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Abstract— The capabilities of extended state observer (ESO)
for estimating uncertainties is discussed in this paper. The scope
of the disturbances that can be observed by LESO with bounded
observing errors is given. The observing errors for several typ-
ical disturbances–constant disturbance, sine disturbance, ramp
disturbance, and square wave disturbance are further analyzed.
It is demonstrated that ESO can deal with a large class of
disturbances. Finally, the results are tested by simulations.

I. INTRODUCTION

Control design for the systems with uncertainties is a

longstanding fundamental issue in automatic control. The

uncertainties, which are universal in practice, usually stem

from two sources: internal (parameter or structure) uncer-

tainty and external (disturbance) uncertainty. Lots of control

methods have been proposed centering on this issue, such

as the widely used PID control [1], adaptive control [2],

robust control [3] and disturbance-accommodation control

[4] etc. What’s more, many disturbance estimating tech-

niques appeared, such as unknown input observer (UIO) [5],

perturbation observer (POB) [6], the disturbance observer

(DOB) [7], etc. Owing to the less dependence on model

information, strong capabilities for disturbance rejection and

simple control structure, the active disturbance rejection

control (ADRC)[8][9][10][11] attracted many researchers’

attention. The key in ADRC is the use of extended state

observer (ESO) for on-line estimating the total uncertainties,

which lumps the internal nonlinear and uncertain dynamics

and the external disturbance. Hence the uncertainties of the

system can be compensated actively.

The idea of ESO can be demonstrated in the following

single-input and single-output system:

{

x(n) = f (x(n−1)(t),x(n−2)(t), · · · ,x(t),ω(t), t)+bu(t),
y = x(t)

(1)

where n is the order of the plant, y is the output, u is the

input, b is a constant, ω(t) is the external disturbance, f (·)
is an unknown function which can be viewed as the total

uncertainties or disturbances of the system, both internal

and external. Introduce h = d f /dt. If the function f is non-

smooth, h denotes the generalized derivative of f (·). Treat

the uncertainty f as an extended state of the system (1), the
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equation (1) can be written in the state form as


























ẋ1(t) = x2(t),
...

ẋn−1(t) = xn(t),
ẋn(t) = xn+1(t)+bu,
ẋn+1(t) = h(·),

(2)

where X = [x1, · · · ,xn+1]
τ ∈ R

n+1 represents the state of the

system. The ESO for estimating both the states and the

extended state for the uncertain system (1) can be given as

follows[9][12]


























ż1 = z2 −β1 f al(e1,α1,δ ),
...

żn−1 = zn −βn−1 f al(e1,αn−1,δ ),
żn = zn+1 −βn f al(e1,αn,δ )+bu,
żn+1 = −βn+1 f al(e1,αn+1,δ ),

(3)

where Z = [z1, · · · ,zn+1]
τ ∈ R

n+1,e1 = z1 − x1and βi(i ∈
n+1) are the state of ESO, the observing error and the

observer gains, respectively,

f al(e,α,δ ) =

{

|e|α sgn(e), |e| > δ
e/δ 1−α ,otherwise

0 ≤ α ≤ 1,δ > 0.

ESO (3) is designed to have the property:

zi(t) → xi(t)(i ∈ n+1).
It should be noted that (3) takes the form of the classical

Luenberger Observer, when αi = 1(i ∈ n+1).On the other

hand, (3) is consistent with the sliding mode observer, when

αi = 0(i ∈ n+1).
The idea of ESO has been used to deal with various kinds

of engineering problems, such as flight control, web tension

control, chemical process control etc [13][14][15]. At the

same time, many researchers are of interest in the stability

analysis of ADRC and ESO [13][16][17][18].

Reference [16][17]discussed the capabilities of the linear

ESO withαi = 1(i ∈ n+1), which is given as:


























ż1 = z2 −β1e1,
...

