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Abstract— This work deals with the problem of locating the
omega-limit set of a bounded solution of a given autonomous
vector field on a Riemannian manifold. The derived results
extend LaSalle’s invariance principle in such a way that the
newly obtained conditions provide in certain situations a more
refined statement about the location of the omega-limit set when
the invariance principle is inconclusive. The derived conditions
are for example useful for gradient-type vector fields and
cascaded systems.

I. INTRODUCTION

LaSalle’s invariance principle [4] is one of the very useful

theorems in dynamical systems and control theory with

plenty of applications [3]. In recent years several gen-

eralizations covering non-classical frameworks have been

investigated, ranging from switched systems [2], [8], to non-

autonomous systems [6], to infinite dimensional systems [12]

and to hybrid systems[9]. Instead the purpose of our con-

tribution is to tackle some classical situations (autonomous

finite dimensional continuous dynamical systems) in which

the LaSalle’s invariance principle can not be applied directly

and in which it appears inconclusive. For example, consider

a planar system of the form

ẋ = a(x) + b(x, y)
ẏ = c(y) + d(x, y),

(1)

where a, b, c, d are appropriately defined functions with

c(0) = d(x, 0) = a(0) = b(x, 0) = 0. Notice that for

d(x, y) = 0, we have a cascaded system structure. Assuming

that a proper Lyapunov function V = V (x, y) is known such

that V̇ (x, y) ≤ 0 and V̇ (x, y) = 0 if and only if y = 0, one

can conclude that the solutions y(t, x(0), y(0)) converge to

zero. Hence the asymptotically residual dynamics is ẋ =
a(x). A natural question about the residual dynamics is the

following: If another function W = W (x) is known such that

Ẇ (x) ≤ 0, is it possible to conclude that a bounded solution

of (1) x(t, x(0), y(0)) converges to the set E defined by

Ẇ (x) = 0? In general, the answer is no and the application

of LaSalle’s invariance principle is not very helpful in such

a situation, because the set of points (x, 0) is invariant with

respect to (1).

There are results available in the literature in which one can

actually conclude that x(t, x(0), y(0)) converges to the set

E, for example when this set is asymptotically stable ([7],

[10], [11]). In a situation where the set E is not necessarily

A. Arsie is with the Department of Mathematics, Penn State University,
16801 State College, PA, USA (e-mail: arsie@math.psu.edu).

C. Ebenbauer is with the Laboratory for Information and Decision
Systems, Massachusetts Institute of Technology, Cambridge, MA 02139,
USA (e-mail: ebenbauer@mit.edu).

stable, not many results are seems to be known. Indeed, the

authors are not aware of any result of this type.

In this paper, we address such problems where the set E
is not necessarily stable and might be even disconnected.

We derive sufficient conditions under which, for example

for the scenario sketched above, it can be concluded that

x(t, x(0), y(0)) approaches E. In particular, our results in-

clude the case when the set E consists of a set of points with

at most a finite number of accumulation points or when the

residual dynamics ẋ = a(x) = ∇h(x) is a gradient flow.

The outline of the paper is as follows: In Section II, the

problem set-up is established and preliminary results are de-

rived. In Section III, the main results are proved together with

some of their consequences. Conclusions and a summary are

provided in Section IV.

II. SET-UP AND PRELIMINARY RESULTS

Main Assumptions. The set-up of our investigation is the

following. On a Riemannian manifold M of class C2 with

metric g a locally Lipschitz continuous vector field

ẋ = f(x) (2)

is given. The initial value x(0) is such that the corresponding

solution x(t, x(0)) is bounded; this is always the case if M
is compact. It is not restrictive to assume that the omega-limit

set Ω(x(0)) which is a compact and connected (see Lemma

1) is contained in an embedded submanifold S ⊂ M,

possibly equal to M. Moreover, without loss of generality

we can assume that the solution x(t, x(0)) is approaching

S. Since the omega-limit set Ω(x(0)) is compact by Lemma

1, it is not restrictive to assume there exists a compact

neighborhood K, such that the O := Int(K) is an open

neighborhood of Ω(x(0)). We assume that there exists a real

valued C1 function W : O → R and such that Ẇ (x) ≥ 0
on S ∩ O, where Ẇ (x) is the derivative of W (x) along

the flow (Lie derivative). More specifically we assume that

Ẇ (x) = 0 on a subset E ⊂ (S ∩ O), and Ẇ (x) > 0 on

(S ∩ O) \ E. Therefore E = {x ∈ S : Ẇ (x) = 0} and in

some applications it will be exactly the set of equilibria of

the vector field (2), E = {x ∈ S : f(x) = 0}, but our results

hold without the latter assumption.

