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Abstract— In this paper, we try to understand what people
mean when they say that two objects are “similar.” This is an
important question in the area of human-robot interactions,
where robots must interpret human movements in order to act
in a “similar” manner. Specifically, we assume that we are given
a collection of empirically generated pairwise comparisons
between a subset of so-called alternatives (members of a given
set), which produces a partial order over the set of alternatives.
Based on this partial order, an inverse optimization problem
is solved, producing a cost associated with each alternative
that is consistent with the partial order. This cost is, moreover,
assumed to be generative in that it can be used to select the
globally best alternative. An experimental study involving the
comparison of apples and oranges is presented to highlight the
operation of the proposed approach.

I. INTRODUCTION

As the saying goes, one can not compare apples and

oranges. But why not? It is clear that some apples look

more like oranges than others. One can thus ask the question

“What makes apple X look more like an orange than apple

Y?” Or, more interestingly (yet also more absurdly), “If apple

X is in fact a robot apple, how should it act in order to

make it more like an orange?” These questions may seem

like nonsense, but this is exactly what mobile robots are

asked to do in some areas of human-robot interactions, e.g.

Programming by Demonstration, where humans (oranges)

ask robots (apples) to behave “like” them, e.g. [1],[2], [3],

[4].

The basic idea behind the Programming by Demonstration

paradigm is that the human operator should be able to in-

struct robots (typically manipulator arms) how to act without

having to write code or use any other type of formal interface

language. Instead, the operator should be able to “show”

the robot how to act. But, since the robot typically has a

completely different set of dynamical constraints, degrees of

freedom, and even spatial scales, it is not at all clear what

it should be doing in response to the human operator. For

more on these issues, see for example [5],[6],[7],[8],[9].

In this paper, we address this seemingly ill-posed problem

by formulating a version of it in such a way that it is

amenable to analytical solution, while still being based on

subjective judgments of “similarity.” The reason for insisting

on the subjective element is that, at the end of the day,

“similarity” is to be understood as “what people consider

to be similar.” We should note, already at this point, that a

related idea is pursued in [10], [11]. But, in those references,

the basic premise is not that one is given a collection of

comparisons, but rather a metrically ranked collection of

examples. What is inherently similar between those works

and the work presented in this paper is that the empirical

data is to be used to find an underlying cost function that it

is postulated people use when making judgments about the

similarity of objects and motions.

It should also be noted that in econometrics, the problem

of inferring people’s utility functions from data is well-

studied. What is different with this problem is that the

objective typically is to either understand game theoretic

decision making strategies in a market or stochastic setting

(e.g., [12], [13], [14]), or to locate clusters of consumers

with similar preferences (e.g., [15], [16]). This paper is really

about finding deterministic “similarity” measures that fit the

empirical data, and, as such, it has an entirely different focus

and objective.

II. PROBLEM FORMULATION

A. Experimentally Generated Comparisons

Let A be the set of all possible objects (“apples,” or robot

actions) that we would like to compare relative to some

ideal (“the orange,” or a human action) – most generally,

we will refer to these as alternatives. To begin, we will

assume very little about A; it may not even be countable.

If we are interested in programming a particular robot by

demonstration, A might be the set of all possible motions

that the robot can perform. If we are comparing actual

apples to oranges in order to find the most “orangelike”

apple, then A would be the set of all conceivable apples.

To capture the subjectivity of comparing elements of this

set to the ideal, suppose that we can conduct experiments,

in each of which we ask human observers to perform a

pairwise comparison of elements of A; specifically, assume

that we can pose questions of the form, “Which of these

apples, X or Y, is more orangelike?” This particular form

of experiment, it should be noted, has the advantage over

other forms (e.g., rankings on a scale from 1-10) that it is

less prone to batch effects, a psychological phenomenon in

which people’s rankings are only accurate among objects

compared at around the same time [15], [17].
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We will assume for our purposes that the human observers

we ask to compare alternatives are “similar,” in that they tend

to have the same opinions about which alternatives are more

like the ideal, so we can treat their responses meaningfully

in an aggregate sense (i.e., we will not be concerned with

Condorcet’s paradox).

Given this assumption, one can think of the group of hu-

mans as a generalized comparator, or sorting function, which

it will be our goal to “learn” from output measurements.

More specifically, we assume that the human observers are

presented with an unsorted pair of alternatives as “input,”

and that they “output” a corresponding sorted pair, ordered

by similarity to the ideal. That is, the humans in these

experiments behave as a map h from the set U = A × A
of questions, to the set Y = A ×A of answers, where h is

defined,

h(aa, ab) =

{

(aa, ab) aa ≻ ab

(ab, aa) ab ≻ aa
(1)

and where we use “aa ≻ ab” to denote “aa is more ‘orange-

like’ than ab.” From this point of view, an “experiment” – in

which we present alternatives to human observers and obtain

similarity judgments – is really just a function evaluation of

h.

Now let E ⊂ A be a finite, indexed subset of alternatives

that we, the experimenters, will actually present to the

human observers; we will refer to these as the experimental

alternatives. The reason for defining this set is that, ideally,

we would like to be able to present only a few alternatives

(i.e., those in the set E), in order to draw conclusions

about preferences over all possible alternatives (everything

in A – which may not even be countable). Additionally, let

P = {1, 2, . . . , P} be the index set associated with E ; we

define this for convenience so that we may refer to “the ith

alternative,” which we will abbreviate Ei ∈ E .

