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Abstract— This paper considers robotic sensor networks per-
forming spatial estimation tasks. We model a physical process of
interest as a spatiotemporal random field with mean unknown
and covariance known up to a scaling parameter. We design
a distributed coordination algorithm for an heterogeneous net-
work composed of mobile agents that take point measurements
of the field and static nodes that fuse the information received
from the agents and compute directions of maximum descent
of the estimation uncertainty. The technical approach builds on
a novel reformulation of Bayesian sequential field estimation,
and combines tools from distributed linear iterations, nonlinear
programming, and spatial statistics.

I. INTRODUCTION

Networks of environmental sensors are playing an increas-

ingly important role in scientific studies of the ocean, rivers,

and the atmosphere. Envisioned tasks include pollutant detec-

tion, fire monitoring, and mapping of ocean currents. Mobile

sensing robots can improve the efficiency of data collection,

adapt to changes in the environment, and provide a robust

response to sensor failures. Complex statistical techniques

come into play in the analysis of environmental processes.

Consequently, the operation of robotic sensors must be

driven by statistically-aware algorithms that make the most

of the network capabilities for data collection and fusion.

At the same time, such algorithms need to be distributed

and scalable to make robotic networks capable of operating

in an autonomous and robust fashion. The combination

of these two objectives, complex statistical modeling and

distributed coordination, presents grand technical challenges:

traditional statistical modeling and inference assume full

availability of all measurements and central computation.

While the availability of data at a central location is certainly

a desirable property, the paradigm for motion coordination

builds on partial, fragmented information. This work is a step

forward in bridging the gap between sophisticated statistical

modeling and distributed motion coordination.

Literature review: Complex statistical techniques allow

a detailed account of uncertainty in modeling physical

phenomena. Of particular relevance to this work are [1],

[2], regarding statistical models, and [3], [4], regarding the

application of optimal design techniques to Bayesian models.

Under certain conditions on the covariance structure, data

taken far from the prediction site have very little impact

on the predictor [5]. When the random field does not have

a covariance structure with finite spatial correlation, an

approximation which does may be generated via covariance

tapering [6]. Optimal design [7], [8] addresses the problem

of choosing sample locations which optimize estimation.
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In cooperative control, various works consider mobile

sensor networks performing spatial estimation tasks. [9]

introduces performance metrics for oceanographic surveys by

autonomous underwater vehicles. [10] chooses optimal sam-

pling trajectories from a parameterized set of paths. In [11],

[12], [13] the focus is on estimating deterministic fields with

random measurement noise. When the physical process is

not as well understood, or accurate deterministic models

require high dimensional parameter spaces, random field

models can be a useful alternative. In previous work [14],

we have considered the estimation of random fields with

known covariance. In this paper, we focus on the additional

complexity in the algorithm design caused by unknown

parameters in the field covariance.

Statement of contributions: We begin with a widely ac-

cepted Bayesian model for the prediction of a spatiotemporal

random field with mean unknown and covariance known

up to a scaling parameter. The predictive variance of this

model can be written as a scaled product of two components,

one corresponding to uncertainty about the covariance of the

field, the other corresponding to uncertainty of the prediction

conditional on the covariance. Our first contribution is the

development of a novel procedure for distributed calculation

of the first component sequentially as new measurements

arrive. We also introduce an upper bound for the second com-

ponent which can be calculated in a distributed way. These

two results allow us to identify an objective function for

gathering data which minimizes uncertainty in the resulting

estimation. Our second contribution is the characterization of

the smoothness properties of the objective function and the

computation of its gradient. Using consensus and distributed

Jacobi overrelaxation algorithms, we show how the objective

function and its gradient can be computed in a distributed

way across a network composed of robotic agents and static

nodes. Our third contribution is the design of a coordination

algorithm based on projected gradient descent which guar-

antees one-step-ahead locally optimal data collection.

II. PRELIMINARY NOTIONS

Let R, R>0, and R≥0 denote the set of reals, positive reals

and nonnegative reals, respectively. For p ∈ R
d and r ∈

R>0, let B(p, r) be the closed ball of radius r centered at p.