Let us remark that most of the following results hold also in

the slightly more general case of a Finsler manifold, but for

the sake of readability we will not enforce this hypothesis,

since in any case any manifold can be endowed with a

Riemannian metric.
The following lemma about invariant sets, despite being well-

known is important and it is the base of our investigation (see

e.g. [4], Chapter 2, Theorem 5.2).
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Lemma 1: Let Ω(x(0)) denote the positive limit set (ω-limit

set) of a bounded solution x = x(t, x(0)) of (2) above. Then

Ω(x(0)) is nonempty, compact, connected, positively and

negatively invariant with respect to (2), and it is the smallest
closed set that x = x(t, x(0)) approaches as t → ∞, i.e.,

if x = x(t, x(0)) converges to a closed set which properly

contains Ω(x(0)), then x = x(t, x(0)) converges to Ω(x(0)).
Since we will need to view manifolds as metric spaces,

we use the Riemannian metric g on M to generate a

corresponding distance function d. In the simplest case in

which M = R
n one can choose as d the norm associated to

the Euclidean scalar product.

III. MAIN RESULTS

All the Main Assumptions above are assumed to hold also in

this section. Our goal is to find sufficient conditions that force

Ω(x(0)) to be contained in one of the connected components

of E.

The following lemma describes some basic properties of the

ω-limit set in relation to E.

Lemma 2: Assume that the Main Assumptions above are

satisfied. Then the omega limit set Ω(x(0)) and E have

nonempty intersection, namely Ω(x(0))∩ {x ∈ S : Ẇ (x) =
0} 
= ∅. Moreover if Ω(x(0)) does not reduce to a single

point, then Ω(x(0))∩E does not contain any stable equilib-

rium point.

Proof: If Ω(x(0)) ∩ E = ∅, since Ω(x(0)) and E
are both closed, the distance between Ω(x(0)) and E is

strictly positive. Moreover, since the restriction of Ẇ (x)
on S ∩ O, i.e Ẇ|S∩O is continuous and zero only on E
by assumption, this implies that there exists a δ > 0 such

that Ẇ|S∩O ≥ δ > 0 in Ω(x(0)). On the other hand

Ω(x(0)) is compact, therefore W has a global maximum on

Ω(x(0)). Moreover since Ω(x(0)) is invariant, all trajectories

starting there will remain confined in Ω(x(0)). Therefore we

reach a contradiction, because
∫ +∞
0

Ẇ|S∩Odt is divergent

along a solution starting in Ω(x(0)), but this impossible

since Ω(x(0)) is compact and W has a global maximum in

Ω(x(0)). Thus Ω(x(0))∩E 
= ∅. Assume now that Ω(x(0))
is not a single point. Let As ∈ Ω(x(0)) ∩ E be a stable

equilibrium point and let B ∈ Ω(x(0)) with d(B, As) > δ.

Then, for any ε > 0 there exists a t1 > 0, depending on ε
such that d(x(t1), As) ≤ ε, where x(t, x(0)) is the solution

of (2) starting at x(0), due to the fact that As ∈ Ω(x(0)).
Now, if one choses ε small enough, then it follows from

stability that d(x(t), As) ≤ δ for all t > t1, hence the

solution x(t) cannot become δ/2-close to B anymore, and

consequently B is not a point in Ω(A(0)), contrary to the

initial assumption.

We introduce the following definition in order to state our

main result:

Definition 3: Let {Ei}i∈I be the connected components of

E ∩ Ω(x(0)). Given a function W as in the Main Assump-

tions, we say that the components {Ei}i∈I are contained
in W if each Ei lies in a level set of W , and the subset

{W (Ei)}i∈I ⊂ R has at most a finite number of accumula-

tion points in R.

Observe that Definition 3 does not exclude the case in which

two or more connected components of E lie in the same
level set of W . Let us remark that when the function W is

globally defined on M or in a tubular neighborhood of S it

can be easier to check directly that all connected components

of E are contained in W , rather than checking the condition

for the components of E in Ω(x(0)), since in general the

ω-limit set is not known. For instance, this is what is done

in the application of the results of this paper in [1]. Due

to space limitations, other examples and applications will

appear elsewhere.

