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Abstract— This paper identifies a new mechanism for ampli-
fication of stochastic disturbances in channel flows of strongly
elastic polymer solutions. For streamwise constant flows with
high elasticity numbers µ and non-vanishing Reynolds numbers
Re, the O(µRe3) scaling of the variance amplification is estab-
lished using singular perturbations techniques. This demon-
strates that large variances can be maintained in stochastically
driven flows occurring in weak inertial/strong elastic regimes.
Mathematically, the amplification arises due to nonnormality
of the governing equations and, physically, it is caused by the
stretching of the polymer stresses by the background shear. The
reported developments provide a possible route for a bypass
transition to ‘elastic turbulence’ and suggest a novel method
for efficient mixing in micro-fabricated straight channels.

Index Terms— Elastic turbulence, microfluidic mixing, poly-
mer additives, singular perturbations, variance amplification,
viscoelastic fluids.

I. INTRODUCTION

Newtonian fluids, such as air and water at ordinary pres-
sures and temperatures, transition to turbulence under the
influence of inertia. On the other hand, recent experiments
have shown that fluids containing long polymer chains may
become turbulent even in low inertial regimes [1], [2].
Transition to turbulence in viscoelastic fluids is important
from both fundamental and technological standpoints [3] as
they are often encountered in industrial and biological flows.
Improved understanding of transition mechanisms in vis-
coelastic fluids has broad applications in modern technology,
including enhanced mixing in microfluidic devices through
the addition of polymers [4].

Amplification of stochastic disturbances in channel flows
of viscoelastic fluids has recently been investigated using
linear systems theory [5]. Computations reported in Ref. [5]
demonstrated that elasticity can produce considerable am-
plification of streamwise-constant disturbances even when
inertial effects are relatively weak. This amplification is
fundamentally nonmodal in nature: it cannot be described
using the standard normal mode decomposition of classical
hydrodynamic stability analysis. Rather, it arises due to non-
normal nature of the governing equations which introduces
large receptivity to ambient disturbances.

For the streamwise-constant channel flows of viscoelastic
fluids with spanwise wavenumber kz , elasticity number µ,
and viscosity ratio β, an explicit scaling of the variance
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amplification (i.e., the H2 norm) with the Reynolds number
Re was recently developed in Ref. [6],

E(kz;Re, β, µ) = f(kz;β, µ)Re + g(kz;β, µ)Re3,

where f and g denote the Re-independent functions. This
extends the Newtonian-fluid results [7], [8] to channel flows
of viscoelastic fluids. In this paper, in order to gain insight
into the conditions under which strong elasticity amplifies
stochastic disturbances, we apply singular perturbation tech-
niques to show that the variance amplification scales as

E(kz;Re, β, µ) ≈ f̂(kz;β)Re + ĝ(kz;β)µRe3, µ � 1.

The product between µ and Re3 in this expression indicates
the subtle interplay between inertial and elastic forces in
viscoelastic fluids with arbitrarily low (but non-vanishing)
Reynolds numbers and high elasticity numbers.

II. GOVERNING EQUATIONS

We consider incompressible channel flows of polymer
solutions; see Fig. 1 for geometry. The non-dimensional
momentum conservation, mass conservation, and constitutive
equations for an Oldroyd-B fluid are given by [9], [10]

Vt̃ = 1
Re (β∇2V + (1− β)∇·T−∇P )−∇VV + F̃,

0 = ∇·V,
Tt̃ = 1

We (∇V + (∇V)T −T)−∇VT +

T·∇V + (T·∇V)T ,
(1)

where t̃ is time, V is the velocity vector, P is the pressure,
T is the polymeric contribution to the stress tensor, and
F̃ is the spatio-temporal body force. Subscript t̃ denotes a
partial derivative with respect to time t̃, ∇ is the gradient,
and ∇V = V ·∇. These equations have been brought to a
dimensionless form by scaling length with the channel half
height δ, velocity with the largest base velocity Uo, time
with δ/Uo, polymer stresses with ηpUo/δ

2, pressure with
(ηs + ηp)Uo/δ, and body force with U2

o /δ. Here, ηp and
ηs, respectively, denote the polymer and solvent viscosities,
β = ηs/(ηs + ηp) is the ratio of the solvent viscosity to the
total viscosity, Re = ρUoδ/(ηs+ηp) is the Reynolds number,
We = λUo/δ is the Weissenberg number, and λ is the fluid
relaxation time. Note that λ describes how quickly polymer
stresses decay to zero when fluid motion stops. Furthermore,
the Weissenberg number can equivalently be written as We =
µRe, where µ denotes the elasticity number; this quantity
determines the ratio between the fluid relaxation time, λ,
and the vorticity diffusion time, ρδ2/(ηs + ηp).

