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Abstract— An output-feedback sliding mode controller using
monitoring functions was recently introduced for linear uncer-
tain single-input-single-output (SISO) systems with unknown
control direction. Here, a generalization is developed for mul-
tivariable systems with strong nonlinearities. The monitoring
scheme is extended to handle the uncertainty of the plant
high frequency gain matrix Kp. Our strategy provides global
stability properties and exact output tracking. Experimental
results with a robotics visual servoing system, using a fixed
but uncalibrated camera, illustrate the robustness and practical
viability of the proposed scheme.

I. INTRODUCTION

The design of output-feedback control of uncertain sys-

tems without knowledge of the high frequency gain sign,

i.e., control direction, has been an instigating problem since

the early 1980s [1]. In the adaptive control literature, the

so called Nussbaum gain [2] has been used to design stable

systems under this relaxed assumption, including the multi-

variable case [3]-[5]. However, this approach is of arguable

practical interest, due to the large transients and inherent

lack of robustness [1], [6]. More recently, an output-feedback

tracking sliding mode control (SMC) for SISO uncertain

linear plants with unknown control direction was introduced

in [7]. In lieu of the Nussbaum gain [2], the control sign was

adjusted based on monitoring functions [8].

In this paper, we extend the controller of [7] to nonlinear

multiple-input-multiple-output (MIMO) plants with relative

degree one and affine in the control using a unit vector

model-reference sliding mode control approach. Here, the

nonlinearities are allowed to be strong (e.g., polynomial) and

unmatched, i.e., not in the span of the control input matrix.

One motivation to use a unit vector [9], [10] instead of a

vector “sign(·)” switching function, is that a less restrictive

prior knowledge of the plant high frequency gain (HFG)

matrix Kp can be obtained as compared to using direct norm-

bounds on the uncertainty [11] or by requiring the positive

definiteness property of Kp [12], [13]. In fact, we only need

to require −KpSq to be a Hurwitz matrix where Sq is a

control pre-compensator matrix [9], [10].

In this work, Kp is allowed to be uncertain so that Sq

is not known a priori. Inspired by the recent developments

in supervisory control [14] and the spectrum-unmixing sets

introduced in [15], we propose a switching mechanism that

selects a suitable static pre-compensator matrix Sq out of a
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finite index set of matrices Q through an appropriate moni-

toring function. Global asymptotic stability with respect to a

compact set and exact output tracking are then demonstrated.

Application to a robotics visual servoing system using

a fixed but uncalibrated camera illustrates the effective-

ness of the proposed multivariable controller in real-world

conditions. Remarkably, the usual restriction of the camera

orientation angle ψ ∈ (−π
2 ,

π
2 ), presented in [16]-[20], is

effectively removed.

II. NOTATION AND TERMINOLOGY

The following notation and basic concepts are employed:

• ISS means Input-to-State-Stable [21] and classes K, K∞

functions are defined as usual [22, pp. 144].

• The Euclidean norm of a vector x and the corresponding

induced norm of a matrix A are denoted by |x| and |A|.
• We adopt Filippov’s definition for the solution of dis-

continuous differential equations [23] and the concept

of extended equivalent control [10], also applicable to

the reaching phase of a sliding mode.

III. PROBLEM FORMULATION

This paper considers the global tracking problem of

MIMO nonlinear systems transformable into the normal form

η̇ = φ0(η, y, t) , (1)

ẏ = Kpu+ φ1(η, y, t) , (2)

where u∈ IRl is the control input, y∈ IRl is the measured out-

put and η∈ IRn−l is the unmeasured state of the η-subsystem,

also referred to as an inverse system. The uncertain functions

φ0 and φ1 are piecewise continuous in t and locally Lipschitz

continuous in the other arguments. For each solution of (1)–

(2) there exists a maximal time interval of definition given by

[0, tM ), where tM may be finite or infinite. Thus, finite-time

escape is not precluded a priori.

