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Abstract— We introduce the online ouija board, a multi-
player server-based game in which a team of agents must
coordinate their control actions in real-time, so as to drive
a token across a board and spell as many words as possible
in a given time. This ouija game presents several of the
typical features of multi-party control systems, namely: (i)
it is a networked control system, since messages between the
players’ individual computers and the server are affected by
asynchronism, delays, and possible packet drops; (ii) it is a team
theoretic/ distributed decision problem, since different players
have authority over different inputs, and individual choices
influence the information available to other players, and (iii) it
is a distributed design problem, since, when no communication is
allowed, each player control law must be chosen independently,
with access to a partial description of the token’s dynamics.
In this paper, we propose a simple model of the ouija board
which, while assuming away the complications due to (i) and
(ii), allows us to focus on the distributed design aspect of
the problem mentioned in (iii). We show that simple control
strategies exist, which require players to know the token’s
position and their own actuation direction, but nothing about
their teammates’ directions or input values. We then compare
this simple strategy to the choices made by actual human
players in the ouija game, and discuss the role that team
communication may play in these choices.

I. INTRODUCTION

A traditional ouija board is printed with letters and some-

times words or numbers. A group of people play by placing

their hands on a token and moving it around the board

(sometimes unconsciously). In this way, the board spells out

messages [6].

Our online multiplayer game, which is accessible and

playable at [7], is inspired by the traditional Ouija board.

Unlike in a traditional game of ouija however, players are

all aware of the words to be spelled and have the goal of

spelling as many target words as possible in a limited time.

Figure 1 is a capture of the screen with which each player

is presented during the game. The board and its token are

in the upper left area and the control panel is in the upper

right area, with the slanted line representing the constant

direction along which a player can exert a force on the token.

Some information about the game is posted in the lower right

area, and the chat box under the board allows players to

communicate with each other, when permitted by the game.

By restricting the players’ ability to communicate through

the chat box, we can study how communication affects the

choice of control strategy and performance. This will be
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discussed in more details in Section IV.

What makes this a difficult (but fun) task is that, although

Fig. 1. The ouija board online game screen as seen by a player.

players have a common goal and can all observe the exact

position of the token, each one can only apply a force in

a single, randomly attributed, direction. In addition, each

player initially ignores whether other players are present and,

if so, how many, and in which direction they can actuate.

In other words, the motion of the token from one letter to

the next must be planned in a distributed way by a group

of players who, individually, have only partial information

about how the group can affect it.

Our online ouija board thus combines the features of

distributed/team theoretic decision problems [4], [5] (since

non-classical information patterns may arise if no side

communication is allowed) with those of networked control

systems [3] (since observation and actuation are possibly

affected by asynchronism and network delays). In addition,

playing the game with restricted information requires

solving a distributed design problem [2], since players

must construct their control inputs individually, with no

knowledge of the token’s dynamics. We believe that the

online ouija board thus provides an ideal environment for

investigating these issues and developing algorithms for

general multi-party control problems, such as multi-vehicle

command and control.

In addition to introducing the game, the goal of this paper

is to show that, for a simple model of the online ouija

board game, which neglects network effects and noise, there

exist satisfactory control laws that can be constructed in a

distributed way (i.e., which can be implemented by players

knowing only their own actuation direction), and to compare

them empirically with strategies used by human players.
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We also make some observations regarding the influence of

communication on a team’s performance, based on the data

obtained in small scale experiments.

In Section II, we present the ouija board in more details. In

Section III, we develop a control strategy for the token based

on orthogonal projections, and investigate its performance in

different situations (simple two-players case, with bounded

inputs, with delay, N players). Finally, in Section IV, we

present some experimental data.

II. GAME DESCRIPTION AND IMPLEMENTATION

Due to implementation constraints (limited speed of the

server) and to make sure the game runs smoothly, control

inputs for each user are sent to the server (and stored in

the database) once per second. The token’s new position is

computed only when the team leader (defined as the player

who connected first to the game) submits his control input.

Players apply their control input through the control panel

by moving the sliding bar to the right or to the left. Figure

2 depicts the process occurring when players submit their

control input to the server depending on their status (team

leader or regular player). When a regular player submits his

input, it is stored in the database and the server sends back

the last computed position for the token. When the leader

sends his input, the server retrieves the most recent control

inputs for the rest of the players from the database and uses

these to determine the new token position, which is then

stored in the database as the current position, and sent back

to the team leader.