In the absence of polymers, i.e. for β = 1, fluid becomes
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Fig. 1. Three dimensional channel flow.

Newtonian and system (1) simplifies to the incompressible
Navier-Stokes equations. It is to be noted that the third equa-
tion in (1) describes history of deformation and it is obtained
from a kinetic theory by representing each polymer molecule
by an infinitely extensible Hookean spring connecting two
spherical beads [9], [10]. This model is one of the simplest
describing viscoelastic effects and is capable of predicting
experimental observations in simple shear flows of elastic
liquids with constant viscosity [3].

In flows with high elasticity numbers, ε = 1/µ� 1, it is
more convenient to rescale time as t = t̃/We, which leads
to the following set of equations:

εVt = β∇2V + (1− β)∇·T−∇P −Re∇VV +
√
εReF,

0 = ∇·V,
Tt = ∇V + (∇V)T −T− (Re/ε)∇VT +

(Re/ε)(T·∇V + (T·∇V)T ).

(2)

Since we are interested in problems with stochastic spatio-
temporal excitation, the body-forces in Eqs. (2) and (1)
are related to each other by F(r, t) =

√
We F̃(r, t We),

where r denotes the vector of spatial coordinates, r =
[ x y z ]T ; this scaling is introduced to guarantee the same
auto-correlation operators of F(r, t) and F̃(r, t̃) [11].

Linearized dynamics are obtained by decomposing each
field in (2) into the sum of the base flow and fluctuations
(i.e., V = v + v, T = τ + τ , P = p+ p, F = 0 + d), and
keeping terms only to first order in fluctuations:

εv̇ = −Re (∇vv +∇v v) − ∇p + (1− β)∇·τ +

β∇2v +
√
εRed,

0 = ∇·v,
τ̇ = ∇v + (∇v)T − τ + (Re/ε)

(
−∇vτ −∇v τ +

τ ·∇v + τ ·∇v + (τ ·∇v)T + (τ ·∇v)T
)
.

Here, a dot represents a partial derivative with respect to
time t, v = [ v1 v2 v3 ]T , where v1, v2, and v3 are the
velocity fluctuations in the streamwise (x), wall-normal (y),
and spanwise (z) directions, respectively. In channel flows,
the base velocity and polymer stress are given by

v =

 U(y)
0
0

 , τ =

 2We (U ′(y))2 U ′(y) 0
U ′(y) 0 0

0 0 0

 ,
with U(y) = {y, Couette flow; 1−y2, Poiseuille flow}, and
U ′(y) = dU(y)/dy.

The linearized momentum equation is driven by the body
force fluctuation vector d = [ d1 d2 d3 ]T , which is con-
sidered to be purely harmonic in the horizontal directions,

and stochastic in the wall-normal direction and in time. This
spatio-temporal body forcing will in turn yield velocity and
polymer stress fluctuations of the same nature. Our objective
is to study the steady-state variance of v by assuming that
d is temporally stationary white Gaussian process with zero
mean and unit variance.

We study the linearized model for streamwise-constant
three-dimensional fluctuations, which means that the dy-
namics evolve in the (y, z)-plane, but flow fluctuations in
three spatial directions are considered. This so-called two-
dimensional three-component (2D/3C) model [12] is ana-
lyzed since the largest velocity variance in stochastically
driven channel flows of viscoelastic fluids is maintained by
streamwise-constant fluctuations [5].