żn−1 = zn −βn−1e1,
żn = zn+1 −βne1,+bu,
żn+1 = −βn+1e1,

(4)

The parameters are chosen in a special way as sn+1 +β1sn +
· · ·+βn+1 = (s+ω0)

n+1, where ω0 denotes the bandwidth of

the LESO (4). It was proved that if f is differentiable with

respect to t and h = ḟ is bounded, then the LESO (4) can

estimate f (t) with bounded error. In [18], the tracking errors
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of the LESO (4) were studied in the case n = 2, under the

assumptions that f (t) is bounded, piecewise continuous and

in each continuous subinterval ḟ (t) is bounded. In conclu-

sion, the existing results are all based on the assumption that

h = ḟ is bounded.

In this paper, the capabilities of LESO (4) will be analyzed

for a wider scope of uncertain function f (t). The main result

is that it can estimate f (t) with bounded error if either h =
d f /dt is bounded or f is bounded. This enriches the existing

theoretical analysis for ESO. For example, according to the

result, the square wave disturbance, which usually exists in

practice, can be dealt with by ESO with bounded errors since

f is bounded while its derivative h is unbounded. Moreover,

the observing errors for a set of uncertainties, which often

appear in practice, are analyzed in this paper.

The paper is organized as follows. In Section II, the scope

of the uncertainties that can be observed by LESO (4) with

bounded observing errors is discussed. Then the observing

errors for several typical forms of uncertainties are further

analyzed in Section III. Simulation results are presented in

section IV and the concluding remarks are given in section

V.

II. MAIN RESULTS

Introducing the observing errors:

E = [e1, · · · ,en+1]
T = Z −X

where en+1 = zn+1 − xn+1 = zn+1 − f is the observing error

of the uncertainty, the error dynamics can be got from (2)

and (4) :


























ė1 = e2 −β1e1,
...

ėn−1 = en −βn−1e1,
ėn = en+1 −βne1,
ėn+1 = −βn+1e1 −h,

(5)

which can be rewritten as

Ė = AE +Bh (6)

where

A =















−β1 1 0 · · · 0

−β2 0 1 · · · 0
...

...

−βn 0 · · · 0 1

−βn+1 0 0 · · · 0















,B =











0

0
...

−1











.

Solving (6), one can get

E(t) = eAtE(0)+ eAt

∫ t

0
e−Aτ Bh(τ)dτ (7)

Next, the conditions for f (t) or h(t) , under which E(t)
is bounded will be discussed.

Since the parameters βi(i ∈ n+1) can be chosen such that

A is Hurwitz, the following discussions are all based on the

fact that A is Hurwitz with real negative eigenvalues. Hence,

the first part of the right side of (7) will converge to zero as

long as E(0) is bounded, that is

lim
t→∞

eAtE(0) = 0 (8)

Then the analysis will be concentrated on the second part of

(7), that is

G(t) =
∫ t

0
eA(t−τ)Bh(τ)dτ (9)

Provided that A has r different real eigenvalues λi < 0(i ∈ r),
where ni is the multiplicity of λi,

r

∑
i=1

ni = n+1,

then eA(t−τ) can be expressed as:

eA(t−τ) =
r

∑
i=1

eλi(t−τ)
ni−1

∑
j=0

Si j

(t − τ) j

j!
(10)

where Si j ∈ R
(n+1)×(n+1) is the constant matrix determined

by A. It’s obviously that A has n + 1 different eigenvalues

if r = n + 1, and A has n + 1 identical eigenvalues if r = 1,

which is just the situation as [16][17][18] discussed. Then

G(t) can be unified in the following form

G(t) =
∫ t

0
eA(t−τ)Bh(τ)dτ

=
∫ t

0

r

∑
i=1

ni−1

∑
j=0

Si jB
(t − τ) j

j!
eλi(t−τ)h(τ)dτ (11)

Before discussing the property of G(t), a lemma is given as

follows.

Lemma 1. For ∀λ < 0, the following formula holds

lim
t→∞

∫ t

0
(t − τ)keλ (t−τ)dτ =

k!

(−λ )k+1
(12)

Proof Let t − τ = s, then

∫ t

0
(t − τ)keλ (t−τ)dτ =

∫ 0

t
skeλ sd(t − s) =

∫ t

0
skeλ sds

Next the mathematical induction will be utilized to prove

lim
t→∞

∫ t

0
skeλ sds =

k!