It is further considered that the plant control direction

is unknown (and constant) in the sense that all uncertain

parameters of the HFG matrix Kp belong to some compact

set Ωp. In Ωp, it is only assumed that:

(A1) (i) det(Kp) 6= 0, (ii) there exists a known constant

c > 0 such that |K−1
p | ≤ c and (ii) there exists a

finite index set Q of known matrices Sq ∈ IRl×l

such that −KpSq is Hurwitz for some q∈Q.

According to (A1), we focus the simplest relative degree

one case amenable to Lyapunov design. The case of general

relative degree with unknown control direction will be left

for a future work. The Hurwitz condition is necessary and
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sufficient for the attractiveness of the sliding surface in the

case of unit vector sliding mode control [9], [10].

This assumption significantly relaxes the usual require-

ment of positive definiteness and symmetry of Kp [12],

[13]. Symmetry is a non generic property. It can be easily

destroyed by arbitrarily small uncertainties in Kp. Moreover,

if Kp is positive definite, then this implies that −Kp is

Hurwitz but the converse is not true.

For the SISO case, (A1) can be interpreted as follows: the

first two conditions indicate that the scalar Kp 6= 0 can be

positive or negative, i.e., the control direction is unknown.

Moreover, in this case the index set is Q = {0, 1} and a

scalar Sq (S0 = −1, S1 = 1) is required to make −KpSq

negative. Here, a switching scheme is provided for cycling

through the elements of the finite index set Q [15] so that

stability and the tracking objective are achieved.

Global Tracking Problem

The problem consists in designing a control law u, via

output-feedback and without the knowledge of the plant

control direction, to drive the output tracking error

e(t) = y(t) − ym(t) (3)

asymptotically to zero (exact tracking), starting from any

plant/controller initial conditions and maintaining uniform

closed-loop signal boundedness. The desired trajectory

ym(t) is assumed to be generated by the reference model:

ẏm = Amym + r , Am = −diag {γ1, . . . , γl} , (4)

where r, ym ∈ IRl, γi> 0 (i=1, . . . , l) and r(t) is assumed

piecewise continuous and uniformly bounded.

In order to achieve the control objective our strategy

requires a norm observer for the state η of the inverse system

(1), according to the following definition.

Definition 1: A first order norm observer for system (1) is

a SISO dynamic system of the form (y is the plant output):

˙̄η = −λoη̄ + ϕo(y, t) , (5)

with input ϕo(y, t) and output η̄, such that: (i) λo > 0
is a constant; (ii) ϕo(y, t) is a non-negative function con-

tinuous in y, piecewise continuous and upperbounded in t;
and (iii) for each initial states η(0) and η̄(0)

|η(t)| ≤ |η̄(t)| + k̄o(|η̄(0)| + |η(0)|)e−λot , (6)

∀t ∈ [0, tM ), with some constant k̄o>0.

It is well known that, in the time-invariant case, if the inverse

system (1) is ISS [21] then it admits such norm observer and

the plant is minimum-phase. Here, we assume that:

(A2) The inverse system (1) admits a known norm ob-

server (5) with ϕo and λo known.

In [www.coep.ufrj.br/˜liu/ACC09], two classes of

system with time-varying inverse system are given for which

(5) can be implemented. The first case incorporates a class

of nonlinearities φ0 where a linear growth condition is

required only w.r.t. the unmeasured state η. The other one,

adapted from [24], illustrates a case where strong polynomial

nonlinearities in η are also allowed. In both cases, (1) has an

ISS-like property w.r.t. an appropriate function of y and t.
In order to obtain a norm bound for φ1 in (2), we

additionally assume that:

(A3) There exists a known locally Lipschitz class K∞

function α1(|η|) and a known non-negative function

ϕ1(y, t) continuous in y, piecewise continuous and

upperbounded in t such that |φ1(η, y, t)|≤α1(|η|)+
ϕ1(y, t).

Note that (A3) is not restrictive since φ1 is assumed to

be locally Lipschitz continuous in η and y. Furthermore,

the bounding functions α1 and ϕ1 impose particular growth

condition only w.r.t. the t-dependence.

From Tracking to Regulation Problem

From (2)–(4), the e-dynamics can be written as

ė = Ame+Kp(u− u∗) , (7)

where u∗ := K−1
p (−φ1 +Amy + r).

