTG software and allows the user to
quickly and efficiently alter the parameters of the NTG. This
new program, called NTGsim, eliminates the need to
reprogram the NTG algorithm explicitly each time the user
wishes to change a parameter.

I. INTRODUCTION
onlinear Trajectory Generation (NTG) developed by
Mark Milam et. al. [1] solves constrained nonlinear

optimal control problems in real–time. It is based on a
combination of nonlinear control theory, spline theory, and
sequential quadratic programming [2]. NTG takes the
optimal control problem formulation, characterization of
trajectory space, and the set of collocation points, and
transforms them into an NLP problem. It is then solved
using NPSOL, a popular NLP solver, which uses Sequential
Quadratic Programming (SQP) to obtain the solution [3].

NTG has been applied to several robotics problems in the
literature. In [4] and [5] NTG is used to generate low-
observable trajectories for unmanned aerial vehicles. In [6],
NTG is used for a missile intercept problem.
 Unfortunately, the current state of NTG is somewhat
counterintuitive to use. Each optimal control problem
requires the user to write a program which details the
problem’s parameters, constraints and cost functions. If the
user whishes to make any changes to his or her optimal
control problem, such as alter a spline parameter or modify
the cost functions, the user must open up the source code of
his or her program, make the appropriate changes,
recompile, and finally link with the NTG library once again.
On top of being hideously time consuming, this process also
increases the chance of introducing bugs to the program
each time the process is repeated. It is clear that NTG is not
the most user friendly software package.

In this paper we present NTGsim, the solution we have
developed. NTGsim is a graphical user interface for NTG.

 Lyall Jonathan Di Trapani is a Master of Engineering student at the
University of Louisville, Louisville, KY 40292 USA
(ljditr01@louisville.edu).

Tamer Inanc is an Assistant Professor at the University of Louisville,
Louisville, KY 40292 USA (t.inanc@louisville.edu).

By creating a GUI around NTG, we hope to increase ease of
use and accessibility, to eliminate unnecessary recompilation
and to support in specifying and solving optimization
problems with NTG. Recently, a solution to the problem is
proposed to facilitate the use of NTG called OPTRAGEN, a
MATLAB toolbox for NTG developed by Bhattacharya et.
al. [16]. However, OPTRAGEN being a MATLAB toolbox
for NTG is different from our solution NTGsim.
OPTRAGEN obviously requires MATLAB to be used and it
does not provide real-time application of the NTG which
was designed to solve the constrained nonlinear optimal
control problems in real-time. On the other hand, our
proposed solution NTGsim is based on Java platform and
provides real-time application and built-in 3D simulator
(currently being developed) to quickly simulate the designed
trajectories without depending on other commercial software
tools such as MATLAB.
 The structure of this paper is as follows. First, the reader
will be given a brief overview of the NTG algorithm. In the
next section, NTGsim will be broken down into its major
components and concepts and each one will be discussed.
Following that, full installation instruction for the NTGsim
will be provided. The final section will give a brief example
on how to use NTGsim.

II. OVERVIEW OF NTG
In order for the user to manipulate NTG, the user must

define the constrained nonlinear optimal control problem of
interest explicitly in the NTG framework [1]. For such as
system to be fully qualified, the NTG algorithm has 46 input
parameters [1]. These parameters can be broken up into two
different types: static parameters and dynamic functions.

The static parameters define the number of outputs
(splines) and the number of derivatives for each output, the
number of cost and constraint fuctions, the placement of
knot points, the order and smoothness of the B-splines, and
the collocation points for each output; basically, any
parameter that can be assigned a discrete value(s.) We have
labeled these parameters as “static” because they do not
require the NTG algorithm to be recompiled each time they
change. The static parameters can be passed to the NTG
algorithm with the use of a well designed GUI without
altering the NTG algorithm.

The second group of parameters, the dynamic functions,
comprises the six remaining input parameters. Half of these
are the three cost functions-initial, trajectory, and final-

NTGsim: A Graphical User Interface for
the Nonlinear Trajectory Generation Algorithm

Lyall Jonathan Di Trapani and Tamer Inanc

N

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

WeA12.4

978-1-4244-4524-0/09/$25.00 ©2009 AACC 402

which describe the objective(s) of the system. The other
half is the three nonlinear constraint functions-initial,
trajectory, and final. These last three aptly named functions
describe the nonlinear constraints of the system. The reason
the six functions are labeled as “dynamic” is they do require
the NTG algorithm to be recompiled each time they are
changed.

