

Abstract—This paper develops a new dynamic processor
allocation algorithm for multiple receding horizon controllers
(RHC) executing on a multi-core parallel computer. The
proposed formulation accounts for bounded model uncertainty,
sensor noise, and computation delay. A cost function
appropriate for control of multiple coupled vehicle systems on
multiple processors is used and an upper bound on the cost as a
function of the execution horizon is employed. A parallel
processing adaptation of the SNOPT optimization package is
used and the efficiency factor of the parallel optimization
routine is estimated through simulation benchmarks.
Minimization of the cost function upper bound combined with
the efficiency factor information results in a combinatorial
optimization problem for dynamically allocating the optimal
number of logical processors for each RHC subsystem. The
new approach is illustrated through simulation of a leader-
follower control system for two 3DOF helicopters running on a
computer with two quad-core processors.

I. INTRODUCTION
ECEDING horizon control (RHC) is a repeated online
solution of a finite horizon open-loop optimal control

problem [1]. Application of RHC to control problems with
multiple subsystems is addressed by applying RHC to the
individual subsystems while the information regarding the
state variables, or trajectories, are exchanged between them,
which leads to a decentralized formulation. In most of the
decentralized architectures, each subsystem is optimized on
a single computer. Besides, some decentralized RHC
approaches optimize a group of subsystems on a single
computer (see [12] for example). In this case, multiple RHC
processes must be scheduled in an appropriate manner on a
single processor and it was discussed in [9], [10], and [11].
In those approaches, the execution horizons of all
subsystems were selected by solving an optimization
problem.

However, most new computer designs are adopting a
multi-core architecture where multiple logical processors
running in parallel are contained on each physical processor
package on the computer. This allows an increase in
processing speed, with significantly improved performance
than networked computing, provided appropriate algorithms
are available to take advantage of the additional logical
processors (cores). It is anticipated by computing processor

A. Azimi and B. W. Gordon are with Department of Mechanical and

Industrial Engineering, Concordia University, 1455 de Maisonneuve Blvd.
West, Montreal, Quebec, H3G 1M8, CANADA (phone: (514) 848-2424
ext. 7058; fax: (514) 848-3175; (e-mail: a_azi@encs.concordia.ca,
bwgordon@encs.concordia.ca).

manufactures that in the near future computers composed of
hundreds of cores will be available. However, in order to
benefit from such architectures, a systematic approach for
performing the computations in parallel and dynamically
allocating the processors becomes necessary. For the case of
RHC which is very computationally expensive, the
performance of RHC can be significantly improved using
more processors through reduction of the execution horizon
and the computation delay. In addition, more complex and
accurate models will be possible as well as examining
multiple scenarios for more globally optimal results.

In addition, multi-core architectures are potentially
superior to distributed/network computing, since there are
much smaller communication delays/latencies and higher
bandwidth than even gigabit class networks such as gigabit
Ethernet. This enables the application of multi-core
computers to RHC problems that would not be possible on a
computational network, especially when using serial
algorithms such as sequential quadratic programming (SQP),
which are currently used to solve most types of RHC
optimization problems.

Some attempts have been performed to apply optimal
control problems on parallel computers, including the
approach presented in [3] using dynamic programming and a
space decomposition scheme in which the global optimal
control problem is reduced to the optimization of sub-
problems. In [4] and [5], parallel algorithms are presented
for optimal control problems with long prediction horizon
using time decomposition techniques. A two-phase parallel
computing method is presented in [6] to obtain the solution
of receding horizon controller for constrained nonlinear
systems. The approach in this paper is distinguished from
these existing approaches in that it considers dynamic
allocation of the processors in response to changing
uncertainty and disturbances of the RHC subsystems.

In this paper multiple RHC subsystems are considered on
a single computer with multiple processors. However, the
number of processors assigned to each subsystem is
changing and is determined by a proposed algorithm. The
new technique determines the execution horizons and
allocates the appropriate number of processors for all
subsystems. The execution horizon determination of each
subsystem and processor allocation while optimizing the
performance is cast into a constrained optimization problem.
Online solution of the foresaid optimization problem using
the updated optimization parameters, results in dynamically
determining the processor allocation.

