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Abstract— We describe modeling, system identification and
control design for a magnet manipulator. Two of these ma-
nipulators, placed on either side of a patient, will articulate
their large permanent magnets to generate a magnetic field
in an anatomical region (e.g. the heart) as part of a medical
navigation system under the remote control of a medical
professional. We derive the equations of motion using the
Lagrangian formulation; identify motor, amplifier and gear
friction characteristics using data from a single manipulator
prototype; design the servo control algorithm based on feedback
linearization and decoupling followed by H∞ control and test
it on the prototype. Developing a mathematical model of the
mechanism and using advanced controls algorithms initially
take more time than tuning a PID controller. But the resulting
design yields much smoother motor torques compared to high-
gain controllers, does not excite high frequency dynamics and
potentially improves reliability.

I. INTRODUCTION

Our purpose is to design a model-based, multivariable

servo control algorithm for the magnet manipulator shown in

Fig. 1. Two of these manipulators, placed on either side of a

patient, will articulate their large permanent magnets inside

their pods to generate a magnetic field in an anatomical

region (e.g. the heart) as part of a magnetic navigation system

(MNS), intended to steer and navigate magnetic medical

devices for diagnostic and therapeutic applications under

the remote control of a medical professional, similar to a

commercial system in current use [1].

The manipulator has three joints of articulation described

with respect to an orthogonal frame attached to the magnet,

with its z-axis perpendicular to the magnet front face and y-

axis pointing up when the joints are at their reference (home)

position, as shown in Fig. 1: A translation ζ positive in the

z-axis direction, a rotation θ about the z-axis and a rotation φ
about the y-axis. We will call these the “Navigation” joints to

distinguish them from others (not shown) which are intended

for repositioning the entire manipulator around the patient

in an operating room, hence called “Support” joints. All

Navigation joints are actuated by ac servo motors coupled

to gear reducers. Motor angular positions are measured

by absolute encoders. There are no specific velocity or

acceleration sensors. Phi uses a drum and cable drive to rotate

the magnet in its yoke; Theta has a slewing ring to rotate

the yoke and the magnet; and Zeta uses a leadscrew to move

the Theta carriage which contains all of the above. The case
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of the Phi reducer is attached to the Theta ring as shown in

Fig. 2. This eliminates the need for an expensive and delicate

slip ring to transmit Phi motor power and control signals,

yet creates a mechanical coupling so that Theta rotation also

results in Phi rotation in an amount divided by the Phi gear

ratio, unless the Phi motor is rotated explicitly to compensate

for it.

The controls designer faces several challenges in this

mechanism: i) All joints are dynamically coupled in addition

to the mechanical coupling mentioned above, hence a nonlin-

ear multivariable system; ii) Gear reducers have significant

friction with substantial stiction and Coulomb components;

iii) Due to the weight (about 300 kg) of each magnet, there

is considerable (nonlinear) gravitational loading; iv) a major

part of the load is due to the magnetic interaction forces

between the two manipulators, which are nonlinear and po-

sition dependent; and v) The cable drive, while lightweight,

inexpensive and robust, introduces stretch into the system,

hence reducing rigidity and limiting dynamic performance.

Our approach is similar to [2] and [3] in the way we

combine feedback linearization with linear robust control.

Alternatively, one may pursue adaptive control as in [4]. In

what follows, we will derive the equations of motion in a

Lagrangian framework; reduce the plant order via singular

perturbation theory; describe the identification of cable,

motor and gear friction characteristics from experimental

data; design a servo control algorithm based on feedback

linearization and decoupling followed by H∞ control; and

present experimental results on a prototype fixture (without a

Zeta joint). We hope that our experience will be informative

for the practicing controls engineer.

II. MAGNET MANIPULATOR DYNAMICS

We choose the degrees-of-freedom (DOF) as

q
def

= [ζ, θ, φ, α]T , where α is the cable drum angular

position. The potential energy is the sum of gravitational Ug

and cable stretch Us parts:

Ug = MMg[(L1 − ζ +d3 cos φ) sin γ−d3 sin φ sin θ cos γ]

+ [MQg(L1 − ζ + d1) + MOCg(L1 − ζ + d1 + d2)] sin γ ,
(1)

where MQ, MM, MOC are mass of yoke, magnet, and other

components, γ is the pod tilt angle, and di, Li are various

distances. Since the cables between the Phi drum and magnet

plate can only be stretched per the ratcheting preloading

mechanism, their spring constants are combined into k, and
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thus

Us =
1

2
k (φrφ − (α − θ)rα)

2
, (2)

where rα and rθ are drum and magnet center plate radii.

