
 
 

 

 

  

Abstract—This paper develops a new dynamic processor 
allocation algorithm for multiple receding horizon controllers 
(RHC) executing on a multi-core parallel computer. The 
proposed formulation accounts for bounded model uncertainty, 
sensor noise, and computation delay. A cost function 
appropriate for control of multiple coupled vehicle systems on 
multiple processors is used and an upper bound on the cost as a 
function of the execution horizon is employed. A parallel 
processing adaptation of the SNOPT optimization package is 
used and the efficiency factor of the parallel optimization 
routine is estimated through simulation benchmarks. 
Minimization of the cost function upper bound combined with 
the efficiency factor information results in a combinatorial 
optimization problem for dynamically allocating the optimal 
number of logical processors for each RHC subsystem. The 
new approach is illustrated through simulation of a leader-
follower control system for two 3DOF helicopters running on a 
computer with two quad-core processors. 

I. INTRODUCTION 
ECEDING horizon control (RHC) is a repeated online 
solution of a finite horizon open-loop optimal control 

problem [1]. Application of RHC to control problems with 
multiple subsystems is addressed by applying RHC to the 
individual subsystems while the information regarding the 
state variables, or trajectories, are exchanged between them, 
which leads to a decentralized formulation. In most of the 
decentralized architectures, each subsystem is optimized on 
a single computer. Besides, some decentralized RHC 
approaches optimize a group of subsystems on a single 
computer (see [12] for example). In this case, multiple RHC 
processes must be scheduled in an appropriate manner on a 
single processor and it was discussed in [9], [10], and [11]. 
In those approaches, the execution horizons of all 
subsystems were selected by solving an optimization 
problem.  

However, most new computer designs are adopting a 
multi-core architecture where multiple logical processors 
running in parallel are contained on each physical processor 
package on the computer. This allows an increase in 
processing speed, with significantly improved performance 
than networked computing, provided appropriate algorithms 
are available to take advantage of the additional logical 
processors (cores). It is anticipated by computing processor 
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manufactures that in the near future computers composed of 
hundreds of cores will be available. However, in order to 
benefit from such architectures, a systematic approach for 
performing the computations in parallel and dynamically 
allocating the processors becomes necessary. For the case of 
RHC which is very computationally expensive, the 
performance of RHC can be significantly improved using 
more processors through reduction of the execution horizon 
and the computation delay. In addition, more complex and 
accurate models will be possible as well as examining 
multiple scenarios for more globally optimal results.  

In addition, multi-core architectures are potentially 
superior to distributed/network computing, since there are 
much smaller communication delays/latencies and higher 
bandwidth than even gigabit class networks such as gigabit 
Ethernet. This enables the application of multi-core 
computers to RHC problems that would not be possible on a 
computational network, especially when using serial 
algorithms such as sequential quadratic programming (SQP), 
which are currently used to solve most types of RHC 
optimization problems.  

Some attempts have been performed to apply optimal 
control problems on parallel computers, including the 
approach presented in [3] using dynamic programming and a 
space decomposition scheme in which the global optimal 
control problem is reduced to the optimization of sub-
problems. In [4] and [5], parallel algorithms are presented 
for optimal control problems with long prediction horizon 
using time decomposition techniques. A two-phase parallel 
computing method is presented in [6] to obtain the solution 
of receding horizon controller for constrained nonlinear 
systems.  The approach in this paper is distinguished from 
these existing approaches in that it considers dynamic 
allocation of the processors in response to changing 
uncertainty and disturbances of the RHC subsystems. 

In this paper multiple RHC subsystems are considered on 
a single computer with multiple processors. However, the 
number of processors assigned to each subsystem is 
changing and is determined by a proposed algorithm. The 
new technique determines the execution horizons and 
allocates the appropriate number of processors for all 
subsystems. The execution horizon determination of each 
subsystem and processor allocation while optimizing the 
performance is cast into a constrained optimization problem. 
Online solution of the foresaid optimization problem using 
the updated optimization parameters, results in dynamically 
determining the processor allocation.  
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II. PROBLEM STATEMENT 

A. Decentralized RHC formulation 
Consider N dynamically decoupled subsystems using the 

RHC approach. The subsystems are supposed to have 
connection with each other by exchanging their information. 
The term system used in this paper, refers to all subsystems. 
Furthermore, consider the following nominal equation for 
the ith subsystem:  