Given u = (u1, . . . , ua)T , a ∈ Z>0, and v = (v1, . . . , vb)
T ,

b ∈ Z>0, we denote by (u, v) the concatenation (u, v) =
(u1, . . . , ua, v1, . . . , vb)

T . We denote by ∂S the boundary of

a set S. The ǫ-contraction of a set S, with ǫ > 0, is the

set Sǫ = {q ∈ S | d(q, ∂S) ≥ ǫ}. A convex polytope is the

convex hull of a finite point set. For a bounded set S ⊂
R

d, we let CR(S) denote the circumradius of S, that is,

the radius of the smallest-radius d-sphere enclosing S. We

denote by F(S) the collection of finite subsets of S.
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We consider a convex polytope D ⊂ R
d, d ∈ N. Let

De = D × R denote the space of points over D and

time. The Voronoi partition V(s) = (V1(s), . . . , Vn(s)) of D
generated by the points s = (s1, . . . , sn) is defined by

Vi(s) = {q ∈ D | ‖q − si‖ ≤ ‖q − sj‖, ∀j 6= i}. Each Vi(s)
is called a Voronoi cell. Two points si and sj are Voronoi

neighbors if their Voronoi cells share a boundary.

A. Bayesian modeling of space-time processes

Let Z denote a random space-time process taking values

on De. Let y = (y1, . . . , ym)T ∈ R
m be m ∈ N mea-

surements taken from Z at corresponding locations x =
(x1, . . . , xm)T ∈ Dm

e , with xi = (si, ti), i ∈ {1, . . . ,m}.

Given these data, various models allow for prediction of Z
at any point in De, with associated uncertainty.

In a Bayesian setting, the prediction takes the form of a

distribution, called the posterior predictive [15]. If the field

is modeled as a Gaussian process with known covariance,

the posterior predictive mean corresponds to the Best Linear

Unbiased Predictor, and its variance corresponds to the

mean-squared prediction error. If the covariance of the field

is not known, however, few analytical results exist which

take the full uncertainty into account. The model we present

here [2] allows for uncertainty in the covariance process and

still produces an analytical posterior predictive distribution.

We assume that the measurements are distributed as

y ∼ Nm

(

F
T β, σ2

K
)

. (1)

Here β ∈ R
p is a vector of unknown regression parameters,

σ2 ∈ R>0 is the unknown variance parameter, and K is a

correlation matrix whose i, jth element is Kij = Cor[yi, yj ].
We assume a finite correlation range in space, r ∈ R, such

that if ‖si − sj‖ ≥ r, then Kij = Kji = 0. The matrix

F ∈ R
p×m is determined by a set of p ∈ N known basis

functions fi : De → R evaluated at the locations x. We

assume conjugate prior distributions for the parameters,

β|σ2
∼ Np

(

β0, σ
2
K0

)

(2a)

σ2
∼ Γ−1

(ν

2
,
qν

2

)

. (2b)

Here β0 ∈ R
p, K0 ∈ R

p×p, and q, ν ∈ R>0 are constants,

known as tuning parameters for the model, and Γ−1(a, b)
denotes the inverse gamma distribution with shape parameter

a and scale parameter b (see, e.g. [16]).

Proposition II.1 (Posterior predictive distribution [2])

Under the Bayesian model (1), the posterior predictive at

location x0 ∈ De is a shifted Students t distribution (see,

e.g. [16]) with γ = ν + m + 1 degrees of freedom and

variance, Var[Z|y, x] =
ϕ(y,x)

γ φ(x0;x), where,

φ(x0;x) = Cor[Z,Z] − k
T
K

−1
k + ξT

0

(

K
−1
0 + E

)−1
ξ0

ξ0 = f(x0) − FK
−1

k

ϕ(y, x) = qν +
1

2

(

y − F
T β̂

)T

K
−1

(

y − F
T β̂

)

+

+
1

2

(

β̂ − β0

)T
(

K0 + E−1
)−1

(

β̂ − β0

)

,

with β̂ = E−1
FK

−1y, E = FK
−1

F
T , and k = Cor[y, Z].