A. The streamwise-constant evolution model

The state-space representation of the linearized system is
obtained by a standard conversion to the wall-normal veloc-
ity/vorticity (v2, ω2) formulation. The procedure described
in Ref. [5] in combination with the Fourier transform in z-
direction converts the governing equations with streamwise-
constant fluctuations (∂x(·) ≡ 0) to:

εφ̇1 = βS11φ1 + (1− β)S12φ2 +
√
εRe (F2d2 + F3d3),

φ̇2 = −φ2 + S21φ1,

εφ̇3 = βS33φ3 +ReS31φ1 + (1− β)S34φ4 +
√
εReF1d1,

φ̇4 = −φ4 + Re
ε (S41φ1 + S42φ2) + S43 φ3,

φ̇5 = −φ5 −
(
Re
ε

)2
S51φ1 + Re

ε (S53 φ3 + S54 φ4), v1
v2
v3

 =

 0 G1

G2 0
G3 0

[ φ1

φ3

]
,

(3)
where φ1 = v2, φ2 = [ τ22 τ23 τ33 ]T , φ3 = ω2, φ4 =
[ τ12 τ13 ]T , φ5 = τ11. The operators Fj and Gj are given
by

F1 = ikz, F2 = −k2
z∆−1, F3 = −ikz∆−1∂y,

G1 = −(i/kz), G2 = I, G3 = (i/kz)∂y,

and they, respectively, describe the way the forcing enters
into the state-space model, and the way the velocity fluctua-
tions depend on the wall-normal velocity and vorticity. Here,
i =
√
−1, kz is the spanwise wavenumber, I is the identity

operator, ∆ = ∂yy − k2
z is a Laplacian with homogeneous

Dirichlet boundary conditions, and ∆−1 is the inverse of the
Laplacian. Furthermore, the S-operators are given by:

S11 = ∆−1∆2, S33 = ∆, S31 = − ikzU ′(y),
S12 = ∆−1

[
−k2

z∂y −ikz
(
∂yy + k2

z

)
k2
z∂y

]
,

S34 =
[

ikz∂y −k2
z

]
, S43 = − (1/k2

z)ST34,

S21 =
[

2∂y (i/kz)
(
∂yy + k2

z

)
−2∂y

]T
,

S41 =
[
U ′(y)∂y − U ′′(y)
(i/kz)U ′(y)∂yy

]
,

S42 =
[
U ′(y) 0 0

0 U ′(y) 0

]
, S51 = 4U ′(y)U ′′(y),

S53 = − (2i/kz)U ′(y)∂y, S54 =
[

2U ′(y) 0
]
,
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where ∆2 = ∂yyyy−2k2
z∂yy+k4

z with homogeneous Cauchy
(both Dirichlet and Neumann) boundary conditions. Note
that (3) represents a system of PDEs in wall-normal direction
and in time parameterized by kz , Re, β, and ε.

III. FREQUENCY RESPONSE REPRESENTATION

Application of the temporal Fourier transform on (3)
allows for elimination of the polymer stresses from the
equations, which results in an equivalent block diagram
representation of the linearized 2D/3C system. All signals
in Fig. 2 are functions of the wall-normal coordinate y,
the spanwise wave-number kz , and the temporal frequency
ω, e.g. v2 = v2(y, kz, ω), with the following boundary
conditions on v2 and ω2, {v2(±1, kz, ω) = ∂yv(±1, kz, ω) =
ω2(±1, kz, ω) = 0}. The capital letters in Fig. 2 denote the
Reynolds-number-independent operators. These operators act
in the wall-normal direction and some of them are param-
eterized by kz (Fj and Gj , j = 1, 2, 3), while the others
depend on kz , ω, β, and ε (J1, J2, and Cp). The operator
Cp captures the coupling from v2 to ω2, and it is defined as

Cp = Cp1 +
1

ε(1 + iω)2
Cp2,

where Cp1 = −ikzU ′(y) denotes the vortex tilting term, and

Cp2 = ikz(1− β)C̃p2, C̃p2 = U ′(y)∆ + 2U ′′(y)∂y,

denotes the term arising due to the work done by the
polymer stresses on the flow. Finally, J1 and J2 govern the
internal dynamics of the wall-normal vorticity and velocity
fluctuations, respectively. These two operators are given by

Jj = (1+iω)Kj , Kj =
(
ε(iω)2I − (βTj − εI)iω − Tj

)−1
,

where T1 = ∆ and T2 = ∆−1∆2, respectively, represent the
Squire and Orr-Sommerfeld operators in the 2D/3C model
of Newtonian fluids with Re = 1 [8].