( )( ), ( ), , 1,...,i i i it t t i N= =x f x u�  (1) 
which serves as a model for the actual subsystem described 
by: 

( )ˆ ˆ ˆ( ), ( ), ( , , ), 1, ,i i i i i i it t t t i N= + =x f x u g x u� …  (2) 

where ( ) ip
i t ∈ℜx  and ˆ ( ) ip

i t ∈ℜx  are the nominal and 
actual states of the ith subsystem, respectively. The input 
vector ( ) im

i t ∈ℜu  satisfies the constraints ii Ut ∈)(u  
( 0≥∀t ), where iU  is the allowable set of inputs for 
subsystem i. Furthermore, it is assumed that (A1-A3) in [2] 
are also satisfied; that is, if  is twice differentiable, iU  is 
compact and convex, and subsystem (1) has a unique 
solution for a given initial condition.  
Definition 1. The set iA  is called the neighbouring set of 
subsystem i, and consists of any subsystem that its 
information is used in the control of subsystem i.  

The finite horizon cost associated to ith subsystem is 
defined as follows [11]:  

( ) ( )( ), , , , ;i i i i i i i iJ t T V T t t= + +x u x x�  (3) 

( ) ( )( ) ( ) ( )( ); , ; , ;i

i

t T
i i i ij i jt

j A
q t g t t dτ τ τ τ τ

+

∈

⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

∑∫ x u x x  

where ix~  is a vector containing the states of all neighbours 
of the ith subsystem. ijg  is a function which defines the 

interaction between two nodes of the system xi and xj. Ti is 
the optimization horizon of the RHC controller associated to 
ith subsystem. Vi(.) defines the final penalty and ( )ti ;τx  is 
the state vector of ith subsystem at time τ which has been 
sampled at time t. The optimal cost is then given by [8]: 

( ) ( )* * *
( )

, , , , inf , , , ,
i

i i i i i i i i i iJ t T J t T
⋅

=
u

x u x x u x� �  (4) 

The optimized trajectory resulting from (4) is defined as 
* *

, ,( ( ; ), ( ; )) , ( , ]T i T i it t t t Tτ τ τ ∈ +x u . In the closed loop RHC 

the calculated input *
, ( ; )T i tτu  is applied to the actual 

subsystem (2), while ],( itt δτ +∈  and iδ  is called the 
Execution Horizon of subsystem i ( i iTδ < ).  

B. Real-time processor allocation 
Assuming the control of N subsystems is desired on a 

computer with mp identical physical processors, such that 
each physical processor j has mj logical processors. The 
problem under study is processor allocation, which is 

defining the appropriate number of logical processors and its 
computation topology to each subsystem. The term 
computation topology is defined later.  
Definition 2. A logical processor is referred to as the 
smallest independent processing unit. Multiple logical 
processors are used to form physical processors. Multiple 
physical processors can be put together in a computer.  

For RHC control of a single apparatus using a single 
computer, the calculated inputs are applied for a period 
equal to the execution horizon of the receding horizon 
controller. Therefore, in real-time implementation, a 
common way is to define a real-time periodic task [7], with 
its period equal to the execution horizon of that RHC. 
Assume the subsystems described in (1) and (2) are 
connected to a set of multiple computers for feedback 
control, using RHC method, as explained earlier. From a 
computer control point of view, each control system can be 
handled as a periodic task in the real-time programming. 
The period of each periodic task is equal to the execution 
horizon of its related subsystem. Determining these periods 
(or execution horizons) is not trivial. In this paper, a 
systematic approach is presented to calculate these periods. 
Based on that, the appropriate processing units, i.e. logical 
processors, are assigned to each subsystem.  