The current version of NTG only runs on operating
systems which implement the Portable Operating System
Interface (POSIX.) During the time of this project, it was
tested on x86 based computers running various Ubuntu and
Mandriva Linux distributions. The NTG algorithm is
dependent on three static librariesa; libNPSOL.a, libpgs.a,
and libg2c.a. The NPSOL and PGS libraries were written in
the FORTRAN programming language. The NPSOL library
is needed to do the actual nonlinear problem solving [8].
The PGS library takes care of spline related functions and
the G2C library is needed to understand the FORTRAN
symbols used in NPSOL and PGS. The entire NTG
algorithm, along with the three static libraries, is packaged
into a single static library called libNTG.a. The libNTG.a
library does not do anything by itself, it needs another
program to wrap the library and feed it all 46 of its
parameters.

III. PROGRAM STRUCTURE
This section will explain the general flow of data through

NTGsim and the reasons why Java was chosen as the
programming language. Next it will break down the
application into its major components, discuss each one and
explain how modularization and multithreading were used.

A. Data Flow
The following is a rough overview of the data flow

through the program. Each concept will be discussed in
more detail at a latter time. The data flow of the program is
shown in Fig. 1. First, the InputGui object receives input
from the user. For each input received, the InputGui will
pass the new data to the InputData object. The
InputData will then translate the new data from the
problem domain into the format the NTG algorithm expects.
The transformed data will be stored in the
NativeInputData object. Once the user is done setting
up the desired parameters, the Controller object will send the
NativeInputData to the native library, libJ2NTG,
using the Java Native Interface (JNI.) The JNI allows a
connection from the java program, through the Java Virtual
Machine (JVM) to the native library [9]. The libJ2NTG
takes the parameters from within the NativeInputData
and feeds them to the NTG algorithm which in turn
computes the coefficients of the spline(s) representing the
generated trajectory(s.) The coefficients are written to a text

a In Linux, static libraries are suffixed by the .a extension and can also be
referred to as archives. Dynamic libraries are suffixed by the .so extension
and sometimes referred to as shared libraries.

file on the hard drive and then returned across the JVM,
using JNI, to the Controller.

Figure 1: NTGsim Data Flow

As can be seen from the Fig. 1, using Java as opposed to

the C programming language adds an extra layer of
complexity to the program flow. If the C language was used
instead to program NTGsim, the interfacing layer through
JNI would not be necessary. However, developing the
software in Java allowed us to obtain many of our key
objectives while facilitating the production of more robust
software. One of our goals was to ensure NTGsim was not
tied to a single operating system (OS). In case NTG was
ported to a new operating system, we wanted to have the
ability to bring NTGsim along with it to the new OS. Java’s
platform independent nature [10] made the language a
natural fit for this project. Another goal was to create a
modular GUI which could be adapted to be used with
different trajectory generation algorithms in the future. The
object oriented nature of the Java programming language
[10], [11], [12] allowed us to easily incorporate this feature.
Since the overreaching purpose of this project was to design
a GUI, ensuring that the chosen language had a quality
widget toolkit available was top priority. Java’s Swing and
the underlying Abstract Windowing Toolkit (AWT) fit the
bill nicely. Their power, flexibility and consistent cross-
platform presentation were all wins for Java over other
languages. Since this project was envisioned as trajectory
generation system for autonomous robots, having a way to
remotely connect with the NTGsim program and feed it
input data was very appealing. For instance, being able to
connect to a GPS or an overhead camera system would be
very useful. RMI easily provides this functionality [10].
Thus, future extensions to the NTGsim in order to include
an outside data source are very possible with Java’s RMI.

Also, in light of the real-time nature of NTG, we needed
to ensure that NTGsim would also be able to run in real-
time. This means that the GUI component would have to at
least be able to keep up with the NTG algorithm. Although,
in the past, the Java Runtime Environment (JRE) has
suffered a negative reputation with respect to its
performance, today, the JRE’s performance is quite close to
that of C++ and certainly up to the task of running a
responsive GUI [10]. This is in large part due to the advent
of the Hotspot Just in Time (JIT) compiler [13].

In GUI applications, it is important to prevent GUI hang-
ups where the application appears to be unresponsive. With
its built-in multithreading ability, Java is again a good
choice [13]. Another important feature of the Java platform
is its ability to automatically generate program

403

documentation from properly formatted comments. This
huge time saver also contributed to our decision to use the
Java [12].