More precisely, if we assume that the delays between the

times at which the team leader and other players submit

their inputs to the server is less than one second, we

can decompose the update process into successive decision

phases. Each phase starts and ends when the leader connects

to the server, and every player sends a single control input per

phase. At phase k, the token position is updated according

to

~xS(k) = ~xS(k − 1) +

n
∑

i=1

ui(k) · ~vi + ~n(k), (1)

where ~xS(k − 1) is the position of the token saved on the

server/database at the end of decision phase k − 1, N is the

number of players, ui(k) is the control input submitted by

player i at phase k, and applied along its own direction ~vi

(attributed randomly to players when they connect to the

server and assumed to be of unit norm). ~n is some random

noise, treated as the input of some extra, dummy player.

Occasionally, communication with the server will be

interrupted by packet losses. Depending on when the

loss occurs, a player’s control input may not be updated,

resulting in the use of stale data in Equation (1), or in the

inability of the server to calculate a new position for the

token. In practice, packet losses affect game play on the

scale of seconds and thus are rarely noticeable.

However, even in the absence of network degradations,

the implementation described above in Equation (1) will

Fig. 2. Chronology of the communication between players and the
server/database.

Fig. 3. Timeline of events in a decision phase for two players.

introduce delays.

To understand why, consider the timeline pictured in Figure

3, in which d12 is the delay between the times at which

player 2 and player 1 (assumed to be the leader) send their

input to the server.

The control input u1(k) of the leader in decision phase k

is computed for a token correctly assumed to be in position

xS(k). However, control input u2(k), which will actuate on

position xS(k), is computed using, at best, the position that

was communicated to player 2 the last time it connected

to the server, namely, xS(k − 1). This implementation thus

induces a one-step delay for every player except the leader.

The effect of such delays on the stability of the system

under a particular control law is considered in section III-C.

Random delays are the subject of our current work.

III. A COMMUNICATION-LESS CONTROL LAW

Even when network effects can be neglected and all

players can be assumed to have access to the same state

observations at each decision period, the design of individual

control strategies can still be complicated in the absence of

inter-players communication. The main reason for this fact

is that the control input ui(k) of player i must depend only

on the token’s position and player i’s direction.

In absence of any other information, it may seem natural

for player i to try and move the token towards the closest

point to the target letter that is accessible to him, namely,
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the orthogonal projection of the target onto its direction ~vi.

This motivates using the control law :

ui(k) = αi(~x(k) − ~xt) · ~vi (2)

where ~xt represents the position of the current target letter.

A. Simple two players case

In this section we consider the simple case of two players

applying control law (2) with α1 = α2 = −1, and neglect

noise, server’s delays, and dropped packets that can occur

in the real game. The closed-loop token’s dynamics then

reduces to:

~x(k + 1) = ~x(k) −
2

∑

i=1

(~x(k) − ~xt) · ~vi

In order to compute the convergence rate to every target

point and, in turn, deduce the number of steps needed to

spell a given sequence of words, it is enough to study the

following system:

~x(k + 1) = ~x(k) −
−−−−−−→
Π1(~x(k)) −

−−−−−−→
Π2(~x(k)) (3)

where
−−−−−→
Πi(~x(k)) is the orthogonal projection of ~x(k) onto

the direction ~vi. This amounts to shifting the origin to the

target point.

Proposition 1. Given a system whose dynamics are de-

scribed by (3), and assuming that ~v1 and ~v2 are not colinear,

an upper bound on the number of steps required to enter an

ǫ-ball around the origin from any initial position ~x(0), is

given by

n =













log

(

ǫ

‖~x(0)‖

)

log(δ)













(4)

where δ = max(| cos(θ2 − θ1)|, | cos(θ2 + θ1)|)
and θi is the angle between vectors ~x(0) and ~vi.

Proof: Note that, if directions were globally known,

the target could be reached exactly in a single step.

The proof of Proposition 1 is divided in two parts. First

we prove asymptotic convergence to the origin and then we

compute the bound (4).