III. IMPLEMENTATION OF RHC ON MULTI-CORE PROCESSORS 
Assume a single task, which is implementation of a single 

RHC system, needs to be computed on a computer with 
more than one identical multi-core processor. In addition, 
assume the computation time ci is known if this task is 
computed on one of the logical processors only. However, if 
ni identical logical processors are used, the computation time 
should be decreased and the minimum computation time is 

i ic n  in the ideal case. However, depending on the type of 
the task that needs to be parallelized and the method used in 
the parallelization, the actual computation time, i.e. ic′ , is 
more than the ideal case in practice. An efficiency factor, 

iη , is introduced as follows for identical logical processors: 

( )/i i i ic n cη ′=  (5)  

where ( ]0,1∈iη . It should be noted that if all of the in  
logical processors, used in the calculation of the foresaid 
task, are not on a single processor, the efficiency factor may 
vary depending on the distribution of cores on different 
processors, which shall be discussed later.  

In the following, the method used in calculation of RHC 
on parallel processors is explained. Implementing RHC on 
parallel processing units deals with dividing the associated 
nonlinear optimization problem to sub-problems and 
calculating them on different units.  

A. Parallel SQP implementation for a single RHC 
Sequential quadratic programming (SQP) methods are 

among the most effective nonlinear programming algorithms 
for solving differentiable nonlinear optimization problems 
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[13]. A Fortran implementation of a SQP algorithm is 
presented in [13] for parallel processors. Part of this idea 
corresponding to the Jacobian and cost function calculation, 
is employed in this paper to apply RHC on parallel 
processors.  

In order to solve the optimization problem associated with 
RHC and to find the appropriate inputs corresponding to its 
prediction horizon, the SNOPT optimization package [14] is 
used. To formulate the problem, every input is estimated by 
a cubic spline. Thereby, the aim of optimization is finding 
the spline coefficients of all inputs.  

In order to calculate the cost function based on the 
optimization variables, the following steps should be done: 

Step 1- Run the spline routine to find the inputs based on 
the spline coefficients 

Step 2- Find the state trajectories by simulating the 
subsystem from the initial conditions and using the 
calculated inputs in Step 1.  

Step 3- Calculate the cost by using the input and state 
trajectories obtained in the previous steps. It should be noted 
that, this cost calculation includes estimating an integral 
using trapezoidal integration.  

Therefore, the RHC optimization is time consuming due 
to complexity of its cost function calculation. Besides, the 
gradient of the cost cannot normally be calculated 
analytically, and it is typically computed using center finite 
difference approximations.  

A simple yet effective approach for implementing this 
optimization on parallel processors, is to calculate the 
gradient (or Jacobian) and the cost function in parallel. 
However, in this paper only the Jacobian is calculated in 
parallel. Using this approach, a relatively high efficiency 
factor of 0.9 is obtained in the example section when two 
logical processors were used.  
Remark 1. It should be emphasized that the processor 
allocation approach presented in this paper, works with any 
efficient parallel processing optimization method. However, 
the method should be flexible enough to work when the 
number of processors used in each subsystem varies 
dynamically. 

B. Efficiency factor calculation 
As mentioned earlier, the number of logical processors 

used in calculating a particular task affects the efficiency 
factor. However, there are also some other factors that affect 
it and are discussed presently.  

The way the logical processors access memory, can 
dramatically affect the performance of the parallel 
algorithms, and consequently affect the efficiency factor. 
Particularly, by using Non-Uniform Memory Architecture 
(NUMA), separate memory is assigned to each logical 
processor, which avoids the performance hit when some 
processors try to access the same memory. NUMA can be 
considered as a tightly form of cluster computing, and is 
used in the computers performing the simulations in this 

paper. Another important factor is the available cache 
memory (L1 and L2) for each processor.  
Remark 2. The computer used in the example section has 
two quad-core Intel Xeon 5300 series processors. Each 
processor has two dies, each includes two cores. Its L1 
cache has 32KB for instructions and 32KB for data. In 
addition, it has 4MB L2 cache per die that means 8MB L2 
cache for each physical processor [15].  

Based on the foresaid factors, in addition to the number of 
logical processors, the distribution of them on the physical 
processors, also affects the efficiency factor. This is referred 
to as computation topology in this paper.  

As an example for possibility of having deferent 
computation topologies, assume 4 tasks are operated on a 
computer with two quad-core processors, while based on the 
computational need of them, tasks 1 to 4 require 3, 2, 2, and 
1 core, respectively. Two different architectures are 
presented in Fig. (1-a) and Fig. (1-b).  
Remark 3. It should be noted that the efficiency factor may 
still vary even with fixed logical processors and computation 
topology. For example, in calculation of an optimization 
problem, the number of iterations may vary that might cause 
slightly different efficiency factor. However, in this paper, it 
is assumed that the efficiency factor is only depends on the 
number of logical processors and the computation topology, 
as long as the simulations are done on a same computer with 
the same parallel algorithm.  