The first main result is the following:

Theorem 4: Assume the Main Assumptions of the previous

section hold. If the components {Ei}i∈I are contained in W ,

then Ω(x(0)) ⊂ {Ei} for a unique i ∈ I .

Proof: We analyze first the case in which Ω(x(0)) is

contained in a level set of W . Consider the level set LS of W
where Ω(x(0)) is contained. The invariant set Ω(x(0)) can

not be disjoint from the components of E sitting inside LS,

because otherwise, reasoning as in Lemma 2 we would reach

a contradiction. Call {ELS,k}k∈K the connected component

of E sitting inside LS and having nonempty intersection

with Ω(x(0)), where K is possibly an infinite set. We claim

that necessarily Ω(x(0)) ⊂ ELS,j for a unique j. Indeed if

this is not the case, since Ω(x(0)) is positive invariant and

Ω(Ω(x(0)) ⊆ Ω(x(0)) a solution of (2) starting in Ω(x(0))\
∪k∈KELS,k will have Ẇ (x) > 0, so the height function W
is increasing, but on the other hand Ω(x(0)) is invariant and

contained in a level set of W . Contradiction. Therefore, the

only possibility is that Ω(x(0)) ⊂ ELS,j for some j. Since

Ω(x(0)) is connected by Lemma 1, then Ω(x(0)) ⊂ ELS,j

for a unique j.

Now consider the case in which Ω(x(0)) is not contained in

a level set of W . Since W is continuous and Ω(x(0)) is com-

pact, we have that W (Ω(x(0)) = [min, max] is a compact

interval in the real line. Call now ΩE := {E1, . . . , Ek, . . . },

k ≥ 1, the sets in Ω(x(0)) obtained by intersecting Ω(x(0))
with the connected components of E. ΩE is not empty by

Lemma 2. Let W := {w1, . . . , wl} be the corresponding

values of the function W on {E1, . . . , Ek, . . . }. These values

are not necessarily distinct, in the sense that it can happen

that for two different connected components Ei and Ej we

have wi = wj . We will now distinguish three cases in the

proof, even though in all these cases the idea of the proof is

basically the same.

First case: the set ΩE contains only one component, call it

E1 (see also Figure 1). Let B(ε) be a closed neighborhood

of Ω(x(0)) in M, B(ε) ⊂ O such that d(B(ε), Ω(x(0))) ≤
ε. Recall that O is the open neighborhood of Ω(x(0))
with compact closure K where the function W is defined.

Moreover, let U1 be an open neighborhood for E1 in M and

let U1(ε) = B(ε)∩U1. Denote with b1 = infx∈U1 W (x), and

with b1 = supx∈U1
W (x). Since E1 is closed in Ω(x(0))

and by hypothesis Ω(x(0)) is not contained in E1, we can

choose point P ∈ Ω(x(0)) \ E1 and choose a neighborhood

UP of P in M, with UP ⊂ O. Call bP = infx∈UP
W (x),

and with bP = supx∈UP
W (x) and UP (ε) = B(ε)∩UP . It is
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not restrictive to assume that W (P ) < W (E1) (if the other

inequality is satisfied, simply switch the roles of P and E1 in

what follows). Since W (P ) < W (E1) and W is continuous

we can choose ε and neighborhoods UP and U1 such that

b1 > bP and such that

min
x∈B(ε)\(U1(ε)∪UP (ε))

Ẇ (x) ≥ δ

2
> 0 (3)

holds for some δ > 0. Moreover

min
x∈Ω(x(0))\(U1(0)∪UP (0))

Ẇ (x) ≥ δ > 0 (4)

can be always be satisfied, because Ω(x(0))\(U1(0)∪UP (0))
can be contained in a compact set and Ẇ is strictly positive

on Ω(x(0)) \ (U1(0) ∪ UP (0)). Hence, because W and Ẇ
are continuous functions, (3) must be true for a sufficiently

small ε. In other words, for ε sufficiently small, the set

{x : Ẇ (x) ≤ 0, x ∈ B(ε)} is contained in U1(ε) ∪ UP (ε).
Since Ω(x(0)) is the positive limit set, there exists a t1 > 0
such that x(t1, x(0)) ∈ U1(ε) and such that x(t, x(0)) ∈ B(ε)
for t ≥ t1, due to the fact that B(ε) is closed, compact

and contains Ω(x(0)) (see Lemma 1). Moreover, there must

exists a t2 > t1 such that x(t2, x(0)) ∈ UP (ε), since

P belongs to the ω-limit set. However, this is impossible

because in order to reach UP (ε) we must have W (x(t2)) <
b1 for some t1 < t2. On the other hand Ẇ ≥ δ/2 > 0 on

B(ε)\(U1(ε)∪UP (ε)), so the value of W along x(t) can not

decrease. This leads to a contradiction with the assumption

that Ω(x(0)) is not contained in a level set of W or with

the fact that Ω(x(0)) is not contained in E1. If the former

is true then Ω(x(0)) must be contained in a level set of W ,

from which the thesis follows by the first part of the proof.