On Figure 4, α1(k) and α2(k) are the coordinates of vector

~x(k) − ~xt in the basis defined by ~v1 and ~v2. The control

law (3) yields α1(k + 1) = −α2(k)~v1 · ~v2 and α2(k + 1) =
−α1(k)~v1 · ~v2, such that

|α1(k + 1)| ≤ |α2(k)| and |α2(k + 1)| ≤ |α1(k)|.

Hence, α2
1 + α2

2 decreases at every step and is a Lyapunov

function for our system.

Now we observe that, because ‖−→v 1‖=1,

~x(k + 1) · ~v1 = ~x(k) · ~v1 − ~x(k) · ~v1

− (~x(k) · ~v2)(~v2 · ~v1)

Fig. 4. proof of Proposition 1

i.e.

cos(θ1(k + 1))‖~x(k + 1)‖ = −‖~x(k)‖cos(θ2(k))

cos(θ1(k) − θ2(k))

From (3) this yields cos(θ1(k + 1)) = ±cos(θ2(k)).
Similarly one can show that cos(θ2(k + 1)) = ±cos(θ1(k)).
By inspection of all the possible cases, we can conclude that

cos(θ1(k) − θ2(k)) = cos(θ1(0) ± θ2(0)) for all k.

Hence, by defining

δ = max(| cos(θ2 − θ1)|, | cos(θ2 + θ1|)
we obtain: ‖~x(k)‖ ≤ δk‖~x(0)‖.
B. Bounded input case

Proposition 1 showed that a communication-less control

law exists that can drive the token from any point to an ǫ-

neighborhood of any other point in finite time. To use this

result in the context of the ouija game, we need to modify

our bound slightly to include the fact that:

• inputs sent by every player are bounded in magnitude

by some constant u,

• a letter is considered reached by the server when the

center of the token enters a square region of side 2ǫ

around the letter (instead of the ball considered in

Proposition 1).

To this end, we now consider the case of a limited

magnitude input and assume that the input of player i is

now given by

ui(k) =











−−−−−→
Πi(~x(k)) · ~vi if ‖−−−−−→Πi(~x(k))‖ ≤ u

u if
−−−−−→
Πi(~x(k)) · ~vi > u

−u if
−−−−−→
Πi(~x(k)) · ~vi < −u

(5)

Proposition 2. In the case described above, where two

players apply the projection strategy with bounded inputs,

the target area around the point −→x t = (xt, yt) is reached in

a number of steps

n =

⌈ √
4 + a2

h(2 + a2)
(xt + ayt)

⌉

+









√

(x0 − xt − ε)2 + (y0 − yt − ε)2
√

3u
2

4









,
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where a is defined as the slope of the line orthogonal to the

direction of vector −→v 2, assuming −→v 1 is horizontal.

Proof: This proposition is proved in details in [9].

C. Delayed case

We now assume that Player 1 is the team leader defined

in the presentation of the game (section 2) and is not

delayed, while Player 2 is delayed by d steps (d ≥ 1). The

corresponding closed loop is then:

~x(k + 1) = ~x(k) − (~x(k) − ~xt) · ~v1 − (~x(k − d) − ~xt) · ~v2

Proposition 3. There exists an increasing function γ of d,

such that if (~v1 · ~v2)
2 ≥ γ(d), then the system is stable.

Proof: In the delayed case, the dynamics of the token

(when the target point is set as the origin) is described by












~x(k + 1)
~x(k + 2)

·
·

~x(k + 1 + d)













= A













~x(k)
~x(k + 1)

·
·

~x(k + d)













where A ∈ R
2(d+1)×2(d+1) and can be shown to have

characteristic polynomial :

λd(λd+2 − λd+1 + λ − v)

where v := (~v1 · ~v2)
2. For v = 1, we can compute the roots

of this polynomial exactly as

λj = exp

(

i
π + 2πj

d + 1

)

for j = 0...d (the d + 1th roots of −1),

λd+1 = 1,

λi = 0 for i = d + 2...2d + 1.

We study how these roots vary as v is decreased from 1. The

roots {λi}2d+1
i=d+2 are always equal to zero and are stable, so

we focus on the solutions of

F (λ, v) = λd+2 − λd+1 + λ − v = 0.

By the implicit function theorem, for all j = 0...d+1, there

exists a smooth function λj(v) and ǫ > 0 such that
{

F (λj(v), v) = 0 ∀ v ∈ [1 − ǫ, 1]
λj(1) = λj

provided that
∂F (λj , 1)

∂λ
6= 0.