Because of Java’s lack of pointers and built in memory
management, it is much easier to keep bug free [9], [10]. If
we had chosen to use C or C++ we would have had the
added burden of dealing with pointers and managing
NTGsim’s memory. Finally, the benefits of developing
NTGsim with Java far outweighed the negative.

B. Overview of the Class Diagram
Overall, the program is broken up into four distinct parts.

These four parts can be seen in Fig. 2. InputGui:
responsible for retrieving user input and sending it to the
InputObject. InputData: responsible for translating the
user input into the NTG format. NativeInputData: a
simple data structure which holds the processed input data.
All data in this object is ready for NTG execution.
NativeCaller: responsible for connecting to the native
code (in this case NTG) through JNI and returning the
results. The InputData has a reference to the
NativeInputData. A fifth object, the Controller is also
shown in Fig. 2. This object is responsible for controlling
the overall program flow and the communication with the
native library, libJ2NTG. The InputGui, InputData,
and NativeCaller are contained within the Controller
object which is also composed of the top-level window
(JFrame) and the menu bar (JMenuBar.)a

Figure 2: NTGsim Simplified Class Diagram

C. Modularization
As discussed earlier, we wanted to keep the top-level

objects as modular as possible in order to aid in future
extension to the program, such as swapping out the back end
algorithm, NTG, for another trajectory generation algorithm.
In order to accomplish this, the strategy design pattern was
used [14]. The three most important objects, the
InputGui, InputData, and the NativeCaller,
implement an interface which corresponds to their family.
For instance, the NtgInputData implements the
InputData interface; the NtgCaller implements the
NativeCaller interface and so on. The Controller object
only references the interfaces of the classes and not the
concrete classes directly. This allows the creation of
families of objects which all implement the same interface
and can be used interchangeably even though they have
different behavior.

a JFrame and JMenuBar are standard components in Java’s Swing
GUI toolkit.

For example, if we wanted to interface the NTGsim with a
different trajectory generation algorithm, we would merely
create an object which implements the NativeCaller
interface and calls the new algorithm and then provide this
new object as the NativeCaller for the Controller
object. By creating modular objects, we have isolated
potential change into separate compartments, preventing the
change in one object from affecting another object.

To further help modularization, the abstract factory design
pattern was used to encapsulate the instantiation of the main
objects [14]. A Factory interface was created which has
methods to create all three of the main objectsb. An
NtgFactory subclass creates objects specifically for the
current version of NTGsim. For instance, when
createInputData() is called on the NtgFactory, it
instantiates an object of the class NtgInputData and
returns the newly created object. Fig. 3 shows the class
diagram of the factory design pattern. However, all the
methods take interfaces as input parameters and likewise
return interfaces. This means the createInputData()
method returns an object which implements the
InputData interface; the createInputGui() method
returns an object which implements the InputGui
interface and so on. By returning interfaces, the Controller
object only needs to know about the three different
interfaces and not the exact concrete subclass which it will
be using. Because the object creation process is
encapsulated, the only code which needs to be changed
when using a different object, is the concrete factory code.
Instead of using the NtgFactory, the programmer would
create a new Factory which creates the appropriate
objects.

Figure 3: Abstract Factory Design Pattern Class Diagram

D. InputGui
The InputGui is the interface between the human user

and the NTGsim program. The InputGui object gets user
input and sends it to the InputObject. It contains all the
input widgetsc used in the GUI as well as the listener objects
which respond to the user-triggered widgets’ events. The
InputGui registers the listeners on all the widgets. When

b The NativeInputData object was not included in the Factory because it
is tightly coupled with the input data. Instead, each concrete InputData
class is responsible for instantiating its corresponding NativeInputData.

c A widget is a term used to describe a GUI component with which the
user interacts. Some examples of widgets are buttons, menus, and combo-
boxes.

404

the user inputs data, the affected widget responds by
notifying all the objects listening to it. This system is
modeled after the observer design pattern [14]. The widget
objects are the subjects and the listener objects are the
observers.