III. PROBLEM STATEMENT

Here we introduce the model for the group of robotic

agents and static nodes, and detail the overall objective.

A. Robotic sensor network model

Consider a group {S1, . . . , Sm} of m ∈ N static nodes

at locations Q = (q1, . . . , qm) ∈ Dm. Assume that each

node has a limited communication radius, R ∈ R>0, and

that they are positioned so that each one can communicate

with its Voronoi neighbors. In addition to the static nodes,

consider a group {R1, . . . , Rn} of n robotic sensor agents.

The position of robot i ∈ {1, . . . , n} at time t ∈ R is denoted

by pi(t) ∈ D. The robots take point samples of the spatial

field at discrete instants of time in Z≥0. Between sample

instants, each robot moves according to the discrete dynamics

pi(k + 1) = pi(k) + ui(k),

where ‖ui‖ ≤ umax for some umax ∈ R>0. The communica-

tion radius of the robotic agents is also R. Each node will

need to be able to communicate with any robot which may

be within covariance range of the points in its Voronoi region

at the following timestep. To that end, we assume that

R ≥ max
i∈{1,...,m}

{CR(Vi(Q))} + r + umax. (3)

The robots can sense the positions of other robots within a

distance of 2umax. At discrete timesteps, each robot com-

municates the sample and location to static nodes within

communication range, along with the locations of any other

sensed robots. The nodes then compute control vectors,

and relay them back to robots within communication range.

The implementation does not require direct communication

between robots. We refer to this network model as N .

To avoid agent collision, we further restrict the motion of

the robotic agents as follows. Consider the locations P (k) =
(p1(k), . . . , pn(k))T . Between timestep k and timestep k+1,

robot i moves within the region, Ω
(k)
i ⊂ D defined by,

Ω
(k)
i = (Vi(P

(k)))ω/2 ∩B(pi(k), umax),

where (Vi(P
(k)))ω/2 denotes the ω/2-contraction of

Vi(P
(k)). This requirement combines the restriction imposed

by umax with a minimum distance requirement such that any

two robots are always at least ω away from each other [14].

Let Ω(k) =
∏n

i=1 Ω
(k)
i ⊂ Dn denote the region of allowed

movement of all the robotic agents at timestep k ∈ N.

B. The average variance as objective function

For predictions over a region in space and time, the

average variance is a natural measure of uncertainty, corre-

sponding to A-optimality. We consider the average over the

spatiotemporal region of the posterior predictive variance,

A =
1

γ
ϕ(y, x)

∫

D

∫

T

φ((y0, t0);x) dt0 dy0. (4)

Here, y ∈ R
kmax is a sequence of samples taken at discrete

times {1, . . . , kmax}, kmax ∈ Z>0, at space-time locations

x ∈ (Dn
e )

kmax . T = [1, kmax] is the time interval of interest.

One would like to choose the sample locations that min-

imize A. Since samples are taken sequentially, with each
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new set restricted to a region nearby the previous, and since

ϕ(y, x) depends on the actual values of the samples, one

cannot simply optimize over (Dn
e )kmax a priori.

Consider, instead, a greedy approach in which we use

past samples to choose the positions for the next ones. At

each timestep we choose the next locations to minimize

the average posterior variance of the predictor given the

data known so far. In Section IV, we develop a sequential

formulation of the average posterior predictive variance and

discuss its amenability to distributed implementation over N .

IV. DISTRIBUTED CRITERION FOR ADAPTIVE DESIGN

In this section we develop an optimality criterion to

maximally reduce the average predictive variance at each

timestep. First we reformulate the posterior predictive vari-

ance to allow for estimation based on previous sample values.

Given centralized computing capabilities, this equation can

be used to perform sequential optimal design, but is not

amenable to distributed computation. We therefore provide

an upper bound whose computation is distributed over N .

