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Abstract— This paper investigates the consensus problem for
a group of high-order-integrator agents with fixed topology. A
linear distributed consensus protocol is proposed, which only
depends on the agent’s own information and its neighbors’
partial information. A necessary and sufficient condition for
convergence to consensus is established. It is proved that the
topology having a spanning tree is a necessary condition for
convergence to consensus. Based on the consensus protocol for
networks of high-order-integrator agents, a consensus controller
is provided for a group of identical agents with dynamics
described by a completely controllable single-input linear time-
invariant (LTI) system. It is shown that the consensus of this
kind of networks is equivalent to that of networks of high-
order-integrator agents. Finally, the parameter design of the
protocol is discussed.

I. INTRODUCTION

Consensus problems for networks of dynamic agents have

been extensively studied by researchers from distinct points

of view. As to the mathematical models of agents, there

are discrete-time forms ([1]-[5]), single-integrator dynamics

([6]-[11]), double-integrator dynamics ([12]-[13]) and so on.

The assumptions on network topology, which is adopted to

describe the complex interconnections among agents, include

bidirectional network, unidirectional network, fixed topology,

switching topology, random topology, small-world network,

leader-follower framework, model-reference framework, net-

work with communication time-delays etc. Applications of

this research pertain to cooperative control of unmanned air

vehicles, autonomous formation flight, control of communi-

cation networks, distributed sensor fusion in sensor networks,

swarm-based computing, rendezvous in space (see [17]-[21]

and the references therein).

This paper mainly investigates the consensus problem

for networks of high-order-integrator agents. The idea of

employing high-order integrator to describe the dynamics of

agents is inspired by the following facts. First, any com-

pletely controllable continuous-time LTI system with state-

space equation ẋ = Ax + Bu can be equivalently brought

into a collection of decoupled and independently controlled

chains of integrators, under an appropriate nonsingular linear

transformation and a suitable state feedback (see [23]).

Second, denoting system ẋ = Ax+Bu as matrix pair (A,B),
the set of all completely controllable pairs (A,B) is open
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and dense in the space composed of all matrix pairs (A,B)
(see [22] and the references therein). Third, the high-order-

integrator model of agents is a generalization of the single-

integrator and the double-integrator models studied in the

literature (see, e.g., [6], [7] and [12]). Finally, take single-

input LTI system ẋ = Ax + bu for example, where (A, b)
is completely controllable and can be transformed into a

high-order integrator. (Note that any completely controllable

multi-input LTI system can be transformed into a completely

controllable single-input LTI system, see [24].) If there exists

a protocol solving the consensus problem for networks of

agents with dynamics expressed by the high-order integrator,

then a consensus controller can be designed for networks

of identical agents with dynamics ẋ = Ax + bu. (The

consensus controller is given later on.) Hence it is of physical

interest and of theoretical interest to investigate the consensus

problem for networks of high-order-integrator agents. Some

related work on the consensus problem for networks of high-

order-integrator agents can be found in [14]/[15].

The objective of this paper is to steer a group of high-

order-integrator agents to a constant state. To do this, we

propose a linear distributed protocol which only depends on

the agent’s information and its neighbors’ partial informa-

tion. We employ weighted graph to model the interactions

among agents. For networks of high-order-integrator agents

under the protocol, a necessary and sufficient condition for

convergence to consensus is established. It is proved that

the underlying graph having a spanning tree is a necessary

condition for convergence to consensus. The consensus state

for such networks is found out as well. It is shown that only

the agents, which can act as a root of a spanning tree in the

graph, contribute to the consensus state. Based on the con-

sensus protocol for networks of high-order-integrator agents,

a consensus controller is provided for networks of identical

agents with dynamics described by a completely control-

lable single-input LTI system (LTI networks for short). The

convergence to consensus of LTI networks is equivalent to

that of networks of high-order-integrator agents under the

same topology. At last, the parameter design of the protocol

for networks of high-order-integrator agents is discussed.

Some necessary/sufficient conditions for the protocol solving

consensus are established.

The remainder of the paper is organized as follows.

Section II presents some mathematical preliminaries and no-

tations. Section III states the agent model and the definition

of consensus. Section IV establishes the main results. The

last section makes some conclusions.
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II. MATHEMATICAL PRELIMINARIES

In this section, we present some notations and some

preliminary results on algebraic graph theory, which will be

useful for the subsequent sections.