Dynamic Processor Allocation for Multiple RHC Systems in
Multi-Core Computing Environments

Ali Azimi and Brandon W. Gordon

R

2009 American Control Conference
Hyatt Regency Riverfront, St. Louis, MO, USA
June 10-12, 2009

FrB10.1

978-1-4244-4524-0/09/$25.00 ©2009 AACC 4921

II. PROBLEM STATEMENT

A. Decentralized RHC formulation
Consider N dynamically decoupled subsystems using the

RHC approach. The subsystems are supposed to have
connection with each other by exchanging their information.
The term system used in this paper, refers to all subsystems.
Furthermore, consider the following nominal equation for
the ith subsystem:

()(), (), , 1,...,i i i it t t i N= =x f x u� (1)
which serves as a model for the actual subsystem described
by:

()ˆ ˆ ˆ(), (), (, ,), 1, ,i i i i i i it t t t i N= + =x f x u g x u� … (2)

where () ip
i t ∈ℜx and ˆ () ip

i t ∈ℜx are the nominal and
actual states of the ith subsystem, respectively. The input
vector () im

i t ∈ℜu satisfies the constraints ii Ut ∈)(u
(0≥∀t), where iU is the allowable set of inputs for
subsystem i. Furthermore, it is assumed that (A1-A3) in [2]
are also satisfied; that is, if is twice differentiable, iU is
compact and convex, and subsystem (1) has a unique
solution for a given initial condition.
Definition 1. The set iA is called the neighbouring set of
subsystem i, and consists of any subsystem that its
information is used in the control of subsystem i.

The finite horizon cost associated to ith subsystem is
defined as follows [11]:

() ()(), , , , ;i i i i i i i iJ t T V T t t= + +x u x x� (3)

() ()() () ()(); , ; , ;i

i

t T
i i i ij i jt

j A
q t g t t dτ τ τ τ τ

+

∈

⎛ ⎞
⎜ ⎟+
⎜ ⎟
⎝ ⎠

∑∫ x u x x

where ix~ is a vector containing the states of all neighbours
of the ith subsystem. ijg is a function which defines the

interaction between two nodes of the system xi and xj. Ti is
the optimization horizon of the RHC controller associated to
ith subsystem. Vi(.) defines the final penalty and ()ti ;τx is
the state vector of ith subsystem at time τ which has been
sampled at time t. The optimal cost is then given by [8]:

() ()* * *
()

, , , , inf , , , ,
i

i i i i i i i i i iJ t T J t T
⋅

=
u

x u x x u x� � (4)

The optimized trajectory resulting from (4) is defined as
* *

, ,((;), (;)) , (,]T i T i it t t t Tτ τ τ ∈ +x u . In the closed loop RHC

the calculated input *
, (;)T i tτu is applied to the actual

subsystem (2), while],(itt δτ +∈ and iδ is called the
Execution Horizon of subsystem i (i iTδ <).

B. Real-time processor allocation
Assuming the control of N subsystems is desired on a

computer with mp identical physical processors, such that
each physical processor j has mj logical processors. The
problem under study is processor allocation, which is

defining the appropriate number of logical processors and its
computation topology to each subsystem. The term
computation topology is defined later.
Definition 2. A logical processor is referred to as the
smallest independent processing unit. Multiple logical
processors are used to form physical processors. Multiple
physical processors can be put together in a computer.

For RHC control of a single apparatus using a single
computer, the calculated inputs are applied for a period
equal to the execution horizon of the receding horizon
controller. Therefore, in real-time implementation, a
common way is to define a real-time periodic task [7], with
its period equal to the execution horizon of that RHC.
Assume the subsystems described in (1) and (2) are
connected to a set of multiple computers for feedback
control, using RHC method, as explained earlier. From a
computer control point of view, each control system can be
handled as a periodic task in the real-time programming.
The period of each periodic task is equal to the execution
horizon of its related subsystem. Determining these periods
(or execution horizons) is not trivial. In this paper, a
systematic approach is presented to calculate these periods.
Based on that, the appropriate processing units, i.e. logical
processors, are assigned to each subsystem.