A. Sequential formulation of ϕ

At timestep k, assume that samples, y
s

∈ R
nk have

already been taken at locations xs ∈ Dnk
e . We are interested

in choosing unsampled locations, xu ∈ Dn
e at which to take

the next samples, y
u
∈ R

n. Let y = (yT
u
, yT

s
)T ∈ R

n(k+1)

denote the full set of samples at timestep k + 1, at locations

x = (xT
u , xT

s )T ∈ D
n(k+1)
e . Let Ks denote the correlation

matrix of the vector y
s
, and let Kus = K

T
su denote the

matrix whose (i, j)th element is the correlation between yu:i

and ys:j . Once all samples have been taken, the average pos-

terior predictive variance is given by Equation (4). However,

ϕ(y, x) cannot be calculated until the new samples are taken.

Our approach is to use the generalized least squares estimate,

and compute the induced errors in the approximation.

Proposition IV.1 Let ŷ
LS

= KusK
−1
s y

s
be the generalized

least squares estimate of y
u

based on samples y
s
, and let

yLS = y
u
− ŷ

LS
. Then we can write,

ϕ(y, x) = ϕ̂(y
s
, xs, xu) + ϕ̃(y, x)yLS,

where β̃ = E−1
FsK

−1
s y

s
and ϕ̂(y

s
, xs, xu) = ϕ̂ is

ϕ̂ = qν + yT
s
K

−1
s y

s
−

1

2
β̃T Eβ̃

+
1

2

(

β̃ − β0

)T
(

K0 + E−1
)−1

(

β̃ − β0

)

.

In Proposition IV.1, the function ϕ̂, which does not depend

on the new data, signifies the change in uncertainty about σ2

which may be predicted by assuming the generalized least

squares estimate ŷ
LS

. On the other hand, the quantity ϕ̃yLS

denotes the extra uncertainty induced by having made that

prediction, once the data y
u

have been measured.

Using Proposition IV.1, we can rewrite the one-step ahead

average prediction variance as follows. Let ϕ̂(k) : Ω(k) → R

map the location of the next set of measurements to the value

of ϕ̂ at timestep k. Let φ(k) : De×Ω(k) → R map predictive

location and unsampled locations to the conditional variance

at timestep k. Let γ(k) = ν + n ∗ (k + 1) + 1, and let

(P, k+1) denote the space-time locations at spatial positions

P = (p1, . . . , pn) ∈ Dn and time k + 1. To optimize the

average posterior predictive variance at the k +1st timestep,

we choose P to minimize A(k) : Dn → R defined by

A(k)(P ) =
ϕ̂(k)(P )

γ(k)

∫

D

∫

T

φ(k) ((s, t);P )) dt ds. (5)

In Section V we will show how ϕ̂(k) can be calculated in a

distributed way by N . However, due to dependence on the

quantity k
T
K

−1
k, the conditional variance, φ(k), can not. In

the next section, we detail an upper bound for φ(k), which

may be computed locally by each node.

B. Upper bound of the average posterior predictive variance

In [14], we established that the conditional variance can

be upper bounded using only a subset of the measurements.

Using this result, A(k) can be upper bounded as follows.

Proposition IV.2 (Spatial approximation for distributed

implementation) Let φ
(k)
j : De × Ω(k) → R denote the

value of φ(k) as calculated with only those measurements

correlated to Vj(Q). Let Ã
(k)
j : Dn → R be defined by

Ã
(k)
j (P ) =

ϕ̂(k)(P )

γ(k)

∫

Vj(Q)

∫

T

φ
(k)
j ((s, t), P ) dt ds.

Then A(k) ≤ Ã(k) =
∑m

j=1 Ã
(k)
j . In addition, equality holds

if, for all j ∈ {1, . . . ,m}, the samples not used in calculation

of φ
(k)
j are uncorrelated to those which are.

We refer to Ã(k) as the aggregate average prediction

variance. Unlike A(k), the function Ã(k) may be computed

in a distributed manner over N .

C. Smoothness of the aggregate average prediction variance

Next, we characterize the smoothness properties of Ã(k).

For simplicity, let ∇i denote ∂
∂pi

. Given matrix, A, we denote

by ∇iA the component-wise partial derivative of A. Assume

the ordering x = ((P, k + 1), xs) ∈ (De)
n∗(k+1), so that

the ith row and column of K, e.g., with i ≤ n, are the

correlations between (pi, k + 1) and x.