If the latter is true, the thesis follows immediately.

Second case: the set W is finite, and there are possi-

bly infinitely many components of E in the level sets of

W−1(W) ∩ Ω(x(0)). Then W is contained in the closed

interval W (Ω(x(0)) = [min, max]. Let us call {w1, . . . , wk}
the distinct elements of W , for some k ≥ 1 and assume

without loss of generality that they are ordered in such a

way that w1 > w2 > · · · > wk. Construct open intervals

Zi of wi in [min, max] such that Zi ∩ Zj = ∅ for all

i 
= j. Consider as before a compact neighborhood B(ε) of

Ω(x(0)) in M, B(ε) ⊂ O such that d(B(ε), Ω(x(0))) ≤ ε.
By the fact that Ẇ > 0 on (S ∩ O) \ E, and that Ẇ
and W are continuous functions, it is possible to choose

ε and the pairwise disjoint open neighborhoods {Zi}i=1,...,k

in [min, max] in such a way that on the closed set C =
B(ε) \ (B(ε) ∩ (W−1(∪k

i=1Zi)), we have

min
x∈C

Ẇ (x) ≥ δ

2
> 0 (5)

for some δ > 0. Observe also that, shrinking ε and Zi if

necessary, the open sets Ui := B(ε) ∩ W−1(Zi) are such

that bi > bi+1, where bi := infx∈Ui
W (x) and bi :=

supx∈Ui
W (x). Since Ω(x(0)) is the ω-limit set, there must

exist a time t1 such that the solution of (2) x(t1, x(0)) ∈ Ui,

and moreover, for any t ≥ t1, x(t, x(0)) ∈ B(ε). On

the other hand there must exists a t2 > t1 such that the

solution x(t2, x(0)) ∈ Ui+1, which means in particular that

W (x(t2, x(0))) < bi, but this is impossible since on C
Ẇ (x) ≥ δ/2 > 0. So we reach a contradiction and Ω(x(0))
must lie in a level set of W , and we conclude as in the first

part.

As a third case, let us consider what happens when there

are finitely many accumulation points for W in [min, max].
Let us call {P1, . . . , Pk} the finite set of accumulation

points of W (ΩE) = W . If we consider open neighborhoods

{Zi}i=1,...k ⊂ R for each Pi, then the entire W is covered

by these open neighborhoods except for possibly a finite
residual set of points, call them {R1, . . . , Rl}. Choose again

open neighborhoods {Xi}i=1,...l for these residual points,

and possibly shrink Zi and Xi such that Zi ∩ Zj = ∅ for

any pair of distinct indices, Zi ∩ Xj = ∅ for any pair of

indices and Xi ∩ Xj = ∅ for any pair of distinct indices.

By continuity of W and Ẇ and the fact that Ẇ > 0
on (S ∩ O) \ E we can reason as in the second case to

reach a contradiction with the assumption that Ω(x(0)) is

not contained in a level set of W and it is at the same time

the ω-limit set.

Ω
(x
(0
))

bP

W Ẇ > 0 on (S ∩O) \ E

P

UP

x(t, x(0))

b1
Ẇ > 0

E1
U1

b1 − bP > 0UP (0)

P

U1

E1

Ẇ > 0

Ω(x
(0))

B(ε)
UP

U1(0)

S

S

Fig. 1. Basic idea and illustration of the first case in the proof of Theorem
4.

Two special cases of the Theorem 4 appear frequently

in applications and are worthwhile to mention as distinct

results.

The first one deals with the case in which the set E is known

to be a countable set of points. In this case we have

Theorem 5: Assume the Main Assumptions hold. Then if the

set E is a countable set of points {Pi}i∈N ⊂ M such that

W (E∩Ω(x(0))) has at most a finite number of accumulation
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points, then Ω(x(0)) = Pi for a unique i ∈ I .