III. IMPLEMENTATION OF RHC ON MULTI-CORE PROCESSORS
Assume a single task, which is implementation of a single

RHC system, needs to be computed on a computer with
more than one identical multi-core processor. In addition,
assume the computation time ci is known if this task is
computed on one of the logical processors only. However, if
ni identical logical processors are used, the computation time
should be decreased and the minimum computation time is

i ic n in the ideal case. However, depending on the type of
the task that needs to be parallelized and the method used in
the parallelization, the actual computation time, i.e. ic′ , is
more than the ideal case in practice. An efficiency factor,

iη , is introduced as follows for identical logical processors:

()/i i i ic n cη ′= (5)

where (]0,1∈iη . It should be noted that if all of the in
logical processors, used in the calculation of the foresaid
task, are not on a single processor, the efficiency factor may
vary depending on the distribution of cores on different
processors, which shall be discussed later.

In the following, the method used in calculation of RHC
on parallel processors is explained. Implementing RHC on
parallel processing units deals with dividing the associated
nonlinear optimization problem to sub-problems and
calculating them on different units.

A. Parallel SQP implementation for a single RHC
Sequential quadratic programming (SQP) methods are

among the most effective nonlinear programming algorithms
for solving differentiable nonlinear optimization problems

4922

[13]. A Fortran implementation of a SQP algorithm is
presented in [13] for parallel processors. Part of this idea
corresponding to the Jacobian and cost function calculation,
is employed in this paper to apply RHC on parallel
processors.

In order to solve the optimization problem associated with
RHC and to find the appropriate inputs corresponding to its
prediction horizon, the SNOPT optimization package [14] is
used. To formulate the problem, every input is estimated by
a cubic spline. Thereby, the aim of optimization is finding
the spline coefficients of all inputs.

In order to calculate the cost function based on the
optimization variables, the following steps should be done:

Step 1- Run the spline routine to find the inputs based on
the spline coefficients

Step 2- Find the state trajectories by simulating the
subsystem from the initial conditions and using the
calculated inputs in Step 1.

Step 3- Calculate the cost by using the input and state
trajectories obtained in the previous steps. It should be noted
that, this cost calculation includes estimating an integral
using trapezoidal integration.

Therefore, the RHC optimization is time consuming due
to complexity of its cost function calculation. Besides, the
gradient of the cost cannot normally be calculated
analytically, and it is typically computed using center finite
difference approximations.

A simple yet effective approach for implementing this
optimization on parallel processors, is to calculate the
gradient (or Jacobian) and the cost function in parallel.
However, in this paper only the Jacobian is calculated in
parallel. Using this approach, a relatively high efficiency
factor of 0.9 is obtained in the example section when two
logical processors were used.
Remark 1. It should be emphasized that the processor
allocation approach presented in this paper, works with any
efficient parallel processing optimization method. However,
the method should be flexible enough to work when the
number of processors used in each subsystem varies
dynamically.

B. Efficiency factor calculation
As mentioned earlier, the number of logical processors

used in calculating a particular task affects the efficiency
factor. However, there are also some other factors that affect
it and are discussed presently.

The way the logical processors access memory, can
dramatically affect the performance of the parallel
algorithms, and consequently affect the efficiency factor.
Particularly, by using Non-Uniform Memory Architecture
(NUMA), separate memory is assigned to each logical
processor, which avoids the performance hit when some
processors try to access the same memory. NUMA can be
considered as a tightly form of cluster computing, and is
used in the computers performing the simulations in this

paper. Another important factor is the available cache
memory (L1 and L2) for each processor.
Remark 2. The computer used in the example section has
two quad-core Intel Xeon 5300 series processors. Each
processor has two dies, each includes two cores. Its L1
cache has 32KB for instructions and 32KB for data. In
addition, it has 4MB L2 cache per die that means 8MB L2
cache for each physical processor [15].

Based on the foresaid factors, in addition to the number of
logical processors, the distribution of them on the physical
processors, also affects the efficiency factor. This is referred
to as computation topology in this paper.