In the frequency domain, the velocity and forcing compo-
nents are related by vi = Hijdj , where Hij denotes the ijth
component of the frequency response operator H , v = Hd.
From Fig. 2, it is clear that the Hij are determined by

H11(kz, ω;Re, β, ε) =
√
Re H̄11(kz, ω;β, ε),

H1j(kz, ω;Re, β, ε) =
√
Re3 H̄1j(kz, ω;β, ε), j = 2, 3,

Hij(kz, ω;Re, β, ε) =
√
Re H̄ij(kz, ω;β, ε), i, j = 2, 3,

Hi1(kz, ω;Re, β, ε) = 0, i = 2, 3,

where the H̄ij represent the Re-independent operators,

H̄11 =
√
εG1J1F1,

H̄1j =
√
εG1J1CpJ2Fj , j = 2, 3,

H̄ij =
√
εGiJ2Fj , i, j = 2, 3.

The variance maintained in v is quantified by the H2 norm

E(kz) =
1

2π

∫ ∞
−∞

tr (H(kz, ω)H∗(kz, ω)) dω,

where H∗ is the adjoint of operator H , and tr is the
trace operator. (For notational brevity we have omitted the
dependence on Re, β, and ε in the last expression). Using

the properties of the trace operator we have E(kz) =∑3
i,j= 1Eij(kz), where Eij is the variance maintained in

vi by stochastically forcing the 2D/3C model with dj . From
the definition of operators Hij , the following Re-scaling of
E is readily obtained

E(kz;Re, β, ε) = f(kz;β, ε)Re + g(kz;β, ε)Re3, (E)

where

f = f11 + f22 + f23 + f32 + f33, g = g12 + g13,

with

fij(kz) =
1

2π

∫ ∞
−∞

tr
(
H̄ij(kz, ω)H̄∗ij(kz, ω)

)
dω,

and similarly for g1j . The expression (E) for the steady-state
variance of v is valid for all Re, β, and ε. Our objective is to
establish how the Re-independent functions f and g depend
on ε in viscoelastic flows with ε = 1/µ � 1 in order to
gain insight into the conditions under which strong elasticity
amplifies stochastic disturbances.

A. State-space realizations of H̄ij

The Reynolds-number-independent contributions to the
steady-state variance can be determined by recasting each
H̄ij in the state-space form

ẋij(y, kz, t) = Aij(kz)xij(y, kz, t) + Bj(kz)dj(y, kz, t),
vi(y, kz, t) = Ci(kz)xij(y, kz, t),

where xij is a vector of state variables, and (dj , vi) is the
input-output pair for frequency response H̄ij . It is a standard
fact [13] that the variance of vi sustained by dj is determined
by tr (PijC∗i Ci) , where Pij denotes the steady-state auto-
correlation operator of xij , which is found by solving the
Lyapunov equation,

AijPij + PijA
∗
ij = −BjB∗j .

The frequency responses H̄ij with {i, j = 2, 3; i = j = 1}
admit the controller canonical form realization[

ẋij
εżij

]
=
[

0 I
Tk βTk − εI

] [
xij
zij

]
+
[

0
Fj

]
dj ,

vi =
√
ε
[
Gi Gi

] [ xij
zij

]
,

(4)
with {k = 1 for i = 1; k = 2 for i = 2, 3}, homoge-
neous Dirichlet boundary conditions on x11 and z11, and
homogeneous Cauchy boundary conditions on xij and zij
for i, j = 2, 3. On the other hand, from Fig. 3 and definition
of operators K1 and K2, it follows that each H̄1j , j = 2, 3,
can be represented by

εψ̈ = T2ψ + (βT2 − εI) ψ̇ + Fjdj ,

εφ̈ = T1φ + (βT1 − εI) φ̇ + ϕ, v1 =
√

1/εG1φ,

ϕ = Cp1(εψ̈ + 2εψ̇ + εψ) + Cp2ψ,

with homogeneous Dirichlet boundary conditions on φ, and
homogeneous Cauchy boundary conditions on ψ. By select-
ing x = [ ψ φ ]T , z = [ ψ̇ φ̇ ]T , we obtain a singularly
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Fig. 2. Block diagram of the linearized 2D/3C model.

perturbed realization of H̄1j[
ẋ
εż

]
=
[

0 I
A21(ε) A22(ε)

] [
x
z

]
+
[

0
B2

]
dj ,

v1 =
√

1/ε
[
C1 0

] [ x
z

]
,

(5)
where all operators are partitioned conformably with the
elements of x and z,

A21 =
[

T2 0
Cp2 + Cp1(T2 + εI) T1

]
, B2 =

[
Fj

Cp1Fj

]
,

A22 =
[

βT2 − εI 0
Cp1(βT2 + εI) βT1 − εI

]
, C1 =

[
0 G1

]
.