A. Notations

Throughout this paper, we let R and C be the set of

real numbers and the set of complex numbers, respectively.

R
n is the n−dimensional real vector space and ‖ · ‖

denotes the Euclidian norm. Mn (M = R or C) is the set

of n−by-n matrices. In is an identity matrix with order

n × n. For a given matrix M ∈ Mn, σ(M), R(M) and

rank(M) are the spectrum (set of eigenvalues), the range

and the rank of M , respectively. diag{a1, · · · , an} defines

a diagonal matrix with diagonal elements being a1, · · · , an.

e1 = [1 0 · · · 0]T ∈ R
m. 1N = [1, · · · , 1]T ∈ R

N .

N = {1, . . . , N} is a index set. Re(z), Im(z), z and |z|
are the real part, the imaginary part, the conjugate complex

number and the module of z ∈ C, respectively. ⊗ denotes

the Kronecker product.

B. Algebraic Graph Theory Preliminaries

A digraph (undirected graph) G consists of a vertex set

V = {v1, v2, . . . , vN}, and an arc (edge) set E ⊂ V ×
V , denoted by G = (V, E). An arc (edge) of G, denoted

by eij = (vi, vj), is an ordered (unordered) pair of distinct

vertices of V; vi and vj are called the tail and the head of

eij respectively. If eij = (vi, vj) is an arc, then we say vi is

a neighbor of vj . In this paper, we assume eii 6∈ E and the

elements of E are unique. Denote the collection of neighbors

of vi by Ni = {vj : eji = (vj , vi) ∈ E}. A directed path

from vi to vj means that there is a sequence of distinct arcs

in E , (vi, v1), (v1, v2), . . . , (vr, vj). A directed tree is a

directed graph, where every vertex has exactly one tail except

for one special vertex without any tail. The special vertex is

called the root of the tree. We say a digraph has a spanning

tree if there exists a subset of the arcs E ′ ⊂ E such that the

digraph G′ = (V, E ′) is a directed tree. A digraph is called

strongly connected, if there exists a path between any pair of

distinct vertices; for undirected graph it is called connected.

Let A = [aij ] ∈ RN be a matrix with rows and columns

indexed by the vertices of G, all entries of which are

nonnegative. A weighted graph is a graph G = (V, E)
with a nonnegative matrix A, denoted by G(A), such that

(vi, vj) ∈ E if and only if aji > 0. Here A is called the

adjacency matrix of G, and aji is said to be the weight of

link (vi, vj). If G(A) is undirected, then AT = A.

The Laplacian matrix LG(A) = [lij ] ∈ RN of G(A),
abbreviated as L, is defined as

lij =

{ ∑
vj∈Ni

aij , i = j

−aij , i 6= j
.

We refer to the diagonal matrix D = diag{d1, · · · , dN}
with di =

∑
vj∈Ni

aij , i ∈ N as the in-degree matrix of

G(A), where di is called the in-degree of vertex vi. Then L =
D − A. We next present some basic results on the spectral

properties of L, which are useful for the development of this

paper (see [6], [7], [26]):

(1) L has at least one zero eigenvalue and all the nonzero

eigenvalues have positive real parts. The zero eigenvalue

is simple if and only if the associated graph G has a

spanning tree. A right eigenvector of L associated to the

zero eigenvalue is 1N , i.e., L1N = 0.

(2) For undirected graph, the associated Laplacian L is

positive semi-definite; if the undirected graph is connected,

then rank(L) = N − 1.

III. AGENT MODEL AND CONSENSUS PROBLEM

Consider a network of N dynamic agents. The dynamics

of each agent is described by the following mth-order

integrator

ξ
(m)
i =ui,

ξi(0)=ξi0, · · · , ξ
(m−1)
i (0) = ξ

(m−1)
i0 , t ≥ 0,

(1)