As an example for possibility of having deferent
computation topologies, assume 4 tasks are operated on a
computer with two quad-core processors, while based on the
computational need of them, tasks 1 to 4 require 3, 2, 2, and
1 core, respectively. Two different architectures are
presented in Fig. (1-a) and Fig. (1-b).
Remark 3. It should be noted that the efficiency factor may
still vary even with fixed logical processors and computation
topology. For example, in calculation of an optimization
problem, the number of iterations may vary that might cause
slightly different efficiency factor. However, in this paper, it
is assumed that the efficiency factor is only depends on the
number of logical processors and the computation topology,
as long as the simulations are done on a same computer with
the same parallel algorithm.

Task 1

Physical
Processor 1

Task 3

Task 2 Task 4
Physical

Processor 2
(a)

Task 2Task 1

Task 4 Task 3
Physical

Processor 2
Physical

Processor 1
(b)

Fig. 1. Different architectures assigned to the set of 4 tasks in two quad-core
processors. In (b) each processor has 2 tasks and there is no need to have

data exchange between processors.
Based on the foresaid discussions and the relation

presented in (5), the efficiency factor, regarding the
calculation of a single RHC, can be obtained using the
following procedure:

Step 1- Perform the simulation using only a single logical
processor and obtain the computation time ci.

Step 2- Perform the same simulation using more than one
processor and obtain ′ic for different number of logical
processors and every possible computation topologies.

Step 3- Find the efficiency factor for all cases using (5)
and store the results in a lookup table.
Remark 4. The foresaid procedure should be implemented
several times using different initial conditions and different
possible problem parameters, and the final efficiency factor
is the average of them. This task is done offline and the
values of efficiency factors are used later in the dynamic
processor allocation algorithm.

4923

IV. DYNAMIC PROCESSOR ALLOCATION ALGORITHM
For the proposed approach, the execution horizons of all

subsystems should be defined such that the overall
performance of the system is maximized. However, the
execution horizon is dependent on the number of logical
processors assigned to it, the efficiency factor, and the
computation time of the task that will be discussed later in
this section. Similar to the approach presented in [11], in
order to evaluate the performance of the system, the
following cost function is proposed as the cost of the closed
loop system from time t to t+Ta, where Ta is the period that
calculated execution horizons would be applied to:

() ()()
() ()()
*

,

*
1 ,

ˆ , ;
ˆ

ˆ , ;
a

i

i
i i T i kN t T

a jt
i ij i T j k

j A

q t
J d

g t

τ τ
τ

τ τ

+

=
∈

⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟=
⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∫ ∑

x u

x x
 (6)

where i
i
k ktt δ)1(−+= and ()*

, ; i
T i ktτu is the optimal input

applied to subsystem i. In addition, the following is
presented as the estimation of âJ [11]:

() ()()
() ()()
*

, ,

*
, ,1

ˆ , ;

ˆ , ;
i i

i

i

i i T i s iN ta
a t ij i T j s jii

j A

q t
T

J d
g t

δ
τ τ

τ
τ τδ

+

=
∈

⎛ ⎞⎛ ⎞+⎜ ⎟⎜ ⎟
= ⎜ ⎟⎜ ⎟

⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

∑ ∫ ∑

x u

x x
 (7)

where it t≤ and ,s it t> . ti represents the time that new
inputs are applied to subsystem i based on the sampled data
at ,s it and t indicates the start time of dynamic allocator. In
the following, an upper bound on (7) is presented and it
shall be used to find the optimal number of logical
processors for each subsystem.

In the Lemma 4 of [11], by considering some common
assumptions, the following upper bound was presented on
the aJ :

() ()()
() ()()

() ()()
() ()()

1

* *
, , , ,

(1) (2)1

* *
, , , ,

(1) (2)1

()

; , ;

; , ;

i i

i

i i

i

i

N

a i i
i

t
N i T i s i T i s ita

ii i i ii i

t
N ij T i s i T j s jta

gii j A i iij i i

J G

q t t dT

P B B

g t t dT

L B B

δ

δ

δ

τ τ τ

δ δ δ

τ τ τ

δ δ δ

=

+

=

+

= ∈

≤ =

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟+ +

⎝ ⎠⎝ ⎠
⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟

+ ⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟+ +

⎝ ⎠⎝ ⎠

∑

∫∑

∫∑ ∑

x u

x x

 (8)

where:

() ()

()
()

()

, ,
, ,

, ,

2
2,(1)

, , ,

,(2)
2

,

1 1

x i i x i i
x i i x i i

p
x i i i x i i

L L
L Ls i i

i i i
x i x i x i

L Li u i
i i

x i

b b e eB e e
L L L

L
B e e

L

δ δ
δ δ

δ δ δ

δ δ

ε
δ

−

⎛ ⎞−
= − + −⎜ ⎟⎜ ⎟

⎝ ⎠

⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 (9)

In which, ,s ib is the state measurement error bound, ib is the

bound on (.,.,.)ig in (2), ,x iL and ,u iL are the Lipschitz

constants of (, ,)i i i tf x u with respect to ix and iu ,
respectively. iε is a constant scalar defined in Corollary 1 of
[11], which is used to bound the mismatch between the
inputs in two subsequent calculations. p

iδ is the last
prediction horizon of subsystem i, while iδ is its current
value.

In the case of parallel processing, the choice of execution
horizon is dependent on the number of logical processors,
the efficiency factor and the computation time of the task on
a single processor, as mentioned earlier. Assuming the
computation time (or worst case computation time) is
known, since the efficiency factor is dependent on the
number of logical processors and the computation topology,
the processor allocation problem cast into finding the
optimal number of processors and the computation topology
simultaneously. This results in a complex optimization
problem.

However, a suboptimal solution can be obtained, by
decoupling the problem of calculating the number of
processors (ni) from computation topology assignment. This
way, by considering efficiency factor, only as a function of
ni, which referred to as iη′ , ni can be defined. Knowing ni,
the computation topology, and iη as a result, can be
assigned. Finally, δi can be calculated based on the
calculated iη and ni values. This procedure can be explained
in the following:
Algorithm 1:

Step 1- Find the efficiency factor as a function of number

of cores only (iη ′). This task is done offline and the results
are stored in a lookup table.

Step 2- Find iδ and associated number of logical
processors (in) by solving the processor allocation
optimization problem presented in the following lemma
(Lemma 1)

Step 3- Find the optimum computation topology based on
the in values. This task is done in Lemma 2. Then calculate
the actual efficiency factors, iη , based on ni and assigned
computation topology.

Step 4- Modify iδ (increase some of them) based on the
corrected values of iη .

Lemma 1:
Suppose the assumptions lead to the upper bound on the

aJ presented in (8) are all valid. Then the following
optimization problem can be used to sub-optimally
determine ni as presented in the Step 2 of Algorithm 1.

()1

1 1

min /

Subject to: , 1

i

p

N
i i i iin

N m
i i ii i

G c n

n m n

η
=

= =

′

= ≥

∑

∑ ∑
 (10)

where (.)iG is defined in (8) and iδ is replaced by its

4924

equivalent ()/i i ic nη′ . In addition, ci is the maximum

computation time of ith subsystem on a single core and iη′ in
a function of in .
Proof:

()i iG δ presents the upper bound on the performance index
of the overall system and minimization of that upper bound
should result in minimization of overall system cost, as
discussed in [11]. Based on the definition of iη′ , the worst
case computation time on ni logical processors is

()/i i i ic c nη′ ′= . Moreover, the sampling period of ith

subsystem (iδ) should be more than or equal to ic′ in order
to prevent computational overload conditions. In addition,
the first constraint ensures that all of the available logical
processors are used, while it is assumed that at least one
processor is assigned to each subsystem by the use of second
constraint.
Remark 5. The presented problem in (10) is a combinatorial
optimization problem because ni is a positive integer. In the
example section, a simple grid search method is used to
solve this optimization problem.

A. Computation Topology Assignment
Assume the number of logical processors required for

each RHC subsystem is determined. Based on that, the
optimal computation topology should be found, which is
discussed in the following lemma.

Lemma 2: Assume pm indicates the total number of

physical processors, such that each physical processor j has
jm logical processors; ni is the number of logical processors

for subsystem i, and the total subsystem number is N. xij is
defined as the number of logical processors assigned to
subsystem i from physical processor j. In addition, assume
that the communication between every two logical
processors takes less time if they are from a single physical
processor compared to the case that they are from different
physical processors. The following maximization problem
can optimally define xij.