Then, the global tracking problem can be reformulated as

the regulation problem described as follows. Find an output-

feedback sliding mode control law u in such a way that,

for all initial conditions (η(0), e(0), η̄(0)): (i) the solutions

of (1)–(2), (5) and (7) are bounded and (ii) e(t) tends

asymptotically to zero as t→ ∞.

The ideal control u∗ is considered as a matched input

disturbance in (7). From (A1)–(A3), it can be norm bounded

by available signals

|u∗| ≤ c [α1(2|η̄|) + ϕ1(y, t) + |Amy + r|] + π1 , (8)

modulo the exponential decaying term π1 := k1(|η̄(0)|+
|η(0)|)e−λot, where k1 > 0 is a constant, c is given in

(A1) and π1 comes from the exponential term in (6). To

develop this inequality we have used the fact that α1 is

locally Lipschitz and ψ(a+ b) ≤ ψ(2a)+ψ(2b), ∀a, b ≥ 0
and ∀ψ∈K∞.

IV. OUTPUT-FEEDBACK SLIDING MODE CONTROLLER

This section presents a first generalization of the proposed

controller in [7] for a class of MIMO nonlinear plants with

unknown control direction and relative degree one.

Let q∗ be the unknown index of the index set Q, given in

(A1), for which the corresponding unknown matrix S = Sq∗

assures that −KpS is Hurwitz. Thus, the Lyapunov equation

(KpS)TP + P (KpS) = I has a solution P = PT > 0.

Now, if the control direction is known (q∗ is known) one

can apply the unit vector control (UVC) law [10]

u = −S̺(η̄, y, t)
e

|e|
, (9)

to (7) and verify that, if the modulation function ̺ satisfies

̺ ≥ cd|u
∗(t)| + δ , δ≥0 , (10)

modulo the exponential decaying term cdπ1, then the time

derivative of V = eTPe along the solutions of (7) satisfies:

V̇ ≤ −2λmV + cdπ1 , ∀t ∈ [ti, tM ) ,
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for any ti ∈ [0, tM ), where 0< λm <mini{|γi|}, cd is an

appropriate positive constant and π1 comes from (8). Hence,

by using the comparison lemma [23], one has:

|e(t)| ≤ ζ(t) , ∀t ∈ [ti, tM ) , (11)

where

ζ(t) := |e(ti)|e
−λm(t−ti)+π2 ,

with π2 := Ψ2(|η̄(0)| + |η(0)|)e−λct, 0<λc<min{λo, λm}
and Ψ2∈K (see [10, Lemma 1] for details).

The major problem is that q∗ is unknown, thus we cannot

implement the UVC law (9). In [7], a switching scheme

based on monitoring function was developed to cope with

the lack of knowledge of the control direction. Only linear

SISO plants with relative degree one were considered. In that

case, Kp was a scalar and after a finite number of changes

in the control sign (Sq = ±1), the correct control direction

could be detected. For MIMO nonlinear plants, the UVC law

is redefined as

u = −Sq̺(η̄, y, t)
e

|e|
, ∀t∈ [0, tM ) , (12)

where ̺ satisfies (10) and a switching mechanism also based

on a monitoring function is used to decide when the static

pre-compensator matrix Sq [14] should be switched within

the collection of matrices with q∈Q.

V. SWITCHING SCHEME AND MONITORING FUNCTION

We now construct the monitoring function ϕm based on

the norm bound for e given in (11) following the ideas

of [7], [8]. Reminding that inequality (11) holds when the

matrix Sq is correct (Sq = S), it seems natural to use

ζ as a benchmark to decide whether a switching of Sq

is needed, i.e., the switching occurs only when (11) is

violated. However, since π2 is not available for measurement

we consider the following function, defined in the interval

[tk, tk+1), to replace ζ:

ϕk(t) = |e(tk)|e−λm(t−tk) + a(k)e−λct , (13)

where the switching time tk sets the change of index q∈Q,

thus cycling through the Sq matrices and a(k) is any positive

monotonically increasing unbounded sequence.

