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Abstract— In this paper we consider a group of agents
collaboratively transporting a flexible payload. The reaction
forces between the agents and the payload are modeled as
the gradients of the nonlinear potentials that describe the
deformation of the payload. We develop decentralized control
laws without explicit communication such that the agents
and the payload will eventually move with the same velocity
meanwhile the contact forces are regulated.

I. INTRODUCTION

Motion coordination and cooperative control have received

a lot of attention during the past few years. The main

challenge in cooperative control is to design a decentralized

control law that depends on local information to guarantee

a global behavior. A number of studies, to name a few,

[1], [2], [3], [4], [5], [6], [7], have successfully proposed

distributed control laws to achieve emergent group behaviors,

such as, consensus, flocking and schooling. One of the main

design methodologies is to employ potential function method

to propose local feedback rules in the form of artificial

attraction and repulsion forces between neighboring agents,

for example, [1], [6].

The local information between agents, such as relative

distances, is usually obtained through “explicit” information

flows, including sensor measurements and direct commu-

nication. While this “explicit” information flow exists in

many cooperative control applications, there are situations

where no “explicit” communication is required to achieve

cooperative tasks. For example, suppose that several people

move a table and only one person knows where to go.

Then, even without explicitly talking to or seeing each other,

those people are able to adjust their velocities and forces,

and finally succeed in moving the table towards the target

without breaking the table. In this case, the communication

is implicit, and people receive the information (e.g. where

to go, how fast to go) by feeling the contact forces and the

trend where the table is going. Through everybody adjusting

their forces and velocities, the whole group eventually moves

towards the goal.

Inspired by this example, we consider a group of agents

handling a flexible payload. As the agents move, the payload

may be squeezed or stretched, which generate contact forces

to the agents. The contact forces between the agents and the

payload are then modeled as the gradients of the nonlinear
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potentials that are induced by the deformation of the pay-

load. As a starting case to investigate, we assume that the

deformation of the payload is so small that the payload can

be modeled as a rigid body. This assumption is reasonable

when the payload is made by surrounding a large rigid

load with bumpers or elastic materials. Another illustration

of this setup is multiple grippers grasping a rigid load,

where the grippers possess compliance from installed flexible

mechanisms. Reference [8] studied a similar problem, where

one of the grippers is rigid and the others are flexible with

built-in linear springs, and developed stabilization control

laws that achieve both position and force control. In this

paper, our objective is to design decentralized control laws

such that the contact forces are regulated at some setpoint

and that the agents and the payload move with the same

velocity in the limit. Because all the agents are acting to the

payload, the reaction forces to the agents can be considered

as implicit communication while the payload acts as the

“medium”. Indeed, in the graph representation, this implicit

communication topology is a bidirectional star graph with

the payload at the center (see Fig. 2).

When the desired velocity is available to all the agents, we

propose a decentralized control law that consists of an inter-

nal velocity feedback and an external force feedback from the

payload. Instead of designing artificial attractive/repulsive

force feedback as in formation control, the passive contact

forces serve as the actual potential force feedback. We also

study the situation where no desired velocity is pre-designed.

In this case, we augment the decentralized control with an

integral control term so that through the interactions between

the agents and the payload, they still achieve the same

velocity in the limit with contact forces regulated.

The subsequent sections are organized as follows: we

formulate our problem in Section II. In Section III, we study

the situation where the desired velocity vd information is

available to each agent and propose decentralized control

laws that guarantee velocity convergence to vd and force

regulation. A modified integral control law is developed in

Section IV to ensure that the agents and payload move with

a common velocity when no pre-designed desired velocity

is available. Simulation results are presented in Section V.

Conclusions and future work are discussed in Section VI.