(−λ )k+1
. (13)

When k = 0,

lim
t→∞

∫ t

0
eλ sds = lim

t→∞

1

λ

(

eλ t −1
)

,

Since λ < 0, it follows that lim
t→∞

eλ t = 0. Hence,

lim
t→∞

∫ t

0
eλ sds = −

1

λ
,

(13) holds.

Assume that (13) holds when k = m, that is

lim
t→∞

∫ t

0
smeλ sds =

m!

(−λ )m+1
,
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Then when k = m+1,

lim
t→∞

∫ t

0
sm+1eλ sds

= lim
t→∞

1

λ

∫ t

0
sm+1deλ s

= lim
t→∞

1

λ

(

tm+1eλ t − (m+1)
∫ t

0
smeλ sds

)

Since λ < 0, it follows that

lim
t→∞

tm+1eλ t = 0

So

lim
t→∞

∫ t

0
sm+1eλ sds = lim

t→∞
−

1

λ
(m+1)

∫ t

0
smeλ sds

= −
1

λ
(m+1)

m!

(−λ )m+1

=
(m+1)!

(−λ )m+2

Therefore (13) holds when k = m+1. Q.E.D.

The following theorem declares the scope of disturbance

f that can be estimated by the LESO (4) with bounded error

E(t).

Theorem 1. lim
t→∞

E(t) is bounded if at least one of the

following two conditions is satisfied:

a) |h| ≤ M1 for a constant M1 and all t.

b) | f | ≤ M2 for a constant M2 and all t.

Proof If property a) is satisfied, from (11), |G(t)| has the

upper bound as:

|G(t)| =
∣

∣

∣

∫ t

0

r

∑
i=1

ni−1

∑
j=0

Si jB
(t − τ) j

j!
eλi(t−τ)h(τ)dτ

∣

∣

∣

≤
r

∑
i=1

ni−1

∑
j=0

|Si jB|M1

∫ t

0

(t − τ) j

j!
eλi(t−τ)dτ

Since A is Hurwitz, λi < 0(i ∈ r). According to lemma 1 we

can get

lim
t→∞

|G(t)| ≤
r

∑
i=1

ni−1

∑
j=0

|Si jB|M1
1

(−λi) j+1
(14)

Therefore, from (7) (8) and (14), lim
t→∞

E(t) is bounded.

If property b) is satisfied, from (11), |G(t)| has the upper

bound as:

|G(t)| =
∣

∣

∣

∫ t

0

r

∑
i=1

ni−1

∑
j=0

Si jB
(t − τ) j

j!
eλi(t−τ)h(τ)dτ

∣

∣

∣

=
∣

∣

∣

∫ t

0

r

∑
i=1

ni−1

∑
j=0

Si jB
(t − τ) j

j!
eλi(t−τ)d f (τ)

∣

∣

∣

≤
∣

∣

∣

r

∑
i=1

ni−1

∑
j=0

Si jB
(t − τ) j

j!
eλi(t−τ) f (τ)

∣

∣

∣

t

0

∣

∣

∣

+
∣

∣

∣

r

∑
i=1

ni−1

∑
j=0

Si jB

∫ t

0

(λi(t − τ) j

j!

+
(t − τ) j−1

( j−1)!

)

eλi(t−τ) f (τ)dτ
∣

∣

∣

=
∣

∣

∣

r

∑
i=1

Si0B f (t)−
r

∑
i=1

ni−1

∑
j=0

Si jB
t j

j!
eλit f (0)

∣

∣

∣

+
∣

∣

∣

r

∑
i=1

ni−1

∑
j=0

Si jB

∫ t

0

(λi(t − τ) j

j!

+
(t − τ) j−1

( j−1)!

)

eλi(t−τ) f (τ)dτ
∣

∣

∣

under the supposition that (t − τ) j−1 = 0 when j − 1 < 0.

Since | f | ≤ M2, similarly, by applying lemma 1, it can be

proved that

lim
t→∞

∣

∣

∣

r

∑
i=1

ni−1

∑
j=0

Si jB

∫ t

0

(λi(t − τ) j

j!

+
(t − τ) j−1

( j−1)!