where m ≥ 1 is a positive integer and denotes the order of

the differential equations; for convenience, ξi ∈ R is called

the information variable of agent i; ξ
(k)
i , k ∈ m − 1 is the

kth-order derivative of ξi; ui ∈ R is the control input; ξ̄i0 :=

[ξi0 · · · ξ
(m−1)
i0 ]T is the initial state of agent i. Note that the

control inputs ui are usually called consensus protocol in the

literature. The interactions among agents are realized in their

control inputs. We employ weighted graph G(A) to model

the interaction topology of the network. Each vertex in the

vertex set represents an agent of the network. Each arc/edge

eji in the arc/edge set indicates that there is a communication

link from agent j to agent i. aij > 0 is the weight of the

communication link eji. Let ξ̄i(t) = [ξi(t) · · · ξ
(m−1)
i (t)]T

be the state of agent i.
Denote ξ̄(t) = [ξ̄T

1 (t) · · · ξ̄T
N (t)]T and ξ̄0 =

[ξ̄T
10 · · · ξ̄T

N0]
T as the stacked vector of the agents’ states and

the stacked vector of the agents’ initial states, respectively.

In this paper, we devote to solving the following consensus

problem for network in (1).

Definition 1: Consider network in (1). If for any initial

state ξ̄0, the states of agents satisfy

lim
t→∞

‖ ξ̄i(t) − ξ̄j(t) ‖= 0

for all i, j ∈ N , then we say the network solves a consensus

problem asymptotically. Furthermore, if there exists ξ̄∗ ∈ R
m

such that for any initial state ξ̄0

lim
t→∞

‖ ξ̄i(t) − ξ̄∗ ‖= 0

for all i ∈ N , then we call ξ̄∗ to be the consensu state of

the network.

IV. MAIN RESULTS

In this section, we consider the consensus problem defined

in Section III for network in (1) with fixed topology. To do

this, we propose the following distributed consensus protocol

ui = −∑m−1
k=1 ckξ

(k)
i − ∑

j∈Ni
κiaij(ξi − ξj), (2)
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where ck > 0, k ∈ m − 1 are the feedback gains of absolute

information, aij > 0 are the weights of communication links,

Ni is the collection of neighbors of agent i, and κi > 0 is

the feedback gain of relative information. Given protocol (2),

the dynamics of agent i can be expressed as

˙̄ξi = Emξ̄i −
∑

j∈Ni

κiaijFm(ξ̄i − ξ̄j), (3)

where

Em =

[
0 Im−1

0 θT

]
, Fm =

[
0 0
1 0

T

]
,

θ = [−c1 · · · − cm−1]
T , 0 = [0 · · · 0]T ∈ R

m−1.

Furthermore, the closed-loop network has the following

concise form of dynamics

˙̄ξ = [IN ⊗ Em − (ΥL) ⊗ Fm]ξ̄ , Ωξ̄, (4)

where L is the associated Laplacian of G(A) and Υ =
diag{κ1, · · · , κN}.

Remark 1: The property ΥL1N = 0 indicates that ΥL is

a Laplacian matrix of G(Â) with Â = ΥA. The gain matrix

Υ can be used to modify the eigenvalues of ΥL and has

effect on the convergence speed.

A. Necessary and Sufficient Condition for Convergence

Before proceeding, we establish the following two lemmas

which are needed for the main result.

Lemma 1: Suppose Ω is given in (4) and µ1 =
0, µ2, · · · , µN ∈ σ(ΥL), then the characteristic polynomial

of Ω is

N∏

i=1

(sm + cm−1s
m−1 + · · · + c1s + µi), (5)

and the algebraic multiplicity of zero eigenvalue of Ω is equal

to that of L. Moreover, 1N ⊗ e1 with e1 ∈ R
m ( 1

c1

wT
l ⊗

[c1 · · · cm−1 1] ) is a right (left) eigenvector of Ω associated

to the zero eigenvalue, where wT
l is the left eigenvector of

L associated to the zero eigenvalue and satisfies wT
l 1N = 1.

Lemma 2: Consider network in (4), if the network solves

a consensus problem, then all the equilibria of system (4)

are of the form a01N ⊗ e1 with a0 ∈ R and e1 ∈ R
m.

Here is the main result.

Theorem 1: Consider network in (4) with fixed topology

G(A), then the network asymptotically solves a consensus

problem if and only if G(A) has a spanning tree and

all the nonzero eigenvalues of Ω have negative real parts.

Moreover, the consensus state is χ(ξ̄0)e1, where e1 ∈ R
m,

χ(ξ̄0) =
(

1
c1

∑N
i=1 wic̃

T ξ̄i0

)
, c̃ = [c1 · · · cm−1 1]T , and

wl = [w1 · · · wN ]T is given in Lemma 1.