II. PROBLEM FORMULATION

Consider that N planar agents hold a common flexible

load as shown in Fig. 1. Each agent is modeled as a point

robot. Suppose that the load is initially not deformed and
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Fig. 1. Multiple agents are attached to a common flexible load. Initially
the payload is not deformed.

that each agent i is attached to the load at the point ai, i.e.

xi(0) = ai(0) = xc(0)+ ri, where xc ∈ R
2 and xi ∈ R

2 are the

inertial positions for the CM (Center of Mass) of the load

and the ith agent, and ri is a fixed vector in the inertial frame.

Assuming that the initial orientation of the load θ is zero,

we define

ai(t) := xc(t)+R(θ)ri, (1)

where

R(θ) =

(
cosθ −sinθ
sinθ cosθ

)

. (2)

Note that ai(t) represents the position where the ith agent

is attached if the payload is not deformed at time t. As

the agents move, however, the flexible payload may be

deformed (squeezed or stretched) and therefore xi(t) 6= ai(t).
The deformation of the payload, described by

zi = xi −ai, i = 1, · · · ,N, (3)

generates a reaction force fi to agent i. We assume that the

reaction force fi is the gradient of a positive definite potential

function Pi(zi), that is,

fi = ∇Pi(zi). (4)

Note that when zi = 0, the payload is not squeezed or

stretched by agent i. Therefore, no force would be generated

to agent i. In other words, Pi(zi) satisfies the following:

Pi(zi) = 0 ⇐⇒ zi = 0 (5)

∇Pi(zi) = 0 ⇐⇒ zi = 0. (6)

We further assume that the deformation is small enough

so that the load can be approximated as a rigid payload. This

can be considered as the agents attached to a rigid payload by

nonlinear passive springs that represent fi’s in (4). Therefore,

the dynamics of the agents and the load, restricted to purely

translational motion, are,

miẍi = Fi − fi, i = 1, · · · ,N (7)

Mcẍc =
N

∑
i=1

fi (8)

where mi and Mc are the mass-inertias of the ith agent and

the load, Fi is the applied force to the ith agent, and fi is

defined in (4).

Our control objective is to design Fi in a decentralized

way such that all the agents and the payload converge to the

same constant velocity, while regulating the spring forces on

the load, i.e. fi maintained at a setpoint f d
i . Because the load

is moving with a constant speed eventually, f d
i ’s are subject

to the following constraint:

N

∑
i=1

f d
i = 0. (9)

In the following sections, we analyze two situations: first,

the desired velocity vd is pre-designed and available to each

agent; second, vd is not predesigned.

III. DECENTRALIZED CONTROL WITH vd
PRE-DESIGNED

We note from (4) that the reaction force fi depends on

the deformation zi and if zi can be regulated to some desired

state, fi would also be maintained accordingly. To this end,

we assume that for a given f d
i , there exists a locally unique

solution zd
i , such that

f d
i = ∇Pi(z

d
i ) (10)

and

∇2Pi(z
d
i ) > 0. (11)

Therefore, achieving a desired constact force f d
i is now

equivalent to driving the deformation zi in (3) to the desired

one zd
i .

Proposition 1: Consider the decentralized control law

Fi = −Γi(ẋi − vd)+ f d
i (12)

where Γi = ΓT
i > 0. The equilibrium E

E = { (ẋi, ẋc, fi) | ẋi = vd , ẋc = vd and fi = f d
i } (13)

is asymptotically stable.

The dynamics (7) with the proposed control (12) now take

the form:

miẍi = −Γi(ẋi − vd)+ f d
i − fi, (14)

which consists of an internal feedback that drives the agent’s

velocity to vd , and an external feedback that regulates the

contact force. In the formation control literature, the external

feedback is usually derived by designing artificial potential

reaction forces [1], [6] while in our problem, the reaction

forces between the agents and the payload follow directly

from the actual potentials.

The closed-loop system (7), (8) and (12) can be considered

as a cooperative system of N + 1 agents, if the payload is

treated as an additional agent. The interactions between the

N + 1 agents then display a star topology with the payload

at the center as seen in Fig. 2. Therefore, controlling the

forces (and thus the deformations) between the agents and the

payload simultaneously guarantees that the relative positions

between agents are maintained tightly.
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Fig. 2. The implicit communication between agents and payload exhibits
a bidirectional star topology.