The kinetic energy of the magnet, yoke and other drive

components due to linear and angular motion is

T =
1

2
[(MQ + MOC)ζ̇2 + λ̇2

1(IZ + IZR) + λ̇2

2ILS

+ MM| ~̇RM|2 + β̇2

1(IT + ITR1) + β̇2

2ITR2 + θ̇2ITS

+ α̇2

1(IP + IPR) + α̇2IPS + ~ωT
Q IQ~ωQ + ~ωT

MIM~ωM (3)

where IM , IQ are magnet and yoke inertias; NZR, P are ζ
reducer ratio and leadscrew pitch; IZ, IZR, ILS are ζ motor,

brake, reducer and leadscrew inertias; λ1, λ2 are ζ motor

and reducer shaft positions; NT1, NT2 are θ first and second

reducer ratios; IT, ITR1, ITR2, ITS are θ motor, brake, reducer

and shaft inertias; β1, β2 are θ motor and first reducer shaft

positions; NP is φ reducer ratio; IP, IPR, IPS are φ motor,

brake, reducer and shaft inertias; α1, α are φ motor and

reducer shaft positions; ~RM is the magnet position vector;

~ωM, ~ωQ are magnet and yoke angular velocities, all of which

can be expressed in terms of qi and known constants. Using

the mass matrix M the kinetic energy is rewritten as a

quadratic function of the velocities T = 1

2
q̇T M(q)q̇.

The motion of each DOF follows from
d

dt

(

∂L
∂q̇i

)

− ∂L
∂qi

= fi where the Lagrangian L
def

= T −U and

fi is the external force acting on qi. These forces consist

of motor torques, magnetic interaction forces, gear friction

and the kinematic coupling between the Phi reducer case

and magnet yoke. Because of this coupling some of the

Phi reducer input torque T1 is transmitted to the Theta

joint as Tθ = (NP − 1)T1. The Phi motor torque TP is

related to T1 as TP = T1 + IPα̈1, allowing us to substitute

Theta Axis 

Magnet 

Zeta Axis 

Phi Axis 

Isocenter

Fig. 1. The reference frame and magnet articulation joints.

Tθ = (NP − 1)TP + (1 − NP)IPα̈1 and eliminate Tθ from

equations of motion. The resulting dynamic equations are

shown in Fig. 3.

In order to facilitate model reduction by the singu-

lar perturbation method [5], solve for the spring term

φrφ + rα(θ − α) in (7):

φrφ + rα(θ − α) =
1

krα

(

[N2

P (IP + IPR) + IPS]α̈

+ NP(IP + IPR)(1 − NP)θ̈ − NPTP

)

. (8)

Then, substitute this term (8) into (5) and (6), eliminating k
from those equations. Now, dividing (7) through by k and let-

ting k→ ∞ eliminates the “fast dynamics” (7). The resulting

quasi steady-state value of α = θ + (rφ/rα)φ is substituted

into (5) and (6) to reveal the “slow dynamics,” which is the

rigid system without cable stretch. The exponential stability

of the boundary layer is verified for the closed-loop system

after the controller is inserted into the equations.

Although it is possible to work with the full model in

Fig 3 for control design, the cable drum position α is not

available for measurement, and there is a wide margin in

the frequency domain between the slow and fast parts of

the dynamics, as detailed in Sec. III. Therefore, we do not

believe that the extra complexity of working with the full

model is justifiable in view of the design requirements in

Sec. IV.

Finally, we write the reduced dynamics in the compact

form

M(q)q̈ +C(q, q̇)q̇ + k(q) = Bu(t)+Tm(q)−BTf (q̇) , (9)

where the nonsingular matrix M contains mass and inertia

terms, the C matrix represents Coriolis, Euler and centrifugal

forces, k represents gravity and cable spring terms, u is

motor torques, Tm is magnetic interaction torques at the

magnet, Tf is friction referred to the motor shaft and the

B matrix is torque conversion from motor to magnet, which

is nonsingular because our system is fully actuated.