Proof: (Sufficiency.) If G(A) has a spanning tree,

then L has a simple zero eigenvalue. According to Lemma

1, Ω has only one zero eigenvalue. Hence there exists a

nonsingular matrix S, such that S−1ΩS = diag{0, J ′},

where J ′ ∈ RNm−1 is an upper-triangular Jordan matrix

with diagonal entries being the eigenvalues of Ω. From the

assumption that all the nonzero eigenvalues of Ω have nega-

tive real parts, it follows limt→∞ exp(J ′t) = 0. Denote the

first column of S as vr and the first row of S−1 as vT
l . Then

Ωvr = 0, vT
l Ω = 0 and vT

l vr = 1. Since the zero eigenvalue

of Ω is simple, Lemma 1 indicates that vr ∈ span{1N ⊗e1}
with e1 ∈ R

m and vl ∈ span{ 1
c1

wl ⊗ [c1 · · · cm−1 1]T }.

Thus for any initial state ξ̄0

limt→∞ ξ̄(t) = limt→∞ exp(Ωt)ξ̄0

= S diag{1, limt→∞ exp(J ′t)}S−1ξ̄0

= S diag{1, 0, . . . , 0︸ ︷︷ ︸
Nm−1

}S−1ξ̄0

= vrv
T
l ξ̄0 = χ(ξ̄0)1N ⊗ e1,

where χ(ξ̄0) and e1 are given in the theorem. This implies

that the network solves the consensus problem asymptoti-

cally with the consensus state being χ(ξ̄0)e1.

(Necessity.) Suppose the network solves a consensus

problem, then Lemma 2 indicates that the equilibrium set

of system (4) is span{1N ⊗ e1} with e1 ∈ R
m. Thus

for any initial state ξ̄0, we have limt→∞ exp(Ωt)ξ̄0 =
(limt→∞ exp(Ωt))ξ̄0 ∈ span{1N ⊗ e1}. This implies

that R(limt→∞ exp(Ωt)) ⊆ span{1N ⊗ e1}. Hence

rank(limt→∞ exp(Ωt)) ≤ 1. In addition, it is obvious that

Ω has at least one zero eigenvalue due to L always having

one. Define the Jordan matrix of Ω as J . If the sufficient

condition does not hold, then G(A) hasn’t a spanning tree,

or G(A) has a spanning tree but Ω has a nonzero eigen-

value with nonnegative real part. For the first case, the

Laplacian L of G(A) has at least two zero eigenvalues,

and so does Ω. Suppose the algebraic multiplicity and the

geometric multiplicity of the zero eigenvalue of Ω are k and

l, respectively. Then N > k ≥ 2 due to the distributed

protocol. If l = k, then the associated Jordan matrix of

Ω has the form J = diag{0k, J̄}, J̄ ∈ R(Nm−k). It

follows that limt→∞ exp(Jt) = diag{Ik, 0Nm−k}, which

results in a contradiction to rank(limt→∞ exp(Ωt)) ≤ 1. If

l < k, then there is at least one Jordan block with order

no less than 2. Thus rank (limt→∞ exp(Ωt)) ≥ 2. This

leads to a contradiction as well. It is obvious that the other

case contradicts the definition of consensus. The proof is

completed.

Remark 2: Theorem 1 implies that G(A) having a span-

ning tree is a necessary condition for network in (4) solving

a consensus problem. Note that when m = 1, (1) becomes

the single-integrator model studied in [6], [7]. However,

due to the effect of high-order dynamics of agents, the

aforementioned property of networks of high-order-integrator

agents is different from that of networks of single-integrator

agents established in [7], where the underlying graph having

a spanning tree is a necessary and sufficient condition

for networks of single-integrator agents solving consensus

problem. In addition, when G(A) has a spanning tree, the

left eigenvector wT
l of L satisfies that wi > 0 if and only if

the ith vertex of G(A) is the root of a spanning tree in G(A)
(see Lemma 3.3 in [8] or Theorem 9 in [16]). This fact plus

the expression of χ(ξ̄0)e1 given in Theorem 1 indicates that

only the agents which act as roots in G(A), contribute to the

consensus state.
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Remark 3: In contrast to the consensus protocol proposed

in [14]/[15], protocol (2) only depends on the agent’s own

state information and the state variables ξj of its neighbors

rather than the kth derivatives of ξj , j ∈ Ni. To a great

extent, this property reduces the communication or sensing

cost and/or the computing cost for a network of high-

order-integrator agents reaching the consensus state given in

Theorem 1, although the protocol in [14]/[15] can also steer

the network to the consensus state by selecting appropriate

initial states of agents.