Lemma IV.3 Assume that f1, . . . , fp and the covariance

of Z are C1 with respect to the spatial position of their

arguments. Then the map P 7→ φ
(k)
j (x0, P ) is C1 on Ω(k)

and the ith component of its gradient is

∇iφ
(k)
j = −2kT

K
−1∇ik + k

T
K

−1∇iKK
−1

k−

− ξT
0

(

K
−1
0 + E

)−1
∇iE

(

K
−1
0 + E

)−1
ξ0+

+ 2ξT
0

(

K
−1
0 + E

)−1
∇iξ0, where

∇iξ0 = −∇iFK
−1

k − FK
−1∇ik + FK

−1∇iKK
−1

k

∇iE = ∇iFK
−1

F
T+ FK

−1∇iF
T − FK

−1∇iKK
−1

F,

where the matrices are built with a location vector comprised

of an ordering of the samples correlated to Vj(Q).

It is worth noting that the matrix ∇iF ∈ R
p×n(k+1)

is nonzero only in column i. The matrix ∇iK ∈
R

n(k+1)×n(k+1) is nonzero only in row and column i.

4545



Additionally, due to the finite correlation range, only those el-

ements corresponding to correlation with other measurement

locations x = (s, t) which satisfy ‖pi − s‖ ≤ r are nonzero.

Lemma IV.4 Under the assumptions of Lemma IV.3, as-

sume, in addition, that the partial derivatives of f1, . . . , fp

and the covariance of Z are C1 with respect to the

spatial position of their arguments. Then the map P 7→
∇iφ

(k)
j (x0, P ) is globally Lipschitz on Ω(k).

Note that the value of ϕ̂(k)(P ) depends on P only

through the matrix E, whose partial derivative is given in

Lemma IV.3. This leads us to the following continuity results.

Lemma IV.5 Under the assumptions of Lemma IV.3, ϕ̂(k)

is C1 on Ω(k) and the ith component of its gradient is

∇iϕ̂
(k)(P ) =

∑m
j=1 ∇iϕ̂

(k)
j (P ), where,

∇iϕ̂
(k)
j (P ) =

1

2
ΨT ∇iE Ψ, and

Ψ = E−1
(

K0 + E−1
)−1

(

K0Eβ̃ + β0

)

.

Additionally, under the assumptions of Lemma IV.4, ∇iϕ̂
(k)

is globally Lipschitz on Ω(k).

We are finally ready to state the smoothness properties of

Ã(k) and provide an explicit expression for its gradient.

Proposition IV.6 Under the assumptions of Lemma IV.3,

Ã(k) is C1 on Ω(k) and the ith component of its gradient is

∇iÃ
(k)(P ) =

ϕ̂(k)(P )

γ(k)

∫

Vj(Q)

∫

T

∇iφ
(k)
j ((s, t), P ) dt ds+

+
∇iϕ̂

(k)(P )

γ(k)

∫

Vj(Q)

∫

T

φ
(k)
j ((s, t), P )) dt ds.

Additionally, under the assumptions of Lemma IV.4, Ã(k) is

globally Lipschitz on Ω(k).

V. DISTRIBUTED COMPUTATION OF AGGREGATE

AVERAGE PREDICTION VARIANCE AND ITS GRADIENT

In this section, we substantiate our assertion that the

aggregate average prediction variance and its gradient are

distributed over the network N . Since V(Q) is a partition

of the physical space, we may partition all sample locations

by region. Thus for each (s, t) ∈ iF(x), there is exactly

one j ∈ {1, . . . ,m} such that s ∈ Vj(Q). In order for

the network to calculate Ã(k) and its gradient at P , it is

sufficient for Sj to compute Ã
(k)
j and ∇iÃ

(k)
j for each robot

in Vj(Q). Then Ã(k) may be calculated via discrete time av-

erage consensus [17], while ∇iÃ
(k) may be calculated from

information local to Ri. From Propositions IV.2 and IV.6,

it can be seen that calculation of Ã
(k)
j and ∇iÃ

(k)
j requires

only local information and the values of ϕ̂(k) and ∇iϕ̂
(k).