Task 1

Physical 
Processor 1

Task 3

Task 2 Task 4
Physical 

Processor 2  
(a) 

Task 2Task 1

Task 4 Task 3
Physical 

Processor 2
Physical 

Processor 1  
(b) 

Fig. 1. Different architectures assigned to the set of 4 tasks in two quad-core 
processors. In (b) each processor has 2 tasks and there is no need to have 

data exchange between processors. 
Based on the foresaid discussions and the relation 

presented in (5), the efficiency factor, regarding the 
calculation of a single RHC, can be obtained using the 
following procedure: 

Step 1- Perform the simulation using only a single logical 
processor and obtain the computation time ci. 

Step 2- Perform the same simulation using more than one 
processor and obtain ′ic  for different number of logical 
processors and every possible computation topologies. 

Step 3- Find the efficiency factor for all cases using (5) 
and store the results in a lookup table. 
Remark 4. The foresaid procedure should be implemented 
several times using different initial conditions and different 
possible problem parameters, and the final efficiency factor 
is the average of them. This task is done offline and the 
values of efficiency factors are used later in the dynamic 
processor allocation algorithm. 
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IV. DYNAMIC PROCESSOR ALLOCATION ALGORITHM  
For the proposed approach, the execution horizons of all 

subsystems should be defined such that the overall 
performance of the system is maximized. However, the 
execution horizon is dependent on the number of logical 
processors assigned to it, the efficiency factor, and the 
computation time of the task that will be discussed later in 
this section. Similar to the approach presented in [11], in 
order to evaluate the performance of the system, the 
following cost function is proposed as the cost of the closed 
loop system from time t to t+Ta, where Ta is the period that 
calculated execution horizons would be applied to: 

( ) ( )( )
( ) ( )( )
*

,

*
1 ,

ˆ , ;
ˆ

ˆ , ;
a

i

i
i i T i kN t T

a jt
i ij i T j k

j A

q t
J d

g t

τ τ
τ

τ τ

+

=
∈

⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟=
⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∫ ∑

x u

x x
 (6) 

where i
i
k ktt δ)1( −+=  and ( )*

, ; i
T i ktτu  is the optimal input 

applied to subsystem i. In addition, the following is 
presented as the estimation of âJ  [11]: 

( ) ( )( )
( ) ( )( )
*

, ,

*
, ,1

ˆ , ;

ˆ , ;
i i

i

i

i i T i s iN ta
a t ij i T j s jii

j A

q t
T

J d
g t

δ
τ τ

τ
τ τδ

+

=
∈

⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟
= ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∫ ∑

x u

x x
 (7) 

where it t≤  and ,s it t> . ti represents the time that new 
inputs are applied to subsystem i based on the sampled data 
at ,s it and t indicates the start time of dynamic allocator. In 
the following, an upper bound on (7) is presented and it 
shall be used to find the optimal number of logical 
processors for each subsystem.  

In the Lemma 4 of [11], by considering some common 
assumptions, the following upper bound was presented on 
the aJ : 

( ) ( )( )
( ) ( )( )

( ) ( )( )
( ) ( )( )

1

* *
, , , ,

(1) (2)1

* *
, , , ,

(1) (2)1

( )

; , ;

; , ;

i i

i

i i

i

i

N

a i i
i

t
N i T i s i T i s ita

ii i i ii i

t
N ij T i s i T j s jta

gii j A i iij i i

J G

q t t dT

P B B

g t t dT

L B B

δ

δ

δ

τ τ τ

δ δ δ

τ τ τ

δ δ δ

=

+

=

+

= ∈

≤ =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟+ +

⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

+ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟+ +

⎝ ⎠⎝ ⎠

∑

∫∑

∫∑ ∑

x u

x x

 (8) 

where: 

( ) ( )

( )
( )

( )

, ,
, ,

, ,

2
2,(1)