Fig. 2. Section view of Theta and Phi drive system.
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ζ :
[

MM + MQ + MOC + N2

Z P 2(IZ + IZR) + P 2ILS

]

ζ̈ + MMd3 sin(φ) φ̈

+ MMd3 cos(φ) φ̇2 − (MM + MQ + MOC)g sin(γ) = NZPTZ + FMζ (4)

θ : [MMd2

3 sin2(φ) + N2

T1N
2

T2(IT + ITR1) + N2

T2(ITR2) + ITS + sin2(φ)IM
x

+ cos2(φ)IM
z + IQ

z + (IP + IPR)(NP − 1)2]θ̈ + [NP(1 − NP)(IP + IPR)] α̈

+
[

2(MMd2

3 + IM
x − IM

z ) sin(φ) cos(φ)
]

θ̇φ̇ + krα (φrφ + rα(θ − α))

− MMgd3 sin(φ) cos(γ) cos(θ) = TT + TMθ + (1 − NP)TP (5)

φ : [MMd3 sin(φ)] ζ̈ +
[

MMd2

3 + IM
y

]

φ̈ − cos(φ) sin(φ)(MMd2

3 + IM
x − IM

z )θ̇2

+ krφ (φrφ + rα(θ − α)) − MMgd3(sin(φ) sin(γ) + sin(θ) cos(φ) cos(γ)) = TMφ (6)

α :
[

N2

P (IP + IPR) + IPS

]

α̈ + NP(IP + IPR)(1 − NP)θ̈ − krα (φrφ + rα(θ − α)) = NPTP (7)

Fig. 3. Equations of motion for the plant with cable stretch.

III. SYSTEM IDENTIFICATION

Friction losses in gears, bearings and other sliding contacts

in the mechanism must be estimated from experimental

data since no theoretical procedure exists that can predict

these reliably. Although gear manufacturers quote efficiency

figures in their data sheets, these are often obtained from

constant velocity operation with specific load conditions,

hence have limited use in robotic applications. Also, stiction

values are not quoted. Similarly, amplifier and motor gain

characteristics are load dependent and manufacturer specifi-

cations must be cross checked with experiments. Finally, the

cable stretch introduces an additional DOF into the system

and the frequency of the associated mode in the model must

be compared to the observations in order to guarantee control

robustness.

We tested the motor and amplifier characteristics by at-

taching an inertia disk to the motor shaft with no other

load and running profiles with constant desired acceleration

under closed-loop servo control. The torque output of the

motor was determined from the actual acceleration. The

acceleration was computed from the measured position using

the generalized derivative method which has much better

noise immunity than centered finite differencing [6]. The

computed acceleration was within 0.03% of the reference,

indicating negligible following error. The current output of

the amplifier was measured with a true-rms clamp meter

and appeared 4% lower than the theoretical. The total gain

from the DAC output to motor torque showed good linearity

and was within 5% of the theoretical up to 5 Nm. For

higher torques, the experimental gain was 9% less than the

theoretical. These torque gain values show little variation

with motor velocity up to 4000 rpm. In the model, we

used the experimental amplifier-motor gain characteristics in

a lookup table as a function of desired torque, instead of

assuming a constant value.

Cable stretch is measured by a static loading test and

by small-signal frequency response. For the former, we

immobilized the magnet plate, increased the motor torque in

small steps and measured the motor shaft position. Linear
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Fig. 4. Bode plot of nominal and actual systems from Phi reference to
measured Phi position.

fitting of the data points show that the total compliance

on Phi is 0.15 deg/Nm, which is in good agreement with

the theoretical 0.14 deg/Nm derived from manufacturer’s

specifications. For the latter, we added a small amplitude

constant frequency sinusoidal to a ramp reference going

from -20 to 20 deg with constant velocity of 8 deg/sec and

compared the magnitude and phase of the Fourier transforms

at that frequency. In Fig. 4, the nominal is the closed-

loop system with the springless plant without acceleration

feedforward and the actual represents the measured data. The

nominal and actual magnitude and phase plots match well

until the effect of the pole-zero pair from cable flexibility

becomes significant. The actual system has a bandwidth

of about 10 Hz, and a magnitude peak at around 50 Hz

due to the cable, which agrees with the theoretical resonant

frequency of 54 Hz.

Stiction makes it difficult to position the load in small

increments, and if integral control is used it can cause

limit cycle oscillations around the set point. Stiction torque
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Fig. 5. Measured and fitted Phi friction vs. load velocity at 36 psi.

was determined by feeding a triangular reference signal of

small amplitude and low frequency and by measuring the

breakaway torque needed to start motion on both positive and

negative directions. It was observed that stiction is position

and direction dependent for both Theta and Phi joints and

load dependent on Phi. The percentage motor torque needed

to overcome stiction was less than 1.5% for Theta and less

than 14% for Phi, which is quite significant.