Next we use consensus and the distributed JOR algo-

rithm [18] to calculate ϕ̂(k) and its gradient. Let R
(1:k)
in :

N → F(N) map the index of the node to the set of indices

of samples whose spatial position lies inside its Voronoi cell,

R
(1:k)
in (j) = {i ∈ {1, . . . , nk} | xs:i = (s, t) and s ∈ Vj(Q)} .

With a slight abuse of notation, define R
(1:k+1)
in (j, P ) to

be the equivalent set of indices into the full vector of

measurement locations, x, given future locations P .

Our first result illustrates the parts of ϕ̂(k) which do not

include the locations P . We use the notation coli(M) to

denote the ith column of the matrix M .

Proposition V.1 Assume that Sj for each j ∈ {1, . . . ,m}

knows xi, yi for each i ∈ R
(1:k)
in (j). After p+1 executions of

the JOR algorithm and 2 subsequent consensus algorithms,

Sj has access to,

#1: element i of K
−1
s y

s
∈ R, i ∈ R

(1:k)
in (j) via JOR;

#2: coli
(

FsK
−1
s

)

∈ R
p, i ∈ R

(1:k)
in (j) via JOR;

#3: FsK
−1
s y

s
∈ R

p via consensus;

#4: yT
s
K

−1
s y

s
∈ R

p via consensus;

Next, we describe calculations which may be done at each

step of a gradient descent algorithm at locations P .

Proposition V.2 Given P ∈ Ω(k), assume that Sj for each

j ∈ {1, . . . ,m} knows xi for each i ∈ R
(1:k+1)
in (j, P ) and

the results of Proposition V.1. After p executions of JOR, and

p2 of consensus, Sj has access to,

#5: coli
(

FK
−1

)

∈ R
p, i ∈ R

(1:k+1)
in (j, P ) via JOR;

#6: E ∈ R
p×p via consensus;

After these computations, Sj can calculate β̃ and ∇iE,

and subsequently ϕ̂(k) and ∇iϕ̂
(k) at P for each robot in

{i ∈ {1, . . . , n} | pi ∈ Vj(Q)}.

VI. DISTRIBUTED OPTIMIZATION OF THE AGGREGATE

AVERAGE PREDICTIVE VARIANCE

Here we outline a distributed version of the projected

gradient descent algorithm (see, e.g. [19]), which is guaran-

teed to converge to a stationary point of Ã(k) on Ω(k). For

convenience, let P ′
j : R × Dn → F(D) map a step size and

configuration to the set of next locations calculated by Sj ,

P ′
j(α, P ) =

{

projΩi

(

pi + α∇iÃ(P )
)

,

foreach i s.t. d (pi, Vj(Q)) ≤ r + umax + ω
}

.

Let dj : R × Dn → R≥0 denote the total distance traveled

by robots entering Vj(Q), i.e.,

dj (α, P ) =
∑

i∈{1,...,n} such that

proj
Ωi

(pi+α∇iÃ(P ))∈Vj(Q)

‖projΩi

(

pi + α∇iÃ(P )
)

− pi‖
2.

Globally, let P ′ : R × Dn → Dn, P ′(α, P ) = projΩ(P +
α∇Ã(P )). Table I describes a distributed line search with

a starting position of P ∈ Ω. The line search starts with a

factor αmax which scales the smallest nonzero partial to umax,

ensuring all robots with nonzero partial derivatives can move

the maximum distance,

αmax =
umax

min{‖∇iÃ(P )‖ |∇iÃ(P ) 6= 0}
. (6)

We are ready to present our technique for a greedy

optimization algorithm. At timestep k, the nodes follow a
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Name: DISTRIBUTED LINE SEARCH ALGORITHM

Goal: Compute step size for gradient descent of Ã(k)

Input: Configuration, P = (p1, . . . , pn) ∈ Dn

Assumes: (i) Connected network of static nodes

(ii) Sj knows pi, Ã
(k)
j (P ), ∇iÃ

(k)(P ) and Ωi

for each robot within communication range
(iii) Sj knows items #3 and #4 from Proposi-

tion V.1, and γ(k)

(iv) Shrinkage factor τ and tolerance θ ∈ (0, 1)
known a priori by all static nodes

Output: Step size τ ∈ R.