Eqs. (4) and (5) are in the standard singularly perturbed
form [11] as the time-derivative of the second part of the
state is multiplied by a small positive parameter ε and the
22-block of operator A at ε = 0 is invertible.

IV. SINGULAR PERTURBATION ANALYSIS OF VARIANCE
AMPLIFICATION

From Section III-A it follows that state-space realizations
of operators H̄ij assume the form[

ẋ
εż

]
=
[

0 I
A21(ε) A22(ε)

] [
x
z

]
+
[

0
B2

]
dj ,

vi = r(ε)
[
C1 C2

] [ x
z

]
,

(6)
with appropriate boundary conditions on x and z, r =

√
ε

for {i = j = 1; i, j = 2, 3}, and r = 1/
√
ε for {i = 1;

j = 2, 3}. To simplify notation we have omitted i and j
indices in Eq. (6); it is to be noted, however, that x, z, r,
and A-operators depend on both i and j, B-operators depend
on j, and C-operators depend on i. The following coordinate
transformation [11][

ξ
η

]
=
[
I − εQ(ε)L(ε) −εQ(ε)

L(ε) I

] [
x
z

]
, (7)

can be utilized to fully separate the slow and fast dynamics
of system (6). Namely, if L(ε) and Q(ε) satisfy

A21(ε) − A22(ε)L(ε) − εL(ε)L(ε) = 0, (L)
I − Q(ε) (A22(ε) + εL(ε)) − εL(ε)Q(ε) = 0, (Q)

then the change of coordinates (7) brings system (6) to the
following equivalent representation[

ξ̇
η̇

]
=
[
As(ε) 0

0 1
εAf (ε)

] [
ξ
η

]
+
[

Bs(ε)
1
εBf (ε)

]
dj ,

vi = r(ε)
[
Cs(ε) Cf (ε)

] [ ξ
η

]
,

with
As = −L(ε), Af = A22(ε) + εL(ε),
Bs = −Q(ε)B2, Bf = B2,

Cs = C1 − C2L(ε), Cf = C2 + ε(C1 − C2L(ε))Q(ε).

It is now easy to show that the steady-state auto-correlation
operator of

[
ξT ηT

]T
takes the form

P̄ (ε) =
[
X(ε) Y ∗(ε)
Y (ε) (1/ε)Z(ε)

]
,

where components of P̄ are to be determined from the
following system of equations

As(ε)X(ε) + X(ε)A∗s(ε) = −Bs(ε)B∗s (ε),
Af (ε)Y (ε) + εY (ε)A∗s(ε) = −Bf (ε)B∗s (ε),
Af (ε)Z(ε) + Z(ε)A∗f (ε) = −Bf (ε)B∗f (ε).

(9)

This implies that the H2 norm of operator H̄ij is given by

‖H̄ij‖22 = r2(ε) tr
(
X(ε)C∗s (ε)Cs(ε) + 1

εZ(ε)C∗f (ε)Cf (ε)
)

+ r2(ε) tr
(
Y (ε)C∗s (ε)Cf (ε) + Y ∗(ε)C∗f (ε)Cs(ε)

)
.

(10)

Now, using the fact that A21(ε) and A22(ε) in Eqs. (4)
and (5) are given by {A21(ε) = A21,0 + εA21,1; A22(ε) =
A22,0 + εA22,1}, we represent L and Q as L(ε) =∑∞
n= 0 ε

nLn, Q(ε) =
∑∞
n= 0 ε

nQn and employ (regular)
perturbation analysis to render (L) and (Q) into the following
set of conveniently coupled equations:

ε0 :

{
L0 = A−1

22,0A21,0,

Q0 = A−1
22,0,

ε1 :

{
L1 = A−1

22,0 (A21,1 − A22,1L0 − L0L0) ,
Q1 = − (L0Q0 + Q0 (A22,1 + L0))A−1

22,0,...