, , ,

,(2)
2

,

1 1

x i i x i i
x i i x i i

p
x i i i x i i

L L
L Ls i i

i i i
x i x i x i

L Li u i
i i

x i

b b e eB e e
L L L

L
B e e

L

δ δ
δ δ

δ δ δ

δ δ

ε
δ

−

⎛ ⎞−
= − + −⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 (9) 

In which, ,s ib  is the state measurement error bound, ib  is the 

bound on (.,.,.)ig  in (2), ,x iL  and ,u iL  are the Lipschitz 

constants of ( , , )i i i tf x u  with respect to ix  and iu , 
respectively. iε  is a constant scalar defined in Corollary 1 of 
[11], which is used to bound the mismatch between the 
inputs in two subsequent calculations. p

iδ  is the last 
prediction horizon of subsystem i, while iδ  is its current 
value.  

In the case of parallel processing, the choice of execution 
horizon is dependent on the number of logical processors, 
the efficiency factor and the computation time of the task on 
a single processor, as mentioned earlier. Assuming the 
computation time (or worst case computation time) is 
known, since the efficiency factor is dependent on the 
number of logical processors and the computation topology, 
the processor allocation problem cast into finding the 
optimal number of processors and the computation topology 
simultaneously. This results in a complex optimization 
problem.  

However, a suboptimal solution can be obtained, by 
decoupling the problem of calculating the number of 
processors (ni) from computation topology assignment. This 
way, by considering efficiency factor, only as a function of 
ni, which referred to as iη′ , ni can be defined. Knowing ni, 
the computation topology, and iη  as a result, can be 
assigned. Finally, δi can be calculated based on the 
calculated iη  and ni values. This procedure can be explained 
in the following: 
Algorithm 1:  

Step 1- Find the efficiency factor as a function of number 

of cores only ( iη ′ ). This task is done offline and the results 
are stored in a lookup table. 

Step 2- Find iδ  and associated number of logical 
processors ( in ) by solving the processor allocation 
optimization problem presented in the following lemma 
(Lemma 1) 

Step 3- Find the optimum computation topology based on 
the in  values. This task is done in Lemma 2. Then calculate 
the actual efficiency factors, iη , based on ni and assigned 
computation topology.  

Step 4- Modify iδ  (increase some of them) based on the 
corrected values of iη . 

Lemma 1:  
Suppose the assumptions lead to the upper bound on the 

aJ  presented in (8) are all valid. Then the following 
optimization problem can be used to sub-optimally 
determine ni as presented in the Step 2 of Algorithm 1.  

( )1

1 1

min /

Subject to: , 1

i

p

N
i i i iin

N m
i i ii i

G c n

n m n

η
=

= =

′

= ≥

∑

∑ ∑
 (10) 

where (.)iG  is defined in (8) and iδ  is replaced by its 
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equivalent ( )/i i ic nη′ . In addition, ci is the maximum 

computation time of ith subsystem on a single core and iη′  in 
a function of in .  
Proof:  

( )i iG δ  presents the upper bound on the performance index 
of the overall system and minimization of that upper bound 
should result in minimization of overall system cost, as 
discussed in [11]. Based on the definition of iη′ , the worst 
case computation time on ni logical processors is 

( )/i i i ic c nη′ ′= . Moreover, the sampling period of ith 

subsystem ( iδ ) should be more than or equal to ic′  in order 
to prevent computational overload conditions. In addition, 
the first constraint ensures that all of the available logical 
processors are used, while it is assumed that at least one 
processor is assigned to each subsystem by the use of second 
constraint.  
Remark 5. The presented problem in (10) is a combinatorial 
optimization problem because ni is a positive integer. In the 
example section, a simple grid search method is used to 
solve this optimization problem.  

A. Computation Topology Assignment 
Assume the number of logical processors required for 

each RHC subsystem is determined. Based on that, the 
optimal computation topology should be found, which is 
discussed in the following lemma.  

Lemma 2: Assume pm  indicates the total number of 

physical processors, such that each physical processor j has 
jm  logical processors; ni is the number of logical processors 

for subsystem i, and the total subsystem number is N. xij is 
defined as the number of logical processors assigned to 
subsystem i from physical processor j. In addition, assume 
that the communication between every two logical 
processors takes less time if they are from a single physical 
processor compared to the case that they are from different 
physical processors. The following maximization problem 
can optimally define xij.  