The monitoring function ϕm can thus be defined as

ϕm(t) := ϕk(t) , ∀t ∈ [tk, tk+1) ⊂ [0, tM ) . (14)

Note that from (13) and (14), one has |e(tk)| < ϕk(tk) at

t= tk. Hence, the switching time tk is defined by

tk+1 :=

{

min{t > tk : |e(t)| = ϕk(t)}, if it exists ,

tM , otherwise ,
(15)

where k ∈ {0, 1, . . .} and t0 := 0 (see Figure 1). The

following inequality is directly obtained from (14)

|e(t)| ≤ ϕm(t), ∀t ∈ [0, tM ) . (16)

Figure 1 illustrates the tracking error norm |e| as well as the

monitoring function ϕm.

t0 t1 t

ϕ0

|e|

ϕ1

Fig. 1. The trajectories of ϕm and |e|.

VI. STABILITY RESULTS

In order to fully account for all initial conditions in the

closed-loop system, let

zT (t) :=[z0(t), e(t)] , z0(t) :=[ηT (0) η̄T (0)]e−γt , (17)

where z0 denotes the transient state [10] and γ > 0 is a

generic constant. The main result is now stated.

Theorem 1: Assume that (A1)–(A3) hold. Consider the

error equation (7) with UVC law (12) and monitoring

function (13)-(14). If the modulation function satisfies (10),

then the control direction switching stops. The complete error

system, with state z(t), is globally asymptotically stable w.r.t.

a compact set, independent of the initial conditions, and

ultimately exponentially convergent to zero. Moreover, all

signals in the closed loop system remain uniformly bounded

and if δ>0 in (10), then the sliding mode on the manifold

e=0 is reached in finite time.

Proof: See [www.coep.ufrj.br/˜liu/ACC09].

Remark 1: [Sq Selection] We know that if −KpSq is

Hurwitz all trajectories of the system converge to the origin

of the error state space [10, Lemma 1]. Moreover, if −KpSq

is not Hurwitz, then for almost every initial condition (i.e.,

except for a set of measure zero) the system trajectories

diverge unboundedly or do not converge to the origin. This

is a contradiction, since if the switching stops, according

to Theorem 1, the state must converge to the origin. Then,

almost always, the ultimate matrix Sq selected is such that

−KpSq is Hurwitz.

Remark 2: [Initial Transients] Note that, due to the initial

identification phase of a stabilizing Sq, it is not possible to

state Lyapunov stability with respect to the state space origin.

Indeed, even if the initial state norm is small, one cannot

guarantee that the initial transient is correspondingly small

during the initial phase. However, either the trajectories start

in an invariant compact set or they tend to this set asymp-

totically. Ultimately, the trajectories converge exponentially

to the origin, as stated in Theorem 1.

VII. APPLICATION TO ROBOTICS VISUAL SERVOING

To illustrate the applicability of the proposed switching

scheme, we consider a simple case where the plant is a

MIMO integrator without inverse subsystem. The proposed

strategy is used to solve the visual servoing control problem

for a robot manipulator performing planar movements in the

cartesian space and using a fixed and uncalibrated camera

with optical axis orthogonal to the robot workspace.
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A. Visual Servoing Kinematic Control

Firstly, one considers the kinematic control problem for a

robot manipulator. In this approach, the end-effector position

x ∈ IRn is given by the forward kinematics map x= f(θ),
where θ∈ IRl is the manipulator joint angle vector.

The differential kinematics equation can be obtained from

the time derivative of the forward kinematics map given by

ẋ = J(θ) θ̇ , where J(θ) = ∂f
∂θ

∈ IRn×l is the manipula-

tor Jacobian. Then, considering θ̇i as the control input vi

(i = 1, . . . , l) one obtains the following control system

ẋ = J(θ) v . (18)

A cartesian control law u can be transformed to joint control

signals by using

v = J(θ)−1 u , (19)

provided that u does not drive the robot manipulator to

singular configurations.