Thus, Π(ε) =
∑∞
n= 0 ε

nΠn where Π stands for As, Af , Bs,
Cs, or Cf , and similar procedure can be used to simplify (9)
and determine coefficients in the power series expansions of
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operators X , Y , and Z

ε0 :


As,0X0 +X0A

∗
s,0 = −Bs,0B∗s,0,

Af,0Y0 = −BfB∗s,0,
Af,0Z0 + Z0A

∗
f,0 = −BfB∗f ,

ε1 :


As,0X1 +X1A

∗
s,0 = −

(
As,1X0 +X0A

∗
s,1

)
−
(
Bs,0B

∗
s,1 +Bs,1B

∗
s,0

)
,

Af,0Y1 +BfB
∗
s,1 = −

(
Af,1Y0 + Y0A

∗
s,0

)
,

Af,0Z1 + Z1A
∗
f,0 = −

(
Af,1Z0 + Z0A

∗
f,1

)
,

...

Remark 1: Even though the above developments are moti-
vated by finite-dimensional methods for singularly perturbed
systems [11], it can be shown that these methods extend to
infinite dimensional problems considered in this paper. In
particular, for the streamwise constant model existence of
L(ε) and Q(ε) satisfying (L) and (Q) can be established.
These technical results are not presented here due to page
constraints and they will be reported elsewhere.

A. Scaling of function f in equation (E) with ε
We now consider the ε-scaling of function f in the

expression for the steady-state velocity variance. As shown
in Section III, f(kz;β, ε) =

∑
i,j fij(kz;β, ε), {i = j = 1;

i, j = 2, 3}, where fij denotes the square of the H2 norm of
system (4). A direct comparison of Eqs. (4) and (6) yields
r(ε) =

√
ε, A21 = Tk, A22 = βTk − εI, B2 = Fj ,

C1 = C2 = Gi, which in combination with Eq. (10) can
be used to obtain

f(kz;β, ε) = f̂0(kz;β) +
∞∑
n= 1

εnf̂n(kz;β).

Here, f̂n are functions independent of ε. Thus, in flows
with ε � 1, the terms contributing to the Re-scaling of
the steady-state variance in Eq. (E) approximately become
ε-independent, i.e.

f(kz;β, ε) = f̂0(kz;β) + O(ε),

where f̂0(kz;β) is determined by the terms of the form
tr (Z0C

∗
f,0Cf,0), with Af,0Z0 + Z0A

∗
f,0 = −BfB∗f .

B. Scaling of function g in equation (E) with ε
Next, we examine the ε-dependence of terms responsible

for the Re3-scaling of the steady-state variance. As shown
in Section III, g(kz;β, ε) =

∑3
j= 2 g1j(kz;β, ε), where g1j

denotes the square of the H2 norm of system (5). By
comparing Eqs. (5) and (6) we see that r(ε) = 1/

√
ε and

C2 ≡ 0. The latter observation implies that Cs = C1 is ε-
independent and that Cf (ε) = εC1Q(ε), which together with
Eq. (10) can be used to obtain

g1j = (1/ε) tr (X0C
∗
1C1) + O(1).

In fact, it can be shown that

g(kz;β, ε) =
1
ε

∞∑
n= 0

εnĝn(kz;β), ε � 1,

where ĝ0(kz;β) is determined by tr (X0C
∗
1C1).

(a) (b)

Fig. 4. Plots of f̃0(kz) (a) and g̃0(kz) (b); g̃0(kz) in both Couette (solid
curve) and Poiseuille (circles) flows is shown.

V. MAIN RESULT: IMPLICATIONS AND DISCUSSIONS

The developments of Section IV are summarized in the
following Theorem.

Theorem 1: In streamwise-constant channel flows of
Oldroyd-B fluids with µ� 1, the steady-state variance of v
is given by

E(kz;Re, β, µ) ≈ Ref̂0(kz;β) + µRe3ĝ0(kz;β),

where f̂0 and ĝ0 are functions independent of Re and µ.
Thus, in elasticity-dominated flows, the terms responsible

for the Re- and Re3-scaling of the steady-state variance are,
respectively, µ-independent and linearly dependent on µ. It
is readily shown that

f̂0(kz;β) = f̃0(kz)/β,

where the base-flow-independent function f̃0(kz) is given by

f̃0(kz) = −0.5
(
tr (T−1

1 ) + tr (T−1
2 )

)
.

Furthermore,

ĝ0(kz;β) = g̃0(kz)(1− β)2/β,

with

g̃0(kz) = (k2
z/4) tr

(
T−1

1 C̃p2T
−2
2 C̃∗p2T

−1
1

)
.