)

eλi(t−τ) f (τ)dτ
∣

∣

∣

≤
r

∑
i=1

ni−1

∑
j=0

|Si jB|M2
2

(−λi) j

So

lim
t→∞

|G(t)| ≤
r

∑
i=1

|Si0B|M2 +
r

∑
i=1

ni−1

∑
j=0

|Si jB|M2
2

(−λi) j
(15)

Then, from (7) (8) and (15), lim
t→∞

E(t) is bounded. Q.E.D.

Conditions a) and b) covers a wide scope of uncertainties

in the engineering practice, such as constant disturbance,

square wave disturbance etc. The uncertainties described in

the stability analysis in [13][16][17][18] all satisfy condition

a). However, the square wave disturbance satisfies b) but not

a).

Both the upper bounds in (14) and (15) can provide some

guide for ESO’s parameter design in practice. To further

illustrate this, the special case when r = 1 is studied for

simplicity. In this case,

|S1 jB| =

























0
...

1

C
j−1
j (−λ )

...

C1
j (−λ ) j−1

(−λ ) j

























, j = 0, · · · ,n (16)

where Ck
j = j···( j−k+1)

k!
(k ≤ j), if the condition a) is satisfied,

it follows that

lim
t→∞

|G(t) ≤
n

∑
j=0

M1

























0
...
1

(−λ ) j+1

C
j−1
j

(−λ ) j

...
1
−λ

























, (17)
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and if the condition b) is satisfied, there is

lim
t→∞

|G(t) ≤











0
...

0

1











M2 +
n

∑
j=0

2M2

























0
...
1

(−λ ) j

C
j−1
j

(−λ ) j−1

...

1

























. (18)

According to (17), the larger −λ is, the smaller the

bound will be. What’s more, the decay rate of the ith(i =

1, · · · ,n + 1) component is O
(

1
λ n+2−i

)

. (18) shows that, the

first n components of the bound will decrease as −λ grows

with the decay rate O
(

1
λ n+1−i

)

i = 1, · · · ,n. The (n + 1)th

component in (18), which is the bound for estimating the

uncertainty, is a constant.

Theorem 1 proves that the observing errors of LESO (4)

are bounded when the uncertainty satisfies the condition a)

or b). For some kinds of typical uncertainties, more accurate

bounds of the observing errors can be obtained. Next, the

bounds for a set of typical disturbances which often happen

in engineering applications will be discussed.

III. OBSERVING ERRORS OF SEVERAL TYPICAL

UNCERTAINTIES

A. f is a constant disturbance

Constant uncertain disturbance is the most simple and

common case in practice. The widely used PID controller

can treat constant disturbance very well because the use of

integrator. Next we will show that the observing errors of

LESO can converge to zero if f is an uncertain constant.

Assume f = C, where C is a uncertain constant. Then h =
ḟ = 0 . From (9), there is G(t) = 0 , and lim

t→∞
E(t) = 0, which

means lim
t→∞

zn+1(t) = C. Therefore the constant uncertainty

can be precisely estimated by ESO.

B. f is the sinuous function

The sinuous disturbance can be viewed as the continuous

and periodic uncertain dynamics exist in the system.

Assume f = Msinωt, M and ω are the amplitude and

frequency of the sinuous function respectively. Obviously it

satisfies property a) in Theorem 1 because |h| ≤ Mω . From

(9), we can obtain

G(t) = Mω

∫ t

0
eA(t−τ)Bcosωτdτ (19)

Integrating (19) by parts yields

G(t) = MBsinωt −
MA

ω
Bcosωt +

MA

ω
eAtB−

A2

ω2
G(t)

Since matrix I + A2

ω2 is positive definite, it is invertible. Then

G(t) =
(

I +
A2

ω2

)−1(

MBsinωt −
MA

ω
Bcosωt +

MA

ω
eAtB

)

So

lim
t→∞

|E(t)| ≤
∣

∣

∣
(I +

A2

ω2
)−1B

∣

∣

∣
M +

∣

∣

∣

(

I +
A2

ω2

)−1

AB

∣

∣

∣

M

ω
(20)

Equation (20) shows that the bounds of the observing errors

are related to the frequency ω , the amplitude M and the

Hurwitz matrix A.