2
1 1

max p

ij

N m
iji jx

x
= =∑ ∑  (11) 

Subject to: 

1 1
1: , 2 :

3 : 0, ,

pm N

ij i ij j
j i

ij p

C x n C x m

C x i N j m
= =

= ≤

≥ ≤ ≤

∑ ∑  (12) 

Proof:  
Since logical processors need to have communication 

with each other for every subsystem calculation, it is desired 
to select them from a single physical processor, if possible. 
In other way, the communication between every two logical 
processors placed on different physical processors should be 
minimized, which can be presented as minimizing the 
following relation: 

1

1 1 1

p pm mN

ij ik
i j k j

x x
−

= = = +
∑ ∑ ∑  (13) 

Using the constraint C1, the following equality is valid: 

( )
1

22

1 1 1 1 1 1
2

p p pm m mN N N

ij i ij ik
i j i i j k j

x n x x
−

= = = = = = +

= −∑∑ ∑ ∑ ∑ ∑  (14) 

Minimization of (13) results in maximization of the left 
hand side of (14). Moreover, constraint C1 ensures that the 
number of logical processors is assigned correctly while C2 
indicates that each physical processor is not assigned more 
than its available logical processors.   

V. SIMULATION RESULTS 
The proposed approach is applied in simulation to the 

processor allocation of two miniature 3DOF helicopters 
using RHC scheme, on a computer with 2 quad-core 
processors. The vehicle dynamics are selected according to 
[16]. Subsystem 1 is following the trajectory (leader) while 
subsystem 2, follower, tries to maintain a certain relative 
position with respect to the leader.  

Based on the method in Section  III.A, one of the logical 
processors is assigned for managing the optimization 
process and the remaining seven processors are used in the 
parallel processing of the RHC calculations for the two 
helicopters.  

The proposed dynamic processor allocation algorithm, 
which is presented in Algorithm 1, is compared to the result 
of the case that 3 and 4 logical processors are assigned to the 
leader and the follower, respectively. The simulations are 
performed using Microsoft Visual C++ 2008 and Windows 
XP. Besides, the uncertainty is added to both subsystems 
using random variables, such that elements of uncertainty 
vector gi(.,.,.), presented in (2), are selected randomly, while 

i ib≤g , and bi is the uncertainty upper bound of subsystem 
i. bi is changing based on the pattern shown in Fig. 2. In 
addition, Ta is selected as 2.0 seconds.  
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subystem 1
subystem 2

 
Fig. 2. Changing in the uncertainty upper bound of different subsystems 
The paths followed by two subsystems in both cases are 

presented in Fig. 3 and Fig. 4. Dynamic PA refers to 
dynamic processor allocation, while Static PA is the other 
case of having fixed processors for each subsystem. As 
illustrated in these two figures, in Dynamic RA both 
subsystems have better performance than Static RA.  

It should be noted that the computation topology 
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assignment is trivial for this example, since there are only 
two subsystems and two physical processors.  
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Fig. 3. Paths followed by both subsystems in Dynamic RA case using the 

proposed algorithm 
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Fig. 4. Paths followed by both subsystems in Static RA case 

In addition, the change of processor assignment in the 
Dynamic RA case is shown in Fig. 5. It should be noted that 
at the beginning of the Dynamic RA case, the processors are 
assigned similar to the Static RA case and after 2 seconds, 
dynamic allocation of processors starts in this example.  
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Fig. 5. Number of processors allocated to each subsystem vs. time in the 

Dynamic RA case 

VI. CONCLUSIONS 
In this paper, a new algorithm for the dynamic processor 

allocation of multiple receding horizon controllers running 
on a multi-core computer is developed. In the proposed 
approach, an execution horizon dependent cost function was 
used while it accounts for bounded model uncertainty, 
sensor noise, computation delay, and coupling in the 
controller cost index. A parallel adaptation of SNOPT 
optimization package is used by calculating the Jacobian in 

parallel. By defining the efficiency factor depending on the 
number of logical processors used to implement each RHC, 
two combinatorial optimization problems are presented. The 
first optimization problem, defines the optimal number of 
logical processors to each RHC, and the second problem 
assigns the optimal computation topology. Finally, this new 
approach is illustrated through simulation of two 3DOF 
helicopters. 
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