In our case,
∂F (λj , 1)

∂λ
= (d+2)λd+1−(d+1)λd+1 6= 0∀j.

Hence functions λj(v) exist and

dλj

dv
= −

∂F

∂v
∂F

∂λj

=
1

(d + 2)λd+1 − (d + 1)λd + 1
.

From this we can compute

d|λj |2
dv

= λj

dλ̄j

dv
+ λ̄j

dλj

dv

and we get

d|λd+1|2
dv

∣

∣

∣

∣

v=1

=
1

2
+

1

2
= 1 > 0

and for j = 0...d

d|λj |2
dv

= 2Re









−
exp

(

i
π + 2πj

d + 1

)

(d + 1)

(

1 + exp

(

−id
π + 2πj

d + 1

))









= Re









−
exp

(

i
π + 2πj

d + 1

) (

1 + exp

(

id
π + 2πj

d + 1

))

(d + 1)

(

1 + cos

(

d
π + 2πj

d + 1

))









=

1 − cos

(

π + 2πj

d + 1

)

(d + 1)

(

1 + cos

(

d
π + 2πj

d + 1

)) > 0.

In all cases
d|λj |2

dv

∣

∣

∣

∣

v=1

> 0 which proves the existence of

0 ≤ γ(d) < 1 such that

∀ v ∈ [γ(d), 1], |λj(v)| < |λj(1)| = 1.

To show that γ is an increasing function of d, we consider

Jury’s test for F (λ, v) for different values of d. The condi-

tions for stability for d = k + 1 being the same as those for

d = k except for an additional one, we conclude that the

size of the stability region decreases as d increases.

D. N players case

Proposition 4. In the case of N players applying the control

law defined in (2),

n
∑

i=1

αj ≤ 2

is a sufficient condition to have convergence of ~x to ~xt

Proof: In the N players case the dynamics is described

by

~x(k + 1) = ~x(k) −
n

∑

i=1

αi

−−−−−→
Πi(~x(k))

where, as before, we have translated the origin to the target.

Hence

‖~x(k + 1)‖2 = ‖~x(k)‖2 + ‖
n

∑

i=1

αi

−−−−−→
Πi(~x(k))‖2

− 2~x(k) ·
n

∑

i=1

αi

−−−−−→
Πi(~x(k))
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and, by expanding the inner products,

‖~xk+1‖2 = ‖~x(k)‖2

[

1 +

n
∑

i=1

α2
i cos

2(θi(k))

+ 2
∑

i6=j

αiαjcos(θi(k))cos(θj(k))cos(θi(k) − θj(k))

−2

n
∑

i=1

α2
i cos

2(θi(k))

]

= ‖~x(k)‖2

[

1 +

n
∑

i=1

(α2
i − 2αi)cos

2(θi(k))

+
∑

i6=j

αiαjcos
2(θi(k) − θj(k))

+
∑

i6=j

αiαj(cos
2(θi(k)) + cos2(θj(k)) − 1)





= ‖~x(k)‖2



1 −
∑

i6=j

αiαj

+

n
∑

i=1

(α2
i − 2αi + αi

∑

i6=j

αj)cos
2(θi(k))

+
∑

i6=j

αiαjcos
2(θi(k) − θj(k))





Hence, a sufficient condition for convergence to the origin is

α2
i − 2αi + αi

∑

i6=j

αj ≤ 0 ∀ i

i.e., αi − 2 +
∑

i6=j

αj ≤ 0

or

n
∑

i=1

αj ≤ 2.

IV. EXPERIMENTS AND THE ROLE OF COMMUNICATION

The projection-based strategy of section III was developed

in a simplified context, which disregarded a number of fea-

tures of the actual game, and under the implicit assumption

that players, although having access to partial information

about the rest of the team, all implement the same globally

selected strategy.

In order to see how this strategy performs in a real game envi-

ronment, and identify directions in need of further theoretical

developments, we implemented it on two artificial agents.