Initialization

1: S1, . . . , Sm calculate αmax, cf. (6) via a consensus algorithm

For j ∈ {1, . . . , m}, node Sj executes concurrently

1: α = αmax

2: repeat
3: calculates dj (α, P )2

4: calculates ϕ̂(k)
`

P ′
j(α, P )

´

according to Proposition V.2

5: calculates Ã
(k)
j

`

P ′
j(α, P )

´

6: execute consensus algorithm to calculate the following:

Ã(k) `

P
′(α, P )

´

=

m
X

j=1

Ã
(k)
j

`

P
′
j(α, P )

´

‚

‚P − P
′(α, P )

‚

‚

2
=

m
X

j=1

dj (α, P )2

7: ν = θ
α
‖P − P ′(α, P )‖

2
+ Ã(k)(P ′(α, P )) − Ã(k)(P )

8: if ν > 0 then
9: α = ατ

10: until ν ≤ 0

TABLE I

DISTRIBUTED LINE SEARCH ALGORITHM.

gradient descent algorithm to define a sequence of configu-

rations, {P †
l }, l ∈ N, such that P †

1 is P (k) ∈ Dn, the vector

of current spatial locations of the robotic agents and

P †
l+1 = projΩ

(

P †
l − α∇Ã(P †

l )
)

, α ∈ R≥0,

where α is chosen via DISTRIBUTED LINE SEARCH ALGO-

RITHM. When |Ã(k)(P †
l+1) − Ã(k)(P †

l )| = 0, the algorithm

terminates, and the nodes set P (k+1) = P †
l+1. By the end

of this calculation, each node knows the identity of robotic

agents in its Voronoi cell at timestep k+1. Node Sj transmits

pi(k + 1) to robot Ri, which then moves to the location

between timesteps. The overall algorithm is in Table II.

Proposition VI.1 The DISTRIBUTED PROJECTED GRADI-

ENT DESCENT ALGORITHM is distributed over the net-

work N . Moreover, under the assumptions of Lemma IV.4,

any execution is such that the robots do not collide and,

at each timestep after the first, measurements are taken at

stationary configurations of P 7→ Ã(k)(P ) over Ω(k).

The proposed algorithm is robust to agent failures. If an

agent stops sending position updates, it ceases to receive new

control vectors. The rest of the network continues operating

with the available resources and will eventually sample the

areas previously covered by the failing agents.

A. Simulations

We show here an implementation of the DISTRIBUTED

PROJECTED GRADIENT DESCENT ALGORITHM with the

following parameters: m = 5 static nodes, n = 20
robotic agents, and the convex polygon D with ver-

tices {(0, .1), (2.5, .1), (3.45, 1.6), (3.5, 1.7), (3.45, 1.8),
(2.7, 2.2), (1, 2.4), (0.2, 1.3)}. We used the separable co-

variance function defined by Cov[Z(s1, t1), Z(s2, t2)] =
Ctrunc(‖s1 − s2‖, 0.3)Ctrunc(|t1 − t2|, 3.5), where

Ctrunc(δ, r) =

{

e−15( δ
r )

2

if δ ≤ r,

0 otherwise.

While the covariance function is not C1 everywhere, the

difference lies within the error margin of the simulation.

We use ω = 0.02 and umax = 0.3. The values of our

hyperparameters were ν = 0.1, q = 2, β0 = 0, and K0 = I .

We simulated the sampled data by drawing random variables

from the distribution N(β0, σ
2
0Ku), where σ2

0 = qν
ν−2 , the

prior mean of σ2, and Ku is the correlation matrix of y
u

.

For the mean regression functions fi, we used f(x, y, t) =
(1, x, y)T . To illustrate the robustness to failure, R2 ceased

communications after timestep 2, and R5 after timestep 4.