Remark 4: To clarify the importance and the necessity

of high-order-integrator model (1), we introduce briefly the

transformation from a completely controllable single-input

LTI system ẋ = Ax + bv into a controlled high-order

integrator, and give a consensus controller for networks of N
identical agents with dynamics modeled by the LTI system.

Herein, x ∈ R
m is the state and v ∈ R is the control input.

First, let x = T x̃, where T ∈ Rm is a nonsingular matrix

such that T−1AT = Ac, T
−1b = bc = [0 · · · 0 1]T ∈ R

m

and (Ac, bc) is the associated controllable canonical form

to (A, b). Then ˙̃x = Acx̃ + bcv. Suppose the characteristic

polynomial of A is sm − amsm−1 − · · · − a2s − a1, and

denote x̃ = [ x̃1 x̃2 · · · x̃m ]T . Next, take the state

feedback v = −[ a1 a2 · · · am ]x̃+u, where u ∈ R is

an external input. It follows that x̃
(m)
1 = u, and x̃k+1, k ∈

m − 1 is the kth order derivative of x̃1. Consequently, the

LTI system is transformed into the controlled high-order

integrator with respect to x̃1. Furthermore, based on protocol

(2), we can give a consensus controller for a group of N
agents with dynamics

ẋi = Axi + bvi, i ∈ N (6)

as follows:

vi = fT T−1xi −
∑

j∈Ni

κiaije
T
1 T−1(xi − xj), (7)

where f = [−a1 − (c1 + a2) · · · − (cm−1 + am)]T ∈ R
m,

c1, · · · , cm−1 are given in (2) and e1 ∈ R
m. Through

direct computation, we can obtain that there is a nonsingular

linear transformation between the closed-loop system of

(6)(7) and that of (1)(2). This indicates that the network

(6) with protocol (7) reaches consensus if and only if the

network (1) with protocol (2) reaches consensus. Further-

more, the consensus state of network (6) with protocol (7)

is
(

1
c1

∑N
i=1 wic̃

T T−1xi(0)
)

Te1, where e1 ∈ R
m, xi(0) is

the initial state of agent i, and wi, c̃ are given in Theorem

1. We omit the details for saving space.

B. Design of Protocol (2)

Denote hm−1(s) = sm−1 + cm−1s
m−2 + · · · + c1 and

gmi(s) = sm + cm−1s
m−1 + · · · + c1s + µi with 0 6= µi ∈

σ(ΥL). Theorem 1 shows that if G(A) has a spanning tree,

then network in (4) solves a consensus problem iff the real

polynomial f(s) := hm−1(s)
∏N

i=2 gmi(s) is Hurwitz stable.

In this subsection, we investigate the design of parameters

ck, k ∈ m − 1 and gains κi, i ∈ N for the convergence to

consensus of network (4).

We first consider the case of m = 2, that is, the

double-integrator system ξ̈i = ui with ui = −c1ξ̇i +∑
j∈Ni

κiaij(ξj − ξi), which was studied in [12].

Theorem 2: Consider network of double-integrator agents

with fixed topology G(A). Then the network solves consen-

sus if and only if G(A) has a spanning tree and

c1 > max
0 6=µi∈σ(ΥL)

| Im(µi)|√
Re(µi)

. (8)

Proof: According to Theorem 1, we only need to prove

h1(s)
∏N

i=2 g2i(s) is Hurwitz stable iff c1 satisfies (8). It is

obvious that h1(s) is Hurwitz stable iff c1 > 0. Next, if

Im(µi) = 0 then g2i(s) is Hurwitz stable iff c1 > 0 and

µi > 0; if Im(µi) 6= 0 then s2 + c1 +µi is Hurwitz stable iff

g2i(s)g2i(s) = s4+2c1s
3+(c2

1+2 Re(µi))s
2+2c1 Re(µi)s+

µiµi is Hurwitz stable, and iff c1 > 0, c2
1+Re µi > 0, (c2

1+
2Re(µi))Re(µi) > µiµi + Re2(µi), which is equivalent to

(8). This completes the proof.