Now, consider the visual servoing approach for closed-

loop manipulator position control by through the camera

image information. Let y ∈ IR2 be the end-effector position

in the image frame and ym∈ IR2 be the desired time-varying

trajectory for a target feature fixed on the arm tip. Then, the

control goal can be described by

y → ym(t) , e = y − ym → 0 , (20)

where e ∈ IR2 is the image error. We only consider planar

movements in the cartesian space, thus n= l=2 and x∈ IR2,

without loss of generality. The visual servoing system

consists of a monocular fixed CCD camera with optical

axis perpendicular to the robot frame. Then, with some

assumptions on the lens properties, the camera/workspace

transformation can be represented by [26]

y = Kp x+ y0 , (21)

with

Kp =
f0

f0 + z0

[

α1 0
0 α2

][

cos(ψ) − sin(ψ)
sin(ψ) cos(ψ)

]

,

where y0 is a constant term, which depends on the position of

the camera frame with respect to the robot frame, Kp is the

camera/workspace transformation matrix and considers the

camera orientation angle ψ (or camera misalignment) with

respect to the robot frame, f0 is the camera focal length, z0
is the depth from the camera frame to the robot workspace

(in general z0 ≫ f0), and α1, α2> 0 are the scaling factors

of the camera [pixel/mm].

Thus, the cartesian control problem in the image frame is

described from (21) by

ẏ=Kp u . (22)

Then, based on (22) and considering a feedforward and

proportional control law given by

u = K−1
p [ ẏm +K(ym − y)] , (23)

one has that the image error dynamics is governed by

ė +K e=0. Hence, by a proper choice of K as a positive

definite matrix, e→0 exponentially as t→∞.

However, if the intrinsic and extrinsic parameters of cam-

era model are uncertain (uncalibrated camera), matrix Kp

is also uncertain. Therefore, the control law (23) cannot be

implemented directly. As an approach to solve this problem,

some adaptive schemes were proposed in order to cope with

the uncertainty in the camera parameters [16]-[20]. As a rule,

in the existing adaptive visual servoing methods, the camera

orientation error ψ must be restricted to the range (−π
2 ,

π
2 ).

In what follows, the combination of the proposed sliding

mode approach and the switching scheme based on the mon-

itoring function is applied to circumvent the limitations of

adaptive control methods with respect to transient behavior,

robustness and restricted range of camera miscalibration.

B. Visual Servoing based on Sliding Mode Control and

Monitoring Function

The proposed control scheme can be applied to the visual

servoing control problem in the presence of uncertainty. As

a remarkable feature, we will show that an arbitrary camera

orientation misalignment is allowed.

The monitoring function ϕm (13)-(14) is used to switch

the matrix Sq in (12). The finite set of matrices Sq, q ∈ Q=
{0, 1, 2, 3} can be chosen as

S0=

[

0 1
−1 0

]

, S1=

[

1 0
0 1

]

, S2=

[

0 −1
1 0

]

, S3=

[

−1 0
0 −1

]

.

For arbitrary camera misalignment ψ, −Kp Sq is Hurwitz

for some Sq and therefore, the usual restriction |ψ|< π
2 can

be removed. Note that the considered plant (22) is linear.

Potentially, the proposed control system could also deal with

nonlinear systems.

VIII. EXPERIMENTAL RESULTS

This section describes the experimental setup and dis-

cusses the test results.

A. Experimental setup

The proposed controller was implemented on a 6-DOF

Zebra Zero robot manipulator (Integrated Motions, Inc.)

performing end-effector motions on a vertical plane. Due to

the robot large gear ratios and a high gain velocity control

loop, a purely kinematic model is adopted since the robot

dynamic effects are negligible.

A KP-D50 CCD camera (Hitachi, Ltd.) with a lens focal

length f0 =6 [mm] and scaling factors α1 =119 [pixel/mm]

and α2 =102 [pixel/mm] was mounted in front of the Zebra

Zero. Figure 2 shows the camera point-of-view correspond-

ing approximately to the orientation ψ≈0.

The average depth from the image plane to the robot

vertical workspace was z0 = 1 [m]. The extracted visual

features are the centroid coordinates of the image of a red

disc fixed on the robot wrist. The images with 640×480
[pixel] are acquired using a Meteor frame-grabber (Matrox,

Ltd.) at 30 frames per second (FPS).
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Fig. 2. Experimental station.