NTGsim uses over 40 widgets. With this many widgets, a
special system was needed to uniformly handle all of the
widgets’ different events. Four elements were used to ease
this problem: (1) All the widgets were extended to
implement a custom interface called DataPointable.
This interface has three methods: updateInputData(),
redisplay() and setDataPointer(). Having a
common interface allowed the widgets to be treated
polymorphously. (2) A special listener class, called
MultiChangeListener, was created which can listen
for any event triggered by the GUI widgets as long as the
registered widgets implements the DataPointable
interface. With this class, all events are handled the same
way; by calling updateInputData() on the event’s
source (the DataPointable widget which triggered the
envent.) (3) All widgets were placed in a HashMapa
immediately after creation. The HashMap key values were
based on an Enumeration which had one concise,
descriptive value for each widget. This allowed for the
retrieval of specific widgets from the HashMap.
(4) Each widget contained a reference to a DataPointer
which will be discussed in more detail in the InputData
section.

The three methods in the DataPointable interface
have very simple purposes. updateInputData() will
pass the new user input to the InputData object,
redisplay() will redisplay the widget with the current
values taken from the InputData object, and
setDataPointer() sets a reference to the supplied
DataPointer.

E. InputData
As mentioned earlier, the InputData object takes the

user input retrieved by the InputGui object, translates it
into the format expected by the NTG algorithm, and stores it
in the NativeInputData object. However, as previously
stated, NTGsim has over 40 widgets. That means over 40
different input types. More explicitly, it means that the
InputData needs to understand over 40 different input
messages and how to handle and translate each one. To deal
with this problem a complementary system to the one used
with the InputGui was created. In this system, each key in
the keysets created for the widgets’ HashMap has a
corresponding DataPointer object in the InputData.
A DataPointer object is an inner-class of to the
InputData which implements the DataPointer
interface. Having all the inner-classes implements the same
interface makes them polymorphic and much easier to
manage. The DataPointer interface, like the

a HashMap is the standard key/value pair collection in the Java
language.

DataPointable interface, is very simple. It has only two
methods, setData() and getData(). The setData()
method translates the user input to the NTG format and
places it in the NativeInputData object. It also updates
all dependent parameters in the NativeInputData. The
getData() method retrieves the pertinent data from the
NativeInputData, translates it into a form useful to the
user, and returns the new data.

By using the DataPointer and DataPointable
interface, the widgets become loosely coupled with their
corresponding DataPointers. This allows widgets and
DataPointers to be changed, added, and, removed
without affecting the other objects. It also simplifies
programming the GUI since each widget/DataPointer
combo can be dealt with one at a time without worry of
breaking preexisting code.

F. NativeInputData and NativeCaller
This object contains all the input parameters needed by the

NTG algorithm in the format NTG expects. It has very few
methods. It is intended to be used as a “dumb” data
structure as opposed to being a “first class object.” All of
the access modifiers of its members are public to allow easy
access by the InputData object, however, the
InputData keeps its NativeInputData object marked
as private. This way the InputData is the only object who
has access to the NativeInputData and all of its
variables.

The purpose of the NativeCaller is to connect with
the native code and pass it the NativeInputData. The
NativeCaller uses the Java Native Interface to link the
program with a dynamic library, libJ2NTG.so,
containing the NTG algorithm. To accomplish this, the
NativeCaller defines a native method; this is a method
with the “native” qualifier and no body (the body of the
method is implemented in C.) By using the “native” key
word, the Java compiler knows that this method will be
implemented in C or C++ and will not generate any errors
due to its missing body [9].

G. Multithreading
NTGsim always invokes the NativeCaller’s method

on a separate thread. This is to prevent the GUI from
becoming unresponsive. To understand why this is, one
must understand how threading works with Java’s Swing.
The Event Dispatch Thread (EDT) is the thread on which all
the GUI related activities occur such as rendering the GUI
and executing Events [13]. By running all GUI activities on
a single private thread, the GUI can operate consistently and
safely. However, if a method with significant computational
demand is executed on the EDT, the thread will become tied
up with said method and will be unable to handle user
triggered events. If the computation time of the method is
short, the delay will be unnoticeable. However, if the delay
is long, on the order of 100ms, then the user will notice the
lag in the GUI [13]. Therefore, in order to keep the GUI
responsive, computationally intensive tasks, such as calling
the NTG algorithm, should be executed on a separate thread

405

other than the EDT. Whenever the user requests the
Controller to run the NTG algorithm (remember, this occurs
on the EDT,) the Controller creates a special
SwingWorker which invokes the NativeCaller’s
method. A SwingWorker is an object which runs on a
separate worker thread apart from the EDT. With this
implementation, the NTGsim GUI remains responsive even
though another thread is busy calculating a new trajectory.