Remark 5: Theorem 2 indicates that when G(A) is con-

nected, the network reaches consensus if and only if c1 > 0.

In this scenario, let γ = min{|Re(λ)| : λ is the root of

h1(s)
∏N

i=2 g2i(s)}. By some computation, we can obtain

γ =

{
c1

2 , 0 < c1 < 2
√

µ2

c1−
√

c2

1
−4µ2

2 , c1 ≥ 2
√

µ2

.

According to linear system theory, we know γ reflects the

convergence speed. From the expression of γ, it is easy to see

that γ is a continuous function of c1, denoted by γ(c1). Then

γ(c1) is non-increasing with respect to c1 over [2
√

µ2, ∞)
and max0<c1<∞ γ(c1) =

√
µ2 with the maximum point

being c1 = 2
√

µ2. This means that if c1 = 2
√

µ2, then

the convergence speed reaches the maximum value
√

µ2.

For the general case, we need the following lemma,

which is concerning to Hurwitz stability of a family of disk

polynomials. We start by presenting some notations.

Let FD = {δ(s) = δmsm + · · ·+δ1s+δ0 : δk ∈ Dk, k ∈
{0}∪m} be a family of complex polynomials, where Dk =
{z ∈ C : |z − βk| ≤ rk, rk ≥ 0, βk ∈ C} and 0 6∈
Dm. Denote β(s) = βmsm + · · · + β1s + β0, γ1(s) = r0 −√
−1r1s− r2s

2 +
√
−1r3s

3 + r4s
4 − · · · and γ2(s) = r0 +√

−1r1s− r2s
2 −

√
−1r3s

3 + r4s
4 + · · · . Let q1(s) = γ1(s)

β(s)

and q2(s) = γ2(s)
β(s) be two proper rational functions. Define

‖qk‖∞ = supω∈R

∣∣∣γk(
√−1ω)

β(
√−1ω)

∣∣∣ , k = 1, 2. When β(s) is a

real polynomial, ‖q1‖∞ = ‖q2‖∞ (see [25]).

Lemma 3: ([25]) All the polynomials of FD are Hurwitz

stable if and only if β(s) is Hurwitz stable and ‖qk‖∞ <
1, k = 1, 2.

Given a graph G(A) which has a spanning tree, let d =
maxi∈N{di} (di are given in Section II) be the maximum

in-degree of all the vertices and µ2 ∈ σ(L) be the nonzero

eigenvalue with minimum positive real part. The Geršgorin

disk theorem (see [27]) proves that for any µi ∈ σ(L), i ∈
N , µi ∈ B(d) := {z ∈ C : |z − d| ≤ d}. Suppose ε > 0
is an appropriate small number. We next find a disk in the

complex plane such that all the nonzero eigenvalues of L are

located in it. Moreover, the disk satisfies that the origin of
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0  
0  

Re

Im

Re(µ
2
) d d+ε d

0

y
0 B(d)

B(d+ε)
D
0

Fig. 1. Disk D0 which satisfies σ(L)/{0} ⊂ D0, 0 6∈ D0 and has center
(d0, 0), d0 > 0. .

the complex plane is not in it and its center is located at the

positive half-real axis. Set B(d+ε) = {z ∈ C : |z−d−ε| ≤
d + ε}, ∂(B(d + ε)) = {z ∈ C : |z − d − ε| = d + ε} and

∂(B(d)) = {z ∈ C : |z − d| = d}. Then B(d) ⊂ B(d + ε).
Denote the intersection points between the line z = Re(µ2)
and the upper half circles of ∂(B(d)) and ∂(B(d+ ε)) as z1

and z2, respectively. Let y0 = Im(z1+z2)
2 . Solve the equation

of s: (Re(µ2)− s)2 + y2
0 = (d + ε)2 and denote the positive

root as d0. Then d0 > d + ε and D0 = {z ∈ C : |z − d0| ≤
d+ε} is the just disk which we want to find. In other words,

σ(L)/{0} ⊂ D0, 0 6∈ D0 and the center (d0, 0) with d0 > 0
is located at the positive half-real axis. Fig. 1 shows the upper

part of the disk D0.

Taking β0 = d0, r0 = d + ε, βk = ck, rk ≥ 0, k ∈ m − 1
and βm = 1, rm ≥ 0, we can obtain the following result

based on Lemma 3 .