We also note that the payload has no direct control input

and therefore is a passive node. Without the vd informa-

tion, this passive node still achieves vd in the limit. This

phenomenon has been studied in [9], where an estimation

scheme was proposed for those agents without the vd infor-

mation to reconstruct vd from the local interactions. In our

case, the payload recovers vd information from the contact

forces fi’s, which are indeed the local interactions with the

agents.

Proof of Proposition 1: We take the following energy-

motivated Lyapunov function

V =∑
i

[Pi(zi)−Pi(z
d
i )− f d

i (zi−zd
i )]+

1

2
∑

i

ξ T
i miξi +

1

2
ξ T

c Mcξc,

(15)

where

ξi = ẋi − vd and ξc = ẋc − vd . (16)

Under the assumption that (11) is satisfied, the first term in

(15) is positive definite. Then, the time derivative of V yields

V̇ = ∑
i

( fi − f d
i )T żi +∑

i

ξ T
i miẍi +ξ T

c Mcẍc. (17)

From (3), the kinematics of zi is given by

żi = ẋi − ȧi = ẋi − ẋc. (18)

We next rewrite (17) from (7), (8), (18), (9) and (12) as

V̇ = ∑
i

( fi − f d
i )T (ẋi − ẋc)+∑

i

ξ T
i (Fi − fi)+ξ T

c ∑
i

fi

= ∑
i

( fi − f d
i )T (ξi −ξc)+∑

i

ξ T
i (−Γiξi + f d

i − fi)

+ξ T
c ∑

i

fi

= −∑
i

ξ T
i Γiξi +ξc ∑

i

f d
i

= −∑
i

ξ T
i Γiξi ≤ 0, (19)

which implies the stability of the equilibrium E .

To conclude asymptotic stability, we apply LaSalle Invari-

ance Principle by investigating the largest invariant set M

where V̇ = 0, i.e. ξi = 0. From (16), we note that ξi = 0

implies that ẋi = vd . We further obtain from ξ̇i = 0 that ẍi = 0,

which leads to Fi = fi from (7). Thus, it is clear from (12)

that f d
i = fi. We now show that in M , ẋc = vd . To see this, we

note that f d
i = fi implies that zi = zd

i . Since zd
i is constant,

żi = 0 in M , that is, from (3), ẋi = ȧi. Because we only

consider the translational motion and because ẋi = vd in M ,

we conclude that ȧi = ẋc = vd . ¤

IV. DECENTRALIZED CONTROL WITHOUT vd

PREDESIGNED

When vd is not preassigned to each agent, we follow the

adaptive design in [9] and develop an integral control with

which each agent adaptively estimates the group velocity

and all the agents move with the same velocity in the limit.

We now define v̂d
i as the velocity estimate for ith agent and

propose the following update law for v̂d
i :

˙̂vd
i = Λi( f d

i − fi) (20)

in which Λi = ΛT
i > 0. Note that v̂d

i stops updating when

f d
i ≡ fi, that is, the contact force is regulated at the desired

setpoint and zi remains constant, which further implies that

agent i and the payload have the same velocity. If all the

agents have the same velocity as the payload, then they move

at the same velocity. Moreover, the relative distances between

the agents are also maintained.