Coulomb and viscous friction coefficients were estimated

using a large sinusoidal reference signal with frequencies

0.05, 0.25 and 0.4 Hz. The load dependence was less

significant in this case, but directonal dependence was sig-

nificant. As observed in Fig. 5, this introduces hysteresis

into the dynamics, similar to the Dahl friction model [7].

This is expected since gears with large ratios are difficult to

backdrive and they may dissipate more heat when kinetic

energy is being transferred from to load to the motor,

i.e. during deceleration, compared to acceleration. Motor

torque percentages used to overcome Coulomb friction was

11% for Phi and 4.4% for Theta. In all tests, stiction values

were very close or less than Coulomb values. Motor torque

needed for viscous friction depends on speed, and for rated

load speed the percentages were 10% for Phi and 26% for

Theta.

IV. CONTROL SERVO ALGORITHM DESIGN

The proposed control servo algorithm (CSA) is based

on the Computed Torque Control (CTC) scheme where the

control law consists of two terms. The first is feedback

linearization and decoupling [8] in which we precalculate

the mass matrix, Coriolis matrix and the gravity vector to

reduce the dynamics of each joint to a double integrator.

Second, a linear controller is designed individually for each

joint to satisfy tracking error, rise time, settling time, and

disturbance rejection requirements while limiting controller

bandwidth so as not to excite the cable dynamics. We

formulate this as an H∞ mixed sensitivity problem. All joint

positions for linearization and feedback control are measured

at the respective motor shaft. Magnet positions ζ, θ, φ are

calculated from motor positions assuming that the plant is

a stiff system. Instead of the actual load velocities, desired

values are used.

The design requirements are (i) 10-90% rise time tr ≤
100 ms; (ii) 1% settling time ts ≤ 300 ms; (iii) steady-state

error for ζ, θ and φ must be less than 0.375 mm, 0.375 deg

and 0.75 deg respectively; (iv) tracking error for 0.5 Hz

sinusoidal references of amplitudes 90o for θ and 60o for

φ must be less or equal to the steady-state error; (v) absolute

values of the joint velocities and accelerations are bounded;

(vi) ζ is bounded above by a known smooth function of φ
to keep the magnet in its cover.

These last two requirements are delegated to a separate

path planning algorithm which operates at a much longer

sampling period than the servo controller and uses cubic

polynomials to interpolate at the servo rate using end point

position, velocity and time values (PVT scheme). Because of

the cubic representation, reference velocity and acceleration

are available.

Consider the plant in (9) and assign the motor torques as

u = B−1[C(q, q̇)q̇ + k(q) − T̂m(q)

+ M(q)v(t) + M(q)r̈(t)] + T̂f (q̇) (10)

where r is reference position, T̂m is estimated mag-

netic torques, T̂f is friction compensation, the error is

e(t)
def

= r(t) − q(t) and v is the output of the linear controller

v(t) = C(s)e(t) to be designed. Substituting (10) into (9) we

get

q̈ = r̈ + v + d , d
def

= M(q)−1[T̃m(q) − BT̃f (q̇)] (11)

where d is disturbance, T̃m
def

= Tm − T̂m and T̃f
def

= Tf − T̂f .

Figure 6 shows the resulting closed-loop system.

Let us ignore the coupling between the joints due to un-

compensated magnetic interaction and friction forces in (11).

Then M = diag[Mζ ,Mθ,Mφ], B = diag[Bζ , Bθ, Bφ], and

the linearized system for each joint becomes an inde-

pendent single-input-single-output (SISO) double integrator

P (s) = 1/s2. Here we describe the process for designing the

feedback controller for φ since the process for the others is

identical. The output is q = φ and the error is e = r − q.

The sensitivity function is S
def

= 1/(1 + PC) and the

complementary sensitivity is T = 1 − S. The closed-loop

transfer functions from d to e is −PS, and from r
to v is CS. Requirements (iii) and (iv) imply that

|P (jω)S(jω)||d| ≤ 0.0087 rad in the frequency range 0 to

0.5 Hz. Assuming a worst case T̃m of 20%, and assuming

we compensate for 60% of total friction, we find that

|P (jω)S(jω)| must be bounded by -56 dB in that frequency

range. We use the H∞ scheme in [9] and [10] by selecting

weights W1 and W2 as constants, W3 as a first order low pass

filter and W4 as a first order high pass filter. The resulting

closed-loop transfer function from input to output for the

H∞ synthesis becomes:
[

z1

z2

]

=

[

W3SW1 W3PSW2

W4CSW1 W4TW1

] [

ω1

ω2

]

, (12)
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Fig. 6. Block diagram of the closed-loop system (F (s) = 1).
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where z1

def

= W3e and z2

def

= W4v.