Theorem 3: Consider network in (4) with fixed topology

G(A). Suppose G(A) has a spanning tree and κi = 1, i ∈ N .

If there exist some parameters ck, k ∈ m − 1 and some

numbers ri ≥ 0, i ∈ m such that hm−1(s) and β̂(s) =
sm + cm−1s

m−1 + · · · + c1s + d0 are Hurwitz stable, and

‖γ1

β̂
‖∞ < 1, where γ1(s) is given in Lemma 3, then the

network solves a consensus problem.

Theorem 3 is a direct result of Theorem 1 and Lemma 3,

hence the proof is omitted.

For m = 3, model (1) is a triple integrator and protocol

(2) is ui = −c2ξ̈i − c1ξ̇i +
∑

j∈Ni
κiaij(ξj − ξi). In this

scenario, we have the following result.

Corollary 1: Consider network of triple-integrator agents

with topology graph G(A). Suppose G(A) has a spanning

tree and κi = 0, i ∈ N . If c1, c2 satisfy c1 > 0, c2 >
0, c1c2 > d0 and

c4
2 − 4c1c

2
2 + c2

1 + 24d0c1 ≤ 0, (9)

then the network solves a consensus problem.

Proof: From Theorem 1, we only need to prove

h2(s)
∏N

i=2 g3i(s) is Hurwitz stable. Denote the family FD

in Lemma 3 as FD = {δ(s) = s3 + c2s
2 + c1s + µ : µ ∈

D0 = {z ∈ C : |z−d0| ≤ d+ε}} with ε > 0. Then g3i(s) ∈
FD, i = 2, · · · , N . From c1 > 0, c2 > 0 and c1c2 > d0,

it follows that h2(s) and β̃(s) = s3 + c2s
2 + c1s + d0

is Hurwitz stable. We next prove ‖d+ε

β̃
‖∞ < 1. Note that

|β̃(
√
−1ω)|2 = ω6 + (c2

2 − 2c1)ω
4 + (c2

1 − 2d0c2)ω
2 +

d2
0. Then |β̃(

√
−1ω)|2 is a continuous function of ω and

|β̃(
√
−1ω)|2 = |β̃(−

√
−1ω)|2. Therefore, we only consider

the case of ω ∈ [0, ∞). Let n(s) = s3 + (c2
2 − 2c1)s

2 +
(c2

1 − 2d0c2)s + d2
0, s ≥ 0. Then |β̃(

√
−1ω)|2 = n(ω2).

In addition, γ̇(s) = 3s2 + 2(c2
2 − 2c1)s + (c2

1 − 2ddc2),
which is a quadratic function of s. Hence if the discriminant

∆ := 4(c2
2 − 2c1)

2 − 12(c2
1 − 2d0c2) ≤ 0, that is, inequality

(9) holds, then γ̇(s) ≥ 0 for s ≥ 0. This implies that γ(s)
is increasing when s ≥ 0. Consequently, |β̃(

√
−1ω)|2 =

γ(ω2) is increasing over [0, ∞) (this is derived from the

monotonicity of composite functions). Thus inequality (9)

results in |β̃(
√
−1ω)|2 ≤ |β̃(0)|2 = d2

0 > (d + ε)2. It

follows that ‖d+ε

β̃
‖∞ < 1. According to Lemma 3, all

the polynomials in the family FD are Hurwitz stable. This

completes the proof.

Remark 6: The inequalities about c1 and c2 in Corollary

1 are solvable. For example, if c1 = c2
2 and c3

2 ≥ 12d0, then

the inequalities hold.

Observe that when the topology of network in (4) is

undirected, the eigenvalues of its Laplacian matrix are non-

negative real numbers. In this case, we give the following

result which is obtained from Nyquist criterion.

Theorem 4: Consider network in (4) with fixed undirected

topology G(A). Suppose G(A) is connected. Then the net-

work solves a consensus problem if and only if there exist

some parameters ck, k ∈ m − 1 and gains κi > 0, i ∈ N
such that hm−1(s) is Hurwitz stable and the net encirclement

of (− 1
µi

, 0) by the Nyquist plot 1
shm−1(s)

is zero for all

µi ∈ σ(ΥL)/{0}, i = 2, · · · , N .