H. libJ2NTG
libJ2NTG.so is the dynamic library which houses the

implementation of the native method as well as the static
NTG library and all the static libraries on which NTG
depends on. This is illustrated in Fig. 4, which also shows
that libJ2NTG.so also depends on another dynamic
library, libDynamicFunc.so. This secondary dynamic
library contains the implementation of the six user defined
function that NTG calls (3 cost functions and 3 nonlinear
constraint functoins.) libJ2NTG.so is static and never
needs to be change, however, the 6 user defined functions
may change with different constraints and objectives. By
creating a separate dynamic library,
libDynamicFunc.so, for the dynamic parts, we have
effectively encapsulated the changing part of the native
code. Therefore, if the user wants to change the trajectory
cost function, he or she need only open and edit the
libDynamicFunc.so and then recompile it. He or she
does not need to touch the libJ2NTG.so whatsoever. The
end result is a greatly simplified function editing process.

Figure 4: Native Library Structure

As mentioned earlier, libJ2NTG.so implements the

native method in C. The native method, genSpline(),
receives the NativeInputData as an input parameter. It
starts by retrieving each of the parameters to the NTG
algorithm from the NativeInputData. In the case that
the parameter is a primitive array, the method must tell the
JVM to lay out the array’s elements contiguously and to pin
down the array in its memory. This guarantees that the JVM
will not move around the array or any of the array’s
elements until the method releases the array. Doing this
allows the native method to perform pointer arithmetic.
Next, the native method passes all the new parameters to the
NTG algorithm. Once the algorithm completes execution,
the native method releases the primitive arrays and returns
the NativeOutputData object.

IV. INSTALLATION
The following section will explain how to install the

NTGsim application. (1) Download and install the Java SE
Runtime Environment Version 6 (JRE 6) for the i586
architecture. (2) Download the NTGsim zip file from the
University of Louisville website (will be available at
http://www.ece.uofl.edu/~t0inan01). (3) Unzip the file in
any directory. (4) To run NTGsim from the command line,
go to the directory in which you unzipped NTGsim and type
./<PATH_OF_JRE>/java –jar NTGsim/dist/NTGsim.jar.

(5) Replace <PATH_OF_JRE> with the file path of the
JRE java binary. If the path is already set as an environment
variable, it is not necessary to include it in the command.

Please ensure that you download and install the 32-bit
version (i.e. i586) of the JRE and not the 64-bit. NTGsim is
built on 32-bit native libraries and will not work with a 64-
bit JRE unless the libraries are recompiled from source to
64-bit. Note: NTG is freely distributed software; however,
the NPSOL library on which NTG depends is not. NPSOL
is commercially licensed by Stanford Business Software Inc.

V. OPERATION AND EXAMPLE
The following defines the Vanderpole problem [16]:

subject to system dynamics

subject to terminal constraints

The problem can be reduced to a problem with one
unknown, z(t) ≡ x1(t), and the optimization problem in
terms of z(t) is

subject to terminal constraints

The first step is to define the cost and nonlinear

constraints functions. By default, these functions are set for
the Vanderpole example. However, to change the cost and
nonlinear constraints functions, first, navigate to the
/DynamicFuncNTG folder in the directory in which you
unzipped NTGsim. Next, open the DynamicFuncNTG.c
file in a text editor and modify the functions as needed.
Then recompile the DynamicFuncNTG library using the
included makefile located in the current directory. If you
wish to use helper function, write their implementations in
the DynamicFuncNTG.c file and be sure to include their
prototypes in the DynamicFuncNTG.h file.

The next step is to enter the static parameters. The static

406

parameters are separated into 5 different categories: Output
Variable Data, Spline Data, Cost Function Data, Linear
Constraints Data, and Nonlinear Constraints Data. Navigate
between these different sections by clicking on the desired
tab to the top of the window pane. In order to allow the user
to enter the parameter values, the NTGsim interface has
three different widgets: checkboxes, combo-boxes, and
text-fields. Click on a checkbox to select it. Click a second
time to deselect it. For combo-boxes, clicking on the box
will expose a drop-down-menu of possible choices. Click
on the desired selection. Text fields allow the user to
directly enter a value. Click on the text field and the mouse
pointer will transform into a text cursor inside the text field.
Enter the desired value by typing on the key board. Press
enter or select a different field to commit the value. If you
click on the menu before committing the value in a text
field, the value will not be stored as a parameter because
NTGsim has no way of knowing if you finished editing the
field or not.