After obtaining a satisfactory feedback filter from the H∞

design to satisfy the requirements (iii) and (iv), we analyze

and modify the resulting controller using root-locus to satisfy

time domain requirements (i) and (ii). Figure 7 shows the

Bode plots of the closed-loop transfer functions with the

modified feedback filter, and we can see that it satisfies

the disturbance rejection requirement on PS(jω). The final

linear feedback controller is

C(S) =
2.6 · 106(s + 10.04)2

(s + 301)(s + 200.1)(s + 2.507)
. (13)

V. EXPERIMENT RESULTS

Since the two manipulator system is not yet operational,

the designed controller was tested on a test fixture with Theta

and Phi joints only. The magnetic interaction was emulated

by attaching a piston with compressed air to the magnet plate,

which influences the Phi joint only. By adjusting the pressure

and the lever arm geometry, the magnitude and position

dependence of the air piston torque was made similar to

the Phi magnetic torque. All collected data were obtained at

36 psi air pressure, which corresponds to maximum magnetic

torque on Phi. The controller was discretized using pole-zero

matching with a sampling period of 0.5 ms and implemented

in C++ language, then converted to firmware and downloaded

to Adept MotionBlox hardware which contains the motion

control computer as well as amplifiers.

Figure 8 plots a 3 degree step response of Phi. The

measured rise and settling times were 30 ms and 70 ms,

respectively. There is a small amount of steady-state error

due to stiction since we do not use integral control. But this

error is within specifications.

Figure 9 shows Phi position error while tracking 60 deg,

0.5 Hz sinusoidal reference. Largest errors are observed

when the sign of the Coulomb friction changes when motion

changes direction, but they are within specifications. Fig-

ure 10 shows the corresponding motor torque, which is quite

smooth.

We tried to tune a PID controller for this experimental

system for comparison purposes, but were not able to get

reasonable performance and maintain stability at the same

time when the system had 36 psi air pressure. The previous

generation system [1] uses PID control and it is instructive

to see its Phi motor torque while tracking a smooth signal

in Fig. 11. Note the large amount of chattering typical of

high-gain control when measurement noise and drive train

compliance are present.

VI. CONCLUSION

We have described model-based servo control design for

a three DOF manipulator for a large magnet intended for

medical navigation applications. The compliant cable drive,

mechanical coupling beween two of the joints, substantial

loading due to gravity and magnetic interaction forces, which

necessitate high gear ratios, which in turn exhibit significant

stiction and Coulomb friction, are some of the challenges

that the controls designer faces. Developing a mathematical

model of the mechanism and using advanced controls algo-

rithms initially take more time than tuning a PID controller.

But the resulting design yields much smoother motor torques

compared to high-gain controllers, does not excite the cable

dynamics, and potentially reduces component wear and im-

proves reliability.

1339



0.46 0.48 0.5 0.52 0.54 0.56 0.58 0.6 0.62 0.64

0

0.5

1

1.5

2

2.5

3

3.5

time (s)

d
e
g
re

e

reference φ

measured φ at motor

measured φ at magnet

Fig. 8. Phi step response for test fixture. Blue is reference, green is φ
measured at motor, and red is φ measured at load.

0 0.5 1 1.5 2 2.5 3 3.5 4
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time (sec)

e
rr

o
r 

(d
e
g
)

 

 

φ

Fig. 9. Phi position error while tracking 60 deg, 0.5 Hz sinusoidal reference
with the proposed method.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
−5

−4

−3

−2

−1

0

1

2

3

4

5

time (s)

N
m

reference φ torque

actual φ torque

Fig. 10. Phi motor torque while tracking 60 deg, 0.5 Hz sinusoidal reference
with the proposed method.

0 2 4 6 8 10 12 14 16 18 20
−10

−5

0

5

10

15

20

Time (sec)

T
o

rq
u

e
 (

N
m

)

Fig. 11. Phi motor torque while tracking smooth reference with a PID
controller for the previous generation system.

ACKNOWLEDGMENT

The authors would like to thank Stereotaxis for supporting

this work entirely. From this company, Barbara Huen and

Sandra Sowah helped with some of the earlier work on mod-

eling and identification; Jim Morrow did C++ programming,

firmware conversion, and testing on the hardware.

REFERENCES

[1] (2009, March) NIOBE Magnetic Navigation System. Stereotaxis, Inc.
[Online]. Available: http://www.stereotaxis.com/Products-Technology/
Magnetic-Navigation/
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