2
1 1

max p

ij

N m
iji jx

x
= =∑ ∑ (11)

Subject to:

1 1
1: , 2 :

3 : 0, ,

pm N

ij i ij j
j i

ij p

C x n C x m

C x i N j m
= =

= ≤

≥ ≤ ≤

∑ ∑ (12)

Proof:
Since logical processors need to have communication

with each other for every subsystem calculation, it is desired
to select them from a single physical processor, if possible.
In other way, the communication between every two logical
processors placed on different physical processors should be
minimized, which can be presented as minimizing the
following relation:

1

1 1 1

p pm mN

ij ik
i j k j

x x
−

= = = +
∑ ∑ ∑ (13)

Using the constraint C1, the following equality is valid:

()
1

22

1 1 1 1 1 1
2

p p pm m mN N N

ij i ij ik
i j i i j k j

x n x x
−

= = = = = = +

= −∑∑ ∑ ∑ ∑ ∑ (14)

Minimization of (13) results in maximization of the left
hand side of (14). Moreover, constraint C1 ensures that the
number of logical processors is assigned correctly while C2
indicates that each physical processor is not assigned more
than its available logical processors.

V. SIMULATION RESULTS
The proposed approach is applied in simulation to the

processor allocation of two miniature 3DOF helicopters
using RHC scheme, on a computer with 2 quad-core
processors. The vehicle dynamics are selected according to
[16]. Subsystem 1 is following the trajectory (leader) while
subsystem 2, follower, tries to maintain a certain relative
position with respect to the leader.

Based on the method in Section III.A, one of the logical
processors is assigned for managing the optimization
process and the remaining seven processors are used in the
parallel processing of the RHC calculations for the two
helicopters.

The proposed dynamic processor allocation algorithm,
which is presented in Algorithm 1, is compared to the result
of the case that 3 and 4 logical processors are assigned to the
leader and the follower, respectively. The simulations are
performed using Microsoft Visual C++ 2008 and Windows
XP. Besides, the uncertainty is added to both subsystems
using random variables, such that elements of uncertainty
vector gi(.,.,.), presented in (2), are selected randomly, while

i ib≤g , and bi is the uncertainty upper bound of subsystem
i. bi is changing based on the pattern shown in Fig. 2. In
addition, Ta is selected as 2.0 seconds.

0 5 10 15 20 25 30
-0.1

0

0.1

0.2

0.3

0.4

time (s)

M
ax

im
um

 u
nc

er
ta

in
ty

subystem 1
subystem 2

Fig. 2. Changing in the uncertainty upper bound of different subsystems
The paths followed by two subsystems in both cases are

presented in Fig. 3 and Fig. 4. Dynamic PA refers to
dynamic processor allocation, while Static PA is the other
case of having fixed processors for each subsystem. As
illustrated in these two figures, in Dynamic RA both
subsystems have better performance than Static RA.

It should be noted that the computation topology

4925

assignment is trivial for this example, since there are only
two subsystems and two physical processors.

-5 0 5 10 15 20 25 30
-8

-6

-4

-2

0

2

4

xc (m)

y c (m
)

subsystem 1
subsystem 2
ref. trajectory

Fig. 3. Paths followed by both subsystems in Dynamic RA case using the

proposed algorithm

-5 0 5 10 15 20 25 30
-8

-6

-4

-2

0

2

4

xc (m)

y c (m
)

subsystem 1
subsystem 2
ref. trajectory

Fig. 4. Paths followed by both subsystems in Static RA case

In addition, the change of processor assignment in the
Dynamic RA case is shown in Fig. 5. It should be noted that
at the beginning of the Dynamic RA case, the processors are
assigned similar to the Static RA case and after 2 seconds,
dynamic allocation of processors starts in this example.