The visual servo controller was coded in C language and

executed in 35 [ms] on a 200 MHz Pentium Pro processor

with 64 Mbyte RAM using Linux OS. The joint velocity

command generated by the visual servoing control law feeds

the Zebra Zero ISA board which closes a velocity loop

using an HCTL1100 microcontroller (HP Inc.) working in

proportional velocity mode with 0.52 [ms] sampling time.

The image processing in RGB format is performed on a

subwindow 100×100 [pixel] wide. The first estimation of

the centroid coordinates is performed off-line using an ad-

hoc Graphical User Interface developed in Tcl/Tk language

[27] as shown in Figure 2. During the task execution, the

feature is computed using the image moments algorithm [28].

Due to noise sensitivity, the proportional gain in the velocity

loop cannot be made high enough to eliminate the steady

state error due to gravity effects. The gravity disturbance

was identified off-line using a least squares method and then

effectively cancelled [29].

B. Test results

The experimental tests were performed without previous

calibration of the camera position. The desired trajectory ym

is a circle generated by the model (4), with γ1 = γ2 = 1
and rT =[r1 r2] with

r1 = y1(0) +R [ 1 − cos(ωr t) ] , (24)

r2 = y2(0) +R [ sin(ωr t) ] , (25)

where yT (0) = [y1(0) y2(0)] is the initial position of the

centroid coordinates in the image frame, R and ωr determine

the radius and the angular velocity of the reference trajectory,

respectively. The robot manipulator should then perform the

tracking of a circular trajectory specified by R= 40 [pixel]

and ωr = π
5 [rad/s]. The initial position of the centroid was

y1(0) = 330 [pixel], y2(0) = 275 [pixel] and the camera

orientation was intentionally changed to different values by

software, without modifying the controller, in order to verify

the effectiveness of the adaptation scheme.

The monitoring function ϕm is obtained from (13)-(14)

with a(k)=k+1, λm =λc =0.9. In addition, a constant of

15 was added to ϕm to reduce spurious modifications in the

control direction estimate due to the measurement noise.

It is well known that the measurement noise and the

low sampling rate of the CCD camera can cause control

chattering which can be alleviated by using a boundary layer

in the UVC law (see, e.g., [11]).

The modulation function ̺ in (12) was implemented in

order to satisfy (8) and (10), considering φ1 = 0 in u∗.

All tests were designed to avoid manipulator Jacobian sin-

gularities in (19).

Figure 3 shows the time history of the monitoring function

ϕm and the error norm |e|. The experimental test was

performed with ψ ≈ π [rad], while the nominal value was

assumed to be ψ ≈ π/2 [rad]. Thus we had a very large

mismatch from the “nominal” orientation. For the nominal

orientation, the correct matrix pre-compensator would be S0

so that this was the initial pre-compensator applied to the

controller. Therefore, it would be necessary three switchings

to reach the correct matrix S3 (for ψ= π) and guarantee a

stable model following. However, in order to test the cyclic

switching and the robustness of the proposed scheme under

time-varying control direction, the camera misalignment an-

gle was set to ψ≈π/2 in the last portion of the experiment,

before the third switching. Note that, at the fourth switching

(4th SW), the correct matrix S0 (for ψ = π/2) is selected

again (−KpS0 is Hurwitz) and thereafter |e|→0.

Figure 4 describes the time history of the image error e and

the control signal u, respectively. Note that the asymptotic

convergence of the error to a small residual set is evident.

The target trajectory is illustrated in Figure 5.

IX. CONCLUSIONS

An output-feedback controller was developed for uncertain

nonlinear multivariable systems with relative degree one

and unknown high frequency gain matrix. Based on sliding

mode and monitoring function, the controller leads to global

asymptotic stability with respect to some compact set and

ultimate exponential convergence of the tracking error state

to zero. The proposed strategy was successfully tested with

a robotics visual servoing experimental setup. The method

was shown to be robust to large calibration uncertainties, thus

removing the usual restriction on the camera misalignment

to be less than π/2 [rad].
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