We next modify the design in (12) as

Fi = −Γi(ẋi − v̂d
i )+mi

˙̂vd
i + f d

i , (21)

and present the following proposition:

Proposition 2: Consider the decentralized control laws in

(20) and (21). The equilibrium E ∗

E
∗ = { (ẋi, ẋc, fi) | ẋi = v̄, ẋc = v̄ and fi = f d

i } (22)

is asymptotically stable, where v̄ ∈ R
2 is a constant. Fur-

thermore, v̄ can be characterized as the weighted average

of the initial payload velocity ẋc(0) and the initial velocity

estimates v̂d
i (0), i = 1, · · · ,N:

v̄ = (
N

∑
i=1

Λ−1
i +Mc)

−1(Mcẋc(0)+
N

∑
i=1

Λ−1
i v̂d

i (0)). (23)

Expanding the dynamics (7) with the control (20) and (21),

we obtain

miẍi = −Γi(ẋi − v̂i
d(0))+mi

˙̂vd
i + f d

i − fi + ΛiΓi

∫

( f d
i − fi)

︸ ︷︷ ︸

intergral force control
(24)

which is of the integral force feedback form [10], [11]. Such

an integral force control has been shown in [10] to be robust

with respect to small time delay in force measurements.

Proof of Proposition 2: We first rewrite (21) as

Fi = −Γiξi +mi
˙̂vd
i + f d

i (25)

where

ξi = ẋi − v̂d
i (26)

and v̂d
i is updated as in (20). It follows from (24) that

miξ̇i = −Γiξi + f d
i − fi. (27)

1312



We then choose the following Lyapunov function

V1 = ∑
i

[Pi(zi)−Pi(z
d
i )− f d

i (zi − zd
i )]+

1

2
∑

i

ξ T
i miξi

+
1

2
ẋT

c Mcẋc +
1

2
∑

i

(v̂d
i )

T Λ−1
i v̂d

i , (28)

whose time derivative is given by

V̇1 =−∑
i

( f d
i − fi)żi +∑

i

ξ T
i miξ̇i + ẋT

c Mcẍc +∑
i

( f d
i − fi)

T v̂d
i .

(29)

Noting that

żi = ξi + v̂d
i − ẋc, (30)

we rewrite (29) from (9), (27) and (25) as

V̇1 = −∑
i

( f d
i − fi)

T (ξi + v̂d
i − ẋc)+∑

i

( f d
i − fi)

T v̂d
i

+ ẋc ∑
i

fi +∑
i

ξ T
i (−Γiξi + f d

i − fi)

= −∑
i

ξ T
i Γiξi ≤ 0 (31)

which implies the stability of the equilibrium E ∗. We again

apply LaSalle Invariance Principle to investigate the largest

invariant set M ∗. On M ∗, V̇1 = 0 means ξi = 0 and thus

ξ̇i = 0, which further implies from (27) that fi = f d
i . We

obtain from (20) that ˙̂vd
i = 0. It then follows from ẍi = ˙̂vd

i = 0

that ẋi is constant on M ∗. Since ḟi = ḟ d
i = 0 and żi = ẋi− ẋc,

we conclude ẋi = ẋc, ∀i, which means that all the agents and

the payload share the same constant velocity v̄. Noting from

(26) and ξi = 0, we further obtain ẋc = v̂d
i , i = 1, · · · ,N. On

the other hand, from (8) and (20), we compute

Mcẋc(t) =
∫ t

0

N

∑
i=1

fi(s)ds+Mcẋc(0) (32)

and

v̂d
i (t) =

∫ t

0
Λi( f d

i − fi(s))ds+ v̂d
i (0). (33)

We rewrite (33) as

Λ−1
i (v̂d

i (t)− v̂d
i (0)) =

∫ t

0
f d
i − fi(s)ds (34)

and note from (9), (32) and (34) that

∑
i

Λ−1
i (v̂d

i (t)− v̂d
i (0)) =

∫ t

0

N

∑
i=1

( f d
i − fi(s))ds (35)

= −Mc(ẋc(t)− ẋc(0)). (36)

Because on M ∗, ẋc = ẋi = v̂d
i := v̄ and v̄ is constant, we

conclude (23). ¤

The situation where only one agent, say agent 1, has the vd

information becomes a special example of the design (20)-

(21). In fact, agent 1 can choose to shut off the estimation

(20) by selecting Λ1 = 0 and letting v̂d
1(0) = vd . A simple

computation from (23) shows that limΛ1→0 v̄ = vd , which

means that the group will eventually move with the velocity

vd . We then present the following corollary without proof:

Corollary 1: Suppose that agent 1 has the vd information

and implements (20) and (21) with v̂d
1(0) = vd and Λ1 = 0

while the other agents apply the control (20) and (21), i =
2, · · · ,N. Then the equilibrium E in (13) is asymptotically

stable.