C. f is a ramp function

The ramp function can be utilized to simulate the increas-

ing disturbance in the system.

Assume f = ct, where c is an uncertain constant. Then

h = c. It satisfies property a) in Theorem 1. It follows that

G(t) = c

∫ t

0
eA(t−τ)Bdτ = cA−1eAtB− cA−1B.

So

lim
t→∞

E(t) = −cA−1B (21)

In most existing results for control methods of uncertain

systems, the external disturbance is often assumed to be

bounded. However, equation (21) reveals that LESO can

observe ramp uncertainty with constant error although the

ramp function will becoming infinite as the time going to

infinite.

D. f is the square wave function

The square wave function represents a typical kind of

uncertainties, for example, load change, which exists in many

engineering systems. Actually it is a typical example, which

only satisfies condition b) but not a) in theorem 1. Next,

a more accurate bound for the observing errors will be

presented for the square wave uncertainties, compared to that

in (18).

Assume f is a square wave function as follows

f (t) =

{

L t ∈ [(2k−2)T,(2k−1)T )
−L t ∈ [(2k−1)T,2kT )

,k ∈ Z
+ (22)

where L and 2T are the amplitude and period of f respec-

tively. Since h(kT ) is infinite, the condition a) is not satisfied.

However, since | f (t)| ≤ L for all t, it satisfies condition b).

Next the bound of G(t) will be analyzed by two steps.

Step 1: When t ∈ [(2k− 1)T,2kT ), that is f (t) = −L, it

follows that

G(t) =
∫ t

0
eA(t−τ)Bh(τ)dτ (23)

=
∫ t

0
eA(t−τ)Bd f (τ)

= B f (t)− eAtB f (0)−
k−1

∑
i=0

∫ (2i+1)T

2iT
L deA(t−τ)B

+
k−2

∑
i=0

∫ (2i+2)T

(2i+1)T
L deA(t−τ)B+

∫ t

(2k−1)T
L deA(t−τ)B
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First, consider the third part of (23) :

k−1

∑
i=0

∫ (2i+1)T

2iT
L deA(t−τ)B (24)

=
k−1

∑
i=0

(

eA(t−2iT−T ) − eA(t−2iT )
)

BL

=
(

eA(t−T ) − eAt
) k−1

∑
i=0

e−2iAT BL

Since

(k−1

∑
i=0

e−2iAT
)(

I − e−2AT
)

=
(

I − e−2kAT
)

and
(

I − e−2AT
)

is invertible, so

(k−1

∑
i=0

e−2iAT
)

=
(

I − e−2AT
)−1(

I − e−2kAT
)

(25)

Applying (25) into (24) gives

k−1

∑
i=0

∫ (2i+1)T

2iT
L deA(t−τ)B (26)

=
(

eA(t−T ) − eAt
)(

I − e−2AT
)−1(

I − e−2kAT
)

BL

= eAt
(

I − e−2AT
)−1

(

e−AT − I − e−A(T+2kT ) + e−2kAT
)

BL

Similarly,

k−2

∑
i=0

∫ (2i+2)T

(2i+1)T
L deA(t−τ)B

= eAt
(

I − e−2AT
)−1

(27)
(

e−2AT − e−AT − e−2kAT + eA(−2kT+T )
)

BL

Applying (26) (27) to (23), we can obtain

G(t) = −BL− eAtBL− eAt
(

I − e−2AT
)−1

(

e−AT − I − e−A(T+2kT ) + e−2kAT
)

BL

+eAt
(

I − e−2AT
)−1

(

e−2AT − e−AT − e−2kAT + eA(−2kT+T )
)

BL

+
(

I − eA(t−2kT+T )
)

BL

= −eAt
(

I + eA(−2kT+T )
)

BL+ eAt
(

I − e−2AT
)−1

(

I − e−AT
)2(

I + eA(−2kT+T )
)

BL

Introducing t − (2k−1)T , ∆t,0 ≤ ∆t < T , there is

G(t) = −2e−AT
(

I + e−AT
)−1(

eAt + eA∆t
)

BL (28)

Hence,

lim
t→∞

G(t) = −2e−AT
(

I + e−AT
)−1

eA∆tBL (29)