Figure 1 shows the trajectories taken by the robots. This

(a) (b)
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Fig. 1. (a) Trajectories of all robots, (b) two representative robot trajectories
and (c) evolution of the objective function. The filled squares represent the
(static) positions of the nodes, and the filled triangles show the starting
positions of the robots. The X’s represent the positions of the two robots
who dropped communication.

example is representative of cases for which the data samples

lie within a reasonable range of the predictive model. In

the cases where the samples do not match the model, the

surface of Ã(k) is relatively flat, signifying that the amount of

information to be gained is not significantly different whether

the agents move or not. As information is a model-dependent

quantity, this is not surprising. Furthermore, if the model is

too far off, the approximation ϕ ≈ ϕ̂ is very bad.

VII. CONCLUSIONS AND FUTURE WORK

We have considered a network of static computing nodes

and mobile robotic sensing platforms taking measurements

of a time-varying random process with covariance known up

to a scaling parameter. We have used a Bayesian approach,

treating the field as a spatiotemporal Gaussian random pro-

cess, and developed a novel iterative approach to calculating

the variance of the posterior predictive distribution. Using

this sequential formulation, we have developed a projected

gradient descent algorithm which is distributed over the

network of nodes and robots. Future work will focus on

theoretical guarantees on the accuracy of the approxima-

tion Ã(k) and on the robustness to failure of the proposed
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Name: DISTRIBUTED PROJECTED GRADIENT DESCENT ALGORITHM

Goal: Find a local minimum of Ã(k) within Ω(k).

Assumes: (i) Connected network of static computing nodes and mobile robotic sensing agents
(ii) Static nodes deployed over D such that R ≥ maxi∈{1,...,m} {CR(Vi(Q))} + r + umax, robotic agents in initial

configuration P (1) ∈ Dn

(iii) Line search shrinkage factor τ and tolerance value θ ∈ (0, 1) known a priori by all nodes
(iv) A termination marker known to all nodes and robots which may be sent to mark the end of a gradient descent loop.

Uses: (i) Each node uses the temporary vectors Pcur, respectively Pnext to hold the configuration at the current, respectively
next step of the gradient projection algorithm. For ease of exposition, we use global notation although Sj only calculates
and uses the parts of these vectors which correspond to agents currently within communication range.

At time k ∈ Z≥0, node Sj executes:

1: sets Rcov(j) = {Ri | d(pi(k), Vj(Q)) ≤ r}
2: collects initial samples and locations from Ri for each i ∈ Rcov(j).

3: computes first Ã
(k)
j

`

P (k)
´

and then Ã(k)
`

P (k)
´

via consensus

4: sets Pnext = P (k)

5: repeat

6: sets Pcur = Pnext(j) and calculates −∇Ã
(k)
j (Pcur)

7: transmits vector ∇iÃ
(k)
j (Pcur) to all robots in Rcov(j)

8: collects sum ∇iÃ
(k)(Pcur) from all robots in Rcov(j)

9: runs DISTRIBUTED LINE SEARCH ALGORITHM at Pcur to get α
10: sets Pnext = Pcur + α∇Ã(k)(Pcur)
11: calculates |Ã(k)(Pnext) − Ã(k)(Pcur)| from known quantities

12: until |Ã(k)(Pnext) − Ã(k)(Pcur)| = 0
13: sets P (k+1) = Pnext and sends next position to robots in Vj(Q)

At time k ∈ Z≥0, robot Ri executes:

1: takes measurement at pi(k)
2: sets Scov(i) = {Sj | d(pi(k), Vj(Q)) ≤ r}
3: sends measurement and position to all nodes in Scov(i)
4: repeat

5: receives ∇iÃ
(k)
j (P (k)) from nodes in Scov(i)

6: calculates sum ∇iÃ
(k)(P (k))

7: sends ∇iÃ
(k)(P (k)) to all nodes in Scov(i)

8: until receives termination marker from any node
9: receives next location pi(k + 1)

10: moves to pi(k + 1).

TABLE II

DISTRIBUTED PROJECTED GRADIENT DESCENT ALGORITHM.

coordination algorithm, the quantification of the communi-

cation requirements of the proposed strategy, and possible

methods of reducing those requirements.
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