The Vanderpole parameters can be directly loaded into
NTGsim by using the “Load Presets” option from the “File”
menu. To use the Vanderpole presets instead of manually
entering the Vanderpole settings, download the
vanderpole.ntg file from the University of Louisville
website. Select “Load Presets” from the “File” menu. A file
browser window will open. Navigate to the directory in
which you downloaded the vanderpole.ntg file and click
“open.” The Vanderpole settings will automatically be
loaded into the program. At any point in time, the current
state of all the NTGsim’s parameters can be printed to the
console by selecting “Debug Info” from the “File” menu.

Finally, select “Run NTG” from the “File” menu. NTG
will run and its output will be displayed in the console
window from which you launched NTGsim. Also, a text file
containing the coefficients of the spline will be saved in the
same directory as the NTGsim folder under the name
coeff1.txt.

Figure 5: NTGsim Screenshot showing Linear Constraints.

When working on any project, if the user wishes to save

the current settings, he or she can select “Save Presets” from

the “File” menu. A file browser will then pop up and the
user can select the directory and the file name of the file to
save. Click on “Save” when finished. By convention,
NTGsim files end with “.ntg”. In order to give the user
ultimate control in naming his or her save files and to avoid
conflicts with other programs the above convention is not
strictly enforced by NTGsim. When finished using NTGsim,
click on the ‘x’ in the top-right corner of the GUI. Fig. 5
shows a screenshot of the GUI.

VI. CONCLUSION
Through this project, we have greatly simplified the use

of NTG. By providing a GUI for the NTG algorithm,
NTGsim has given the end user an intuitive and efficient
way of altering NTG’s static parameters. Also, by
segregating the 3 cost functions and 3 nonlinear constraint
functions into a separate dynamic library, we have made
changing the aforementioned functions much more straight
forward since now these functions are not hidden deep
within the code.

REFERENCES
[1] M. B. Milam, “Real-time optimal trajectory generation for constrained

dynamical systems,” Ph.D. dissertation, California Institute of
Technology, 2003.

[2] C. de Boor, A Practical Guide to Splines. New York: Springer-Verlag,
2001.

[3] M. K. Muezzinoglu and T. Inanc, “Trajectory Generation in Guided
Spaces using NTG Algorithm and Artificial Neural Networks,”
Proceedings of the 2006 American Control Conf., June 14-16, 2006.

[4] K. Misovec, T. Inanc, J. Wohletz and R.M. Murray, “Low-Observable
Nonlinear Trajectory Generation for Unmanned Air Vehicles,”
Proceedings of the 42nd IEEE Conf. on Decision and Control,
December 2003.

[5] T. Inanc, K. Misovec and R. M. Murray, “Nonlinear Trajectory
Generation for Unmanned Air Vehicles with Multiple Radars”, 43rd
IEEE Conference on Decision and Control, December 14-17, 2004.

[6] M.B. Milam, “Missile Interception Research Report,” California
Institute of Technology Internal Report, 2002.

[7] Lian E-L. and Murray R.M., “Cooperative Task Planning of Multi-
Robot Systems with Temporal Constraints,” International Conference
on Robotics and Automation, 2003.

[8] P.E. Gill, W. Murray, M.A. Saunders and M.H. Wright, “User’s Guide
for NPSOL 5.0 A Fortran Package for Nonlinear Programming,
Systems Optimization Laboratory,” Stanford Univ, CA, 1998.

[9] S. Liang, Java Native Interface: Programmer's Guide and
Specification, Prentice Hall PTR, 1999.

[10] K. Sierra and B. Bates, Head First Java, CA: O’Reilly Media Inc.,
2005.

[11] J. Gosling, B. Joy, G. Steele, G. Bracha, The Java Language
Specification, Prentice Hall PTR, 2005, Introduction.

[12] Sun Microsystems, Inc., “Java SE 6 API Javadocs,” Available at:
http://java.sun.com/javase/6/docs/api/

[13] Andrew Davison, Killer Game Programming in Java, O'Reilly Media
Inc., 2005.

[14] Eric Freeman and Elisabeth Freeman, Head First Design Patterns,
CA: O’Reilly Media Inc., 2004.

[15] R. Bhattacharya and P. Singla, “Nonlinear Trajectory Generation
Using Global Local Approximations,” Proceedings of the 45th IEEE
Conference on Decision & Control, December 13-15, 2006.

[16] R. Bhattacharya, “OPTRAGEN: A MATLAB Toolbox for Optimal
Trajectory Generation”, Proceedings of the 45th IEEE Conference on
Decision & Control, December 13-15, 2006, pg 6832-6836.

407