Proof: It is an immediate consequence of Theorem 4. Indeed

under the current hypotheses, E satisfies automatically the

requirement for being contained in W and Theorem 4 gives

the desired result.

Another important special case is when the submanifold S is

invariant for (2) and the vector field (2) becomes a gradient

flow when restricted to S. Let us recall that on a Riemannian

manifold (M, g), the gradient of h ∈ C1(M, R) is defined

as the unique vector field ∇gh on M such that g(∇gh, ·) =
dh, where dh is the differential of h. The same construction

applied to S works when S is an embedded submanifold of

M.

Before stating the case of a gradient flow, we proceed with

the following easy observation:

Lemma 6: Let

ẋ = ∇gh(x) (6)

be a gradient flow on Riemannian submanifold (M, g) of

dimension n. If h is of class at least Cn then the connected

components {Ei}i∈I of the equilibria set E of (6) lie on

level sets of h.

Proof: This is an immediate consequence of Sard’s

lemma [13]. Indeed by continuity h(Ei) is a connected

subset of R and by Sard’s lemma it has to have zero Lebesgue

measure, so it is a point and therefore it lies on a level set

of h.

Remark 7: The condition about the regularity of h in Lemma

6 is in general the best possible. Indeed, it is possible to

construct interesting counterexamples where h is of class

Cn−1 on a manifold of dimension n and a connected

component of the locus where the gradient of h vanishes is
not contained in a level set of h. The first counterexample,

for a function h of class C1, h : R
2 → R was given in [14].

Theorem 8: Assume that M is a smooth Riemannian man-

ifold, S is a smooth closed embedded submanifold contain-

ing the ω-limit set Ω(x(0)) of the smooth vector field f
appearing in (2). Assume that the vector field f restricts

to a vector field fS on S and that fS is a gradient vector

field on S, namely fS = ∇g̃h for some smooth function

h ∈ C∞(S, R), where g̃ is the induced metric on S. Call

{Ei}i∈I the connected components of the equilibria set E
for fS . If the subset {h(Ei)}i∈I has at most a finite number

of accumulation points in R, then Ω(x(0)) ⊂ Ei for a unique

i ∈ I .

Remark 9: The regularity on h can be dropped, as long as

h is at least Cm where m is the dimension of S, due to

Lemma 6.

Proof: First of all, notice that in this case the function

W used in Theorem 4 will be provided by an extension of the

potential function h to a tubular neighborhood of S. Indeed,

by Lemma 6 applied to the Riemannian submanifold S the

connected components {Ei}i∈I lie on the level sets of h.

Besides, under the current hypotheses, the subset {h(Ei)}i∈I

has at most finite many accumulation points. Moreover since

ḣ =< dh, f >= g̃(∇g̃h, f) = g̃(∇g̃h,∇g̃h) on S, we have

ḣ ≥ 0 on S and ḣ = 0 only on E. Now since h ∈ C∞(S, R),

there exists a smooth function h̃ extending h to a tubular

neighborhood O of S in M [5]. Moreover, since fS is

tangent to S, the function h̃ can be chosen in such a way

that the following equality is true:

( ˙̃
h)S = (Lf h̃)S = LfSh = ḣ,

where L denotes Lie derivative. Therefore the extended

potential h̃ satisfies all the hypothesis of the function W
in Theorem 4 in a tubular neighborhood O of S, therefore

a fortiori in an open neighborhood of Ω(x(0)). In particular

the components {Ei}i∈I are contained in h̃. Thus applying

Theorem 4 with W = h̃ we get immediately the claim.

Remark 10: Observe that in Theorem 8 we do not need

to assume the existence of a function W like in the Main

Assumptions, since the function W is automatically provided

by a suitable extension of h on a tubular neighborhood of

S.

Sometimes in applications, one is working in a more rigid

category, where some hypotheses of the previous results are

automatically satisfied. This is for instance the case of non

singular real algebraic variety, the simplest example of which

is given by R
n or the set of zeros of polynomial functions

in R
n, when these sets are non singular.

We can restate Theorem 4 in this set up in a simpler way:

Theorem 11: Assume the Main Assumptions above hold.