Thus, for µ� 1,

E(kz;Re, β, µ) ≈ Re

β

(
f̃0(kz) + µRe2(1− β)2g̃0(kz)

)
,

which shows that the variance depends affinely on µ and
increases monotonically with a decrease in the ratio of the
solvent viscosity to the total viscosity. This expression should
be compared to the expression for the variance amplification
in Newtonian fluids [7],

EN (kz;Re) = RefN (kz) + Re3gN (kz).

At low Re-values the kz-dependence of EN is governed by
fN (kz), and at high Re-values EN (kz) ≈ Re3gN (kz) [7].
In fluids containing long polymer chains, however, even
in low inertial regimes the spectrum of E can be domi-
nated by the Re3-term owing to the elastic amplification of
disturbances. Our results thus uncover the subtle interplay
between inertial and elastic forces in Oldroyd-B fluids with
low Reynolds/high elasticity numbers.
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Fig. 3. Block diagram of H̄1j(kz , ω;β, ε), j = 2, 3.

(a) (b)

Fig. 5. Streamwise velocity fluctuations v1(z, y) containing most variance
in Couette (a) and Poiseuille (b) flows.

The analytical expressions for tr (T−1
j ), j = 1, 2, were

derived in [7]; these can be used to obtain a formula
for f̃0(kz) = fN (kz), which is illustrated in Fig. 4(a).
In Couette flow, the expression for g̃0(kz) simplifies to
−(k2

z/4) tr (T−2
2 T−1

1 ), and an explicit kz-dependence of g̃0
can be derived after some manipulation. From Fig. 4(b) we
observe the non-monotonic character of g̃0(kz), with peak
values at kz ≈ 2.07 (in Couette flow) and kz ≈ 2.24 (in
Poiseuille flow). Streamwise velocity flow structures that
contain the most variance in respective flows with these
two spanwise wavenumbers are shown in Fig. 5. The most
amplified sets of fluctuations are given by high (hot colors)
and low (cold colors) speed streaks. In Couette flow the
streaks occupy the entire channel width, and in Poiseuille
flow they are antisymmetric with respect to the channel’s
centerline. These flow structures have striking resemblance
to the initial conditions responsible for the largest transient
growth in Newtonian fluids [14]. Despite similarities, the
fluctuations shown in Fig. 5 and in Ref. [14] arise due to
fundamentally different physical mechanisms: in high Re-
flows of Newtonian fluids, the vortex tilting is the main
driving force for amplification; in high µ/low Re-flows of
viscoelastic fluids, it is the polymer stretching mechanism.
Namely, from the expression for g̃0(kz) it follows that the
coupling operator C̃p2 plays the crucial role in variance
amplification. If this term was zero, the dynamics of weakly
inertial/strongly elastic flows would be dominated by viscous
dissipation. A careful examination of the governing equations
shows that C̃p2 arises due to the stretching of the polymer
stress fluctuations by the background shear.

VI. CONCLUDING REMARKS

For low Reynolds numbers, behavior of Newtonian fluids
is dominated by viscous dissipation. As Re increases, the
influence of inertia becomes more important and at large
enough Re’s these fluids transition to turbulence. Fluids
containing long polymer chains, however, may become tur-
bulent even in low inertial regimes [1], [2]. This phenomenon
is referred to as ‘elastic turbulence’ and it may find use

in promoting mixing in microfluidic devices where inertial
effects are weak due to the small geometries [4]. This
paper reveals the intricate interplay between inertial and
elastic forces in viscoelastic fluids with arbitrarily low (but
non-zero) Reynolds numbers and high elasticity numbers.
It is established that, in this regime, the dynamics is no
longer dominated by viscous dissipation but rather by the
polymer stretching mechanism, which introduces large vari-
ance amplification of streamwise-constant perturbations. This
demonstrates the importance of alternating regions of high
and low streamwise velocity (i.e., streamwise streaks) in
strongly elastic shear flows of non-Newtonian fluids.

Our success with uncovering a here-to-fore unknown ex-
plicit analytical expression for variance amplification using
the singular perturbation techniques, points to the scaling and
modeling steps as prerequisites for their application. Physical
systems seldom appear in a form ready-made for singular
perturbation analysis; scaling and modeling steps presented
in this paper may be helpful in attempts to devise such steps
for a broader class of physical problems.
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