0 5 10 15 20 25 30
0

1

2

3

4

5

6

7

8

time (s)

N
um

be
r o

f P
ro

ce
ss

or
s

Subsystem 1
Subsystem 2

Fig. 5. Number of processors allocated to each subsystem vs. time in the

Dynamic RA case

VI. CONCLUSIONS
In this paper, a new algorithm for the dynamic processor

allocation of multiple receding horizon controllers running
on a multi-core computer is developed. In the proposed
approach, an execution horizon dependent cost function was
used while it accounts for bounded model uncertainty,
sensor noise, computation delay, and coupling in the
controller cost index. A parallel adaptation of SNOPT
optimization package is used by calculating the Jacobian in

parallel. By defining the efficiency factor depending on the
number of logical processors used to implement each RHC,
two combinatorial optimization problems are presented. The
first optimization problem, defines the optimal number of
logical processors to each RHC, and the second problem
assigns the optimal computation topology. Finally, this new
approach is illustrated through simulation of two 3DOF
helicopters.

ACKNOWLEDGMENT
The authors would like to thank the Natural Sciences and

Engineering Research Council of Canada (NSERC) for
funding this project.

REFERENCES
[1] D. Q. Mayne, J. B. Rawlings, C. V. Rao, P. O. M. Scokaert,

“Constrained model predictive control: Stability and optimality”,
Automatica, 36, 2000, pp. 789-814.

[2] H. Chen, F. Allgower, “A quasi-infinite horizon nonlinear model
predictive control scheme with guaranteed stability”, Automatica, 34,
1998, pp.1205-1217.

[3] C. Scheel, B. McInnis, “Parallel processing of optimal control problems
by dynamic programming”, Information Sciences, 25, 1981, pp. 85-
114.

[4] T.S. Chang, X.X. Jin, P.B. Luh, X. Miao, “Large scale convex optimal
control problems: time decomposition, incentive coordination, and
parallel algorithm”, IEEE Trans. Auto. Contr., vol. 35, no. 1, 1990, pp.
108-114.

[5] S.C. Chang, T.S. Chang, P.B. Luh, “A hierarchical decomposition for
large scale optimal control problems with parallel processing
structure”, Automatica, vol. 25, no. 1, 1989, pp. 77-86.

[6] S.Y. Lin, “A hardware implementable receding horizon controller for
constrained nonlinear systems”, IEEE Trans. Auto. Contr., vol. 39, no.
9, 1994, pp. 1893-1899.

[7] H. Kopetz, “Real-time systems: Design principles for distributed
embedded applications”, Chapters 9 and 11, Springer, 1997.

[8] T. Keviczky, F. Borrelli, G. J. Balas, “Decentralized receding horizon
control for large scale dynamically decoupled systems”, Automatica,
2006

[9] A. Azimi, B.W. Gordon, C.A. Rabbath, “Dynamic scheduling of
receding horizon controllers with application to multiple unmanned
hovercraft systems”, Proc. of the American Control Conference, July
2007, pp. 3324-3329.

[10] A. Azimi, B.W. Gordon, C.A. Rabbath, “Dynamic scheduling of
decentralized receding horizon controllers on concurrent processors for
the cooperative control of unmanned systems”, Proc. of the 46th IEEE
Conference on Decision and Control, Dec., 2007, pp. 518-523.

[11] A. Azimi, B.W. Gordon, C.A. Rabbath, “Dynamic scheduling of
multiple decentralized receding horizon controllers subject to
computational delay”, Proc. of the American Control Conference, June
2008.

[12] M. Mercangoz, F.J. Doyle III, “Distributed model predictive control of
an experimental four-tank system”, Journal of Process Control, vol. 17,
2007, pp. 297-308.

[13] K. Schittkowski, “NLPQLP: A Fortran implementation of sequential
quadratic programming algorithm with distributed and non-monotone
line search – user's guide, version 2.0”, Bayreuth University, Dec.
2004.

[14] P.E. Gill, W. Murray, M.A. Saunders, “User’s guide for SNOPT
version 7: software for large-scale nonlinear programming”, Feb. 2006.

[15] Quad-core Intel Xeon processor 5300 series datasheet, Sept. 2007.
[16] H.A. Izadi, B.W. Gordon, C.A. Rabbath, “Communication bandwidth

allocation for decentralized receding horizon control of multiple
vehicles”, Proc. of the 2008 IEEE/ASME International Conference on
Advanced Intelligent Mechatronics, China, July 2008, pp. 1195-1200.

4926