Step 2: When t ∈ [2kT,(2k + 1)T ), that is f (t) = L ,

introducing t −2kT , ∆t, it can be similarly deduced that

G(t) = 2e−AT
(

I + e−AT
)−1(

eA∆t − eAt
)

BL (30)

Hence,

lim
t→∞

G(t) = 2e−AT
(

I + e−AT
)−1

eA∆tBL. (31)

Equations (29) and (31) show that, the observing error G(t)

has a close relationship with ∆t, which is the distance

between t and the step time (the time when f steps from L

to −L or from −L to L). In each period, G(t) will decrease

as ∆t grows when ∆t exceeds a short period of time.

IV. SIMULATION

Because second-order systems occupy an important place

in the engineering and practice, the following second-order

system with single-input u and single-output y is considered

to test the capability of ESO for estimating uncertainties.






ẋ1(t) = x2(t),
ẋ2(t) = f +bu,
y = x1

x1(0) = 0,x2(0) = 0, (32)

where b = 1. The ADRC law is designed to regulate the

output y to a constant r = 2 when the following set of

uncertainties exist in the system respectively:














f = 3;

f = 2sin(3t);
f = t;

f = sgn(sin(πt)).

(33)

The ADRC law is designed to be

u = −k1(x1 − r)− k2x2 − z3, (34)

where k1 = 30,k2 = 10. The ESO is designed as






ż1 = z2 −β1(z1 − x1),
ż2 = z3 −β2(z1 − x1)+u,
ż3 = −β3(z1 − x1),

(35)

To implement the simulation, we use the Euler discrete

method with the step size τ = 0.01. In order to guarantee

the convergence of the digital calculation for ESO, β1 is

usually chosen as

β1 ≈
1

τ

The parameters in (35) are chosen as

β1 = 120, β2 = 4800, β3 = 64000

Remark 1. In the simulation, the bandwidth of ESO (35)

is designed to be around 6Hz, which is larger than the

frequency of disturbances in (33). This will guarantee the

convergence of ESO in a short time. Since the high frequency

noise always exists in the practice, the bandwidth of ESO

should be determined according to the practical bandwidth

3704



limit. One can consult [13][14][15] to see how ESO is used

in practical engineering problems.

The simulation results are demonstrated in Fig.1 to Fig.3.

Fig.1 is the output y when the different disturbances (33)

are added. It shows that ADRC (34)(35) has strong ability

for control uncertain systems. Its ability can be explained by

Fig.2 and Fig.3. Fig.2 is the output z3 of ESO (35), which

is designed to estimate the uncertainty f . It can be seen that

ESO (35) has an excellent capabilities to estimate a wide kind

of uncertainties. Fig.3 is the static regulating error r−y(t >
1) and the observing error z3 − f . It can be seen that:

1) When f = 3 , the observing error z3 − f converges to

zero, and the regulating error r− y converges to zero.

2) When f = 2sin(3t), both the observing error z3− f and

the regulating error r− y are bounded.

3) When f = t , as fig. 2 shows, although the disturbance

increases with the time t, z3 successfully approaches the

increasing disturbance and the observing error z3 − f is

bounded. Hence, the regulating error r− y is bounded.

4) When f = sgn(sin(πt)) , both the observing error z3− f

and the regulating error r − y are bounded. Furthermore,

although an observing error happens at the time when f

steps, it decreased with t until the next step. The simulation
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Fig. 1. The output y with the different disturbances in the system
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Fig. 3. The regulating errors and observing errors

results show that ESO has strong capabilities for estimating

uncertainties. Because the design of ESO is completely in-

dependent of the disturbance, a ESO with the same structure

and same parameters can be used to deal with a large class

of disturbances.

V. CONCLUSIONS

In this paper, the capabilities of ESO for estimating

uncertainties are analyzed. It demonstrates that the error

of ESO is bounded if the uncertainty f is bounded or its

derivative (or generalized derivative) is bounded. Further-

more, the observing errors are analyzed for several typical

kinds of uncertainties and the analysis results are tested by

simulations. The results enriched the existing ones from the

theoretical perspective.
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