Assume moreover that M is a nonsingular real algebraic

variety on which the vector field (2) is defined. If the function

W is such that Ẇ (x) is algebraic, and such that each

connected component Ei of the equilibria set E of (2) lies

on a level set of W , then Ω(x(0)) ⊂ Ei for a unique i.
Proof: The only difference with respect to the hypothe-

ses of Theorem 4 is the fact that we do not have to check

if the set {W (Ei)}i∈I has a finite number of accumulation

points or not. Indeed, the set {W (Ei)}i∈I can not have an

accumulation point at all in this case. This is due to the fact

that since M is algebraic and Ẇ is algebraic, the set E is

a possibly singular real algebraic variety, and as such it can

have only a finite number of components [15].

A direct consequence of Theorem 11 is the following:

Corollary 12: Suppose the vector field (2) is defined over

R
n. If we are given a function W as above, such that Ẇ (x)

is algebraic, and such that each connected component Ei of

the equilibria set E of (2) lies on a level set of W , then

Ω(x(0)) ⊂ Ei for a unique i.
A similar corollary of Theorem 11 can be obtained for

gradient vector fields. We leave the details to the reader.

There is another situation which is not covered by Definition

3 and Theorem 4 where it is possible to obtain a weaker

result. First we introduce the following definition:

Definition 13: Let {Ei}i∈I be the connected components of

E. Given a function W as above, we say that W strictly
separates the components {Ei}i∈I if for any pair of distinct

indices i and j in I the distance on the real line between the

closed subsets W (Ei ∩ Ω(x(0))) and W (Ej ∩ Ω(x(0))) is

greater or equal to a positive constant c.

Observe that Definition 3 does not imply and is not implied

by Definition 13.
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Proposition 14: Assume the Main Assumptions hold. As-

sume moreover that W strictly separates the connected

components {Ei}i∈I . Then Ω(x(0))∩{Ei}i∈I is not empty

for a unique i ∈ I , call it m. Moreover if Em is stable, then

Ω(x(0)) ⊂ Em.

Proof: Arguing as in Theorem 4 it is easy to see that if

the connected components are strictly separated by W , then

only one of them has non empty intersection with Ω(x(0)),
say El. In particular, for any ε > 0, there exists a time t1 such

that d(x(t1, x(0)), El) ≤ ε, where d denotes the Hausdorff

distance. By stability of El, choosing ε sufficiently small, the

solution x(t, x(0)) will remain confined in a δ-neighborhood

of El. In particular, for any δ > 0, there is an ε > 0 such

that if the solution intersect the ε-neighborhood at a time

t1, then it will remain trapped in the δ-neighborhood for all

times t > t1. But this provides an immediate contradiction

with the assumption that Ω(x(0)) is not contained in El.

IV. CONCLUSIONS

In this paper, the following problem was studied: A bounded

solution x(t, x(0)) of the vector field (2) on a Riemannian

manifold M is given and it is known that this solution ap-

proaches a possibly compact submanifold S, i.e. the omega-

limit set Ω(x(0)) is contained in S. Moreover, a function W
on S ∩ O is known such that Ẇ (x) ≥ 0 on S ∩ O, but not

necessarily in a neighborhood O. What can be said about

the convergence behavior of x(t, x(0))? The results in this

paper provide sufficient conditions under which it can be

shown that Ω(x(0)) lies in the set E where Ẇ vanishes. In

particular, it is shown that if each connected component of E
is contained in a level set of W , then x(t, x(0)) approaches a

single connected component Ei, i.e. Ω(x(0)) ⊂ Ei, provided

a certain condition is satisfied on accumulation points. As

shown, the established results are in particular useful when

the set E consists of isolated points or when the flow on S
is a gradient flows. In these cases, it can be concluded that

Ω(x(0)) lies in the set E. It is important to notice that, if

for example S is an invariant set and if a Lyapunov function

V is know such that V̇ (x) ≤ 0 on M and V̇ (x) = 0 if and

only if x ∈ S, then LaSalle’s invariance principle would not

allow to conclude anything stronger than that any omega-

limit set of a bounded solution lies in S, since S itself is the

largest invariant set. The results in this paper, however, allow

to give a sharper statement on the location of omega-limit

sets, assuming that a positive semidefinite function W on S
(or in a neighborhood O of Ω(x(0)) is known. Hence, the

results in this paper can be considered as a refinement of

LaSalle’s invariance principle.

For future research, one open question is to ask how far

one can extend the present results to the case in which each

connected component Ei is not necessarily contained in a

single level set of W . In general, one cannot expect that the

present results generalize to this case. For a counterexample,

see [4], p.67. Nevertheless, due to the many applications of

LaSalle’s invariance principle, further research in this direc-

tion is interesting and in particular necessary in situations

where the invariance principle is not helpful.
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