V. SIMULATION

In this simulation, we consider three agents mov-

ing a spherical payload, which is initially centered at

the origin with radius 1 in the inertial frame. The

agents are located at [1 0]T , [cos(2π/3) sin(2π/3)]T and

[cos(−2π/3) sin(−2π/3)]T in the inertial frame, which

means that initially the payload is not deformed. We then

select f d
1 = [−0.05 0]T , f d

2 = −0.05[cos(2π/3) sin(2π/3)]T

and f d
3 = −0.05[cos(−π/3) sin(−π/3)]T so that (9) is

satisfied. The masses of the payload Mc and the agents mi

are 5Kg and 1Kg, and the desired velocity vd is chosen as

[0.1 0.1]T .

We assume that the nonlinear reaction force is of the

following form:

fi = kzi + k1||zi||
2zi (37)

where k and k1 are positive constants and zi is defined in (3).

Note that when the agent barely touches the payload, i.e. zi =
0, fi is zero. We then select k = 1, k1 = 0.1 and the feedback

gain Γi = I. Fig. 3 illustrates the snapshots of the formation

of the agents and the payload moving in the direction of

[0.1 0.1]T . At t0, since the payload is not deformed, the three

circles in Fig. 3, which denote the three agents, are centered

on the edge of the payload, shown by the big circle. At

t2, those three circles are pushed into the big circle, which

means that the payload is squeezed by the three agents and

will be moving with those deformations as seen at t3. The

simulation results in Fig. 4 show that the contact forces are

regulated at the desired values.
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Snapshots of the payload and the agents
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Fig. 3. Snapshots of the agents and the payload: at t0, the three circles,
denoting the three agents, are centered at the edge of the big circle, denoting
the payload. This means that the agents barely touch the payload and there is
no deformation. At t2 and t3, the three circles are pushed into the big circle,
which illustrates that the payload is now squeezed by the three agents.
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Fig. 4. The norms of || fi − f d
i ||, i = 1,2,3, converge to zero.

We also simulate the situation where no agents has the

desired velocity information. In this case, we employ the

adaptive design (20)-(21) in Section IV to achieve the desired

contact forces and the convergence to a common velocity. We

select the initial estimates v̂d
i (0), i = 1,2,3, as [0.02 0.02]T ,

[−0.04 −0.04]T , and [0.1 0.1]T , respectively. The adaptation

gain Λi is chosen to be 0.2I2. Simulation in Fig. 5 shows that

the contact forces are well regulated at the desired setpoint

f d
i . Furthermore, as computed from (23), the velocities of the

three agents should converge to [0.02 0.02]T , which matches

the results in Fig. 6.
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Fig. 5. With the adaptive design (20)-(21), the contact forces are regulated
at their desired values.

VI. CONCLUSIONS AND FUTURE WORK

We study a motion coordination problem where a group

of agents move a flexible payload. The contact forces, which

describe the relative information between the agents and

the payload, build up an implicit information topology flow.

When the desired constant velocity is available to each
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Fig. 6. With the adaptive design (20)-(21), the velocities of the agents
converge to [0.02 0.02]T , as computed from (23).

agent, we develop a decentralized controller that achieves

the desired velocity convergence and the force regulation. We

also consider the situation where the desired velocity is not

available. In this case, we propose an integral force control

that guarantees that the agents and the payload move with the

same velocity while the contact forces are regulated. Future

work will pursue time-varying desired velocity tracking and

experimental results of the proposed controllers.
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