We then compared the results of these experiments with

two games of ouija involving human players under various

communication scenarios. These comparisons point to two

elements that are not present in the projection-based strategy,

but may be responsible for a large part of in-play team

communication, namely: signaling and team coordination

towards a joint control strategy. We use “signaling” in the

sense of [8], to mean that actions are chosen by players not to

achieve the advertised control goal, but, instead, to transmit

information to others.

In the first experiment with human players (which we will

refer to as E1), the chat box placed at the bottom of the

screen was deactivated. In turn, each player only had direct

access to their own actuation direction and the position of the

token at every time. In the second experiment (denoted E2),

communication through the chat box was enabled. At the

beginning of a round, and before the timer started, players

could choose and create up to five different messages to be

used during the game (for example, “what is your direction?”

and “let me push alone” were possibilities, as well as push-

buttons sending a player’s actuation direction to the chatbox).

Fig. 5. Two simulated players applying the projection-based strategy. This
team spelled 5 complete words in 5 minutes.

Fig. 6. Two human players without communication. This team spelled 3

complete words in 5 minutes.

Fig. 7. Two human players with communication. This team spelled 4

complete words in 5 minutes.

The results of these experiments are summarized in Fig-

ures 5, 6, and 7. Each curve presents the time history of the

x− and y− coordinates of the full control input, i.e.,

(u1
−→v1 + u2

−→v2) .−→ex and (u1
−→v1 + u2

−→v2) .−→ey ,

respectively, as the same sequence of target words is pre-

sented to the teams. By looking at these normalized signals,

we can compare the input histories of all three experiments,

even though players were assigned different actuation direc-

tions in each case. The bound u on an individual player’s
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input intensity was 200 in all cases.

A naked eye observation of the curves (confirmed by a fast

Fourier transform of the signals, which is not reproduced

here for space reasons) shows that:

• the global input signal of Figure 7 is more oscillatory

than the signals of Figures 5 and 6.

• There are several 5 to 10 seconds-long intervals during

which the global input of the team does not vary

significantly in Figures 5 and 6.

In the case of communication-less human players, this lack

of activity may correspond to a learning or signaling episode,

during which each player keeps his input constant in the hope

that the other one will infer his actuation direction from the

token’s motion. Another possible reason why a player’s input

may not vary is that he is unsure where to move the token

next.

In order to gain more insight into the reasons for the lack

of player’s reactivity and be able to distinguish between the

kind of episode described above and situations where almost

constant inputs are explicitly chosen by the players (as in

the case of the experiment of Figure 5), we plan to modify

the game environment so as to allow players to comment on

their input choices orally in real time.

Figures 5, 6, and 7 show that the projection-based strategy

control strategy achieves the highest number of correctly

spelled words in experiments, even though it does not involve

real-time team communication. While this may appear sur-

prising at first, given that communication seems to improve

the performance of teams of human players, one should

remark that the team of automated agents requires less

communication than the human players in experiments E1

and E2, since strategies have been chosen for them prior to

the beginning of the game, and they thus do not need to

agree on a controller. In contrast, the human players (or any

team which must choose and implement a control strategy

during the timed portion of the game) use the chat-box or

signaling to communicate not only about the players’ private

information but also about the choice of a group controller.

In order to rule out the possibility that the strategy played

in E1 is actually the same as the one played in E2, and that

the difference in performance is due to the inability of human

players to apply this strategy accurately, we implemented a

third experiment in which a human plays with an automated

player. At every instant, the human player was shown the

input that an automated player would have applied and was

instructed to follow it as best as possible. The results, which

can be seen on Figure 8, show that a human player do

basically as well as an automated one when he is shown

exactly what to do. It can thus be hypothesized that the

differences between performances are due to differences

between strategies.

V. CONCLUSION AND FUTURE DIRECTIONS

We have implemented an online multiplayer game, which

incorporates the main features of multi-party control prob-

lems: distributed design, decision under non-standard infor-
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Fig. 8. Two automated players vs a human and an automated player.

mation patterns, and network effects. By empirically com-

paring a simple communication-less control strategy to the

control policies used by teams of human players, we could

hypothesize that signaling and the need for players to agree

on a strategy in real-time contribute an important part to team

communication.

In order to study these two processes separately, we plan

to modify the setup of our game and, in particular, add

an un-timed negotiation round to account for the agreement

phase. We also plan to study the interplay between distributed

design, communication, and implementation of a control law

from a more theoretical viewpoint in the future.
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