In Theorem 4, 1
shm−1(s)

has a first-order integrating link

when hm−1(s) is Hurwitz stable. This implies that there is no

intersection point at minus infinity between the Nyquist plot

of 1
shm−1(s)

and the real axis, and there are at most [m−1
2 ]

(the maximum integer no larger than m−1
2 ) intersection

points between the Nyquist plot and the negative half-real

axis. Moreover, the real parts of these points are finite. After

selecting parameters ck, k ∈ m − 1 which make hm−1(s)
Hurwitz stable, we can adjust gains κi, i ∈ N such that the

nonzero eigenvalues of ΥL are located at the exterior of the

Nyquist plot of 1
shm−1(s)

.

V. Conclusions

This paper has considered the consensus problem for

networks of high-order-integrator agents with fixed topology.

A linear distributed protocol has been proposed, which steers

all the agents to a constant state. It has been proved that the

underlying graph having a spanning tree is a necessary con-

dition for convergence to consensus. The parameter design

for the protocol has been discussed. In addition, a consensus

controller has been provided for networks of identical agents

with dynamics modeled by a completely controllable single-

input LTI system, based on the protocol of networks of high-

order-integrator agents,.

The work of this paper will motivate other research

topics. By taking into account the constraints caused by

the impossibility of measuring all state variables, designing

4462



an observer-based protocol may be a necessary research

direction. Studying the consensus problem for the case of

switching topology and communication time-delay will be

an interesting and significant work.

APPENDIX

Proof of Lemma 1. Let P be a nonsingular matrix such

that P−1LP = J , where J is the Jordan matrix associated

to L. Then

det(sINm − Ω)
= det

(
sINm − (P−1 ⊗ Im)Ω(P ⊗ Im)

)

=
∏N

i=1 det(sIm + µiFm − Em)

=
∏N

i=1(s
m − cm−1s

m−1 − · · · − c1s + µi),

which implies that the number of zero eigenvalues of Ω is

equal to that of L. Since L1N = 0, Eme1 = 0 with e1 ∈ R
m

and [−c1 · · · −cm−1 1]Em = 0, we can obtain 1√
N

1N ⊗e1

with e1 ∈ R
m (− 1

c1

wT
l ⊗ [−c1 · · · − cm−1 1] ) is a right

(left) eigenvector of Ω associated to the zero eigenvalue. n

Proof of Lemma 2. Let ξ̄ = Sζ, where S is a per-

mutation matrix such that ζ = [ζT
1 · · · ζT

m]T with ζk =

[ξ
(k−1)
1 · · · ξ

(k−1)
N ]T , k ∈ m and ξ

(0)
i = ξi, i ∈ N . Then

ζ̇ = [Em ⊗ IN − Fm ⊗ (ΥL)]ζ , Ξζ, (10)

where Em, Fm are given in (3). Let β = [βT
1 · · · βT

m]T with

βk ∈ R
N , k ∈ m be a right eigenvector of Ξ associated to

the eigenvalue s. It follows that β2 = sβ1, · · · , −Lβ1 +
c1β2 + · · · + cm−1βm = sβm. Thus −Lβ1 = (sm −
cm−1s

m−1−· · ·−c1s)β1. As a result, β = [1 s · · · sm−1]T⊗
βT

1 , and µ := −(sm−cm−1s
m−1−· · ·−c1s) is an eigenvalue

of L with a corresponding right eigenvector β1. To prove the

lemma, we only need to prove the equilibria of system (10)

are of the form a0e1 ⊗1N with a0 ∈ R and e1 ∈ R
m. First,

it is obvious that e1 ⊗ 1N is an equilibrium of system (10).

Next, if there exists an equilibrium of system (10), denoted

by ζ0, such that ζ0 6∈ span{e1 ⊗ 1N}. Then Ξζ0 = 0.

Hence there is a vector ζ01 ∈ R
N satisfying Lζ01 = 0,

such that ζ0 = e1 ⊗ ζ01. Thus ζ0 6∈ span{e1 ⊗ 1N} if

and only if ζ01 6∈ span{1N}. If we take the initial state

of system (10) to be ζ0, then the corresponding solution is

ζ(t) = ζ0 = e1 ⊗ ζ01. The fact ζ01 6∈ span{1N} contradict

limt→∞(ξi(t) − ξj(t)) = 0 for all i, j ∈ N . Therefore all

the equilibria of system (10) belong to span{e1⊗1N}. This

completes the proof. n
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