Next, suppose that we ask the human observers to perform

a series of pairwise comparisons of alternatives. That is, we

present elements of E two-at-a-time to human observers in

an indexed set of questions Q =
{

u1, u2, . . .
}

⊂ E ×E ⊂ U
to obtain the indexed set of responses R =

{

y1, y2, . . .
}

=
{

h(u1), h(u2), . . .
}

⊂ E × E ⊂ Y . In other words, thinking

of the humans again as a comparator, we input a sequence

of unsorted pairs, and receive a corresponding sequence of

sorted pairs as output; from this, we hope to deduce the inner

workings of the comparator.

h

u ∈ U y ∈ Y

Fig. 1. Human as comparator – a memoryless nonlinear system

We will also assume that a vector of feature scores ϕ(a) ∈
F = R

q associated with each alternative a ∈ A is available

automatically from experimental data. If we are comparing

actual apples to oranges, such features might include the

average RGB colors of the apples, their dimensions along

various directions, and similar measurements. (In fact, we

do exactly this, as will be described later in the paper.)

Moreover, for the special case when we are evaluating the

features of an alternative in the experimental set E , we will

for compactness of notation write ϕ(Ek) = ϕk .

Now, suppose that we can form a parametrized cost, J :
R

N ×F → R that, given some parameter ρ ∈ R
N , maps the

features (an element of F ) of any alternative in A to a real

number, and that

J(ρ, ϕ(aa)) < J(ρ, ϕ(ab)) ⇐⇒ aa ≻ ab. (2)

In other words, we assume that we can define a cost such

that “cheaper” alternatives are more like the ideal. What this

means is that, given J , ρ, and the features corresponding to

two “apples,” we know exactly which of the two is more

“orangelike.” To make this ability to compare alternatives

using J explicit, we define an associated output map hJ :
U → Y , that sorts pairs of alternatives in this fashion; i.e.,

hJ(aa, ab) =

{

(aa, ab) J(ϕ(aa)) > J(ϕ(ab))
(ab, aa) J(ϕ(ab)) > J(ϕ(aa))

.

The significance of hJ is that it is the comparator function

consistent with (2). Our goal, then, is to determine a ρ
(for fixed J) and hence a cost function such that hJ(u) =
h(u) ∀u ∈ U .

In other words (and for compactness of notation defining

J(ρ, ϕ(Ek)) = Jk(ρ) for the special case when we are

evaluating the cost of an alternative in the experimental set)

the problem we are trying to solve is that of selecting the

parameter ρ such that,

1) The pairwise comparisons are consistent with the costs,

i.e. Ji(ρ) < Jj(ρ), ∀(Ei, Ej) ∈ R.

2) ρ satisfies some feasibility constraint π(ρ) = 0.

We let Ω(E) denote the set of all such feasible ρ parameters

and given that at least one feasible ρ exists, we want

moreover to select ρ ∈ Ω(E) in such a way that it minimizes

the smallest of all the alternative costs.

Summarizing these points, what we want to achieve is to

solve the min-min problem

min
i∈P

{

min
ρ∈R

N

Ji(ρ)

}

subject to the constraint

ρ ∈ Ω(E).

Before we can actually solve this problem, we first need to

establish some necessary conditions for the existence of a so-

lution associated with ensuring that the pairwise comparisons

are rational in the sense that they induce a partial order on

the alternatives. For this, we need to introduce the notion of

a directed alternative graph GE = (E ,R), where the vertex

set is equal the presented alternatives, and a directed edge

between Ei and Ej exists if and only if there exists a yk ∈ R
such that (Ei, Ej) = yk. In other words, each edge encodes a

judgment about which of the vertices (alternatives) adjacent

to it is “more orangelike.”
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Now, in order to ensure that we have indeed a partial order,

i.e. that we can not end up with situations where

Ei ≻ Ej , Ej ≻ Ek, Ek ≻ Ei,

we have to assume that GE is acyclic. Assuming that this is

indeed the case, and that the feasible set Ω(E) is non-empty,

then the min-min problem can in fact be solved by solving

a total of at most o(E) ≤ P problems, where

o(E) = card(O(E)),

and O(E) is the set of all alternatives that won at least one

comparison while not losing any comparison, i.e.

O(E) =







i ∈ P

∣

∣

∣

∣

∣

∣

∃Ej s.t.

(Ei, Ej) ∈ R
and

6 ∃Ek s.t. (Ek, Ei) ∈ R







.

Using the terminology from graph theory, what these nodes

thus satisfy is that they have out-degree greater than zero

and in-degree equal to zero.

B. The Transitive Reduction

In fact, for many graphs, the number of constraints when

solving each of these subproblems can be reduced; i.e., we

can remove edges from the graph, and thereby reduce the

execution time of the optimization algorithm. For instance,

consider the graph G3 given in Figure 2. For this graph, edge

12

3 4

G3

12

3 4

G4

Fig. 2. Two equivalent alternative graphs.

(2, 4) imposes the constraint that J2(ϕ) < J4(ϕ), yet since

(2, 3) imposes J2(ϕ) < J3(ϕ) and (3, 4) imposes J3(ϕ) <
J4(ϕ), then by transitivity (2, 3) and (3, 4) collectively

render (2, 4) redundant, and hence the alternative graph G3

can be replaced by G4. That is to say, if we optimize the

parametrized cost subject to all the constraints represented

by G4, then all of the constraints represented by G3 will

automatically be satisfied. From a graph-theoretic point of

view, G4 is the transitive reduction of G3.

Formally, using Aho’s definition [18], Gt is the transitive

reduction of a graph G if,

1) there is a directed path from vertex u to vertex v in

Gt if and only if there is a directed path from u to v
in G, and

2) there is no graph with fewer arcs than Gt satisfying

condition 1.

In the case of a directed acyclic graph, the reduction Gt

(which is unique) is a subgraph of G. It was shown in

[18] that computation of the transitive reduction is of the

same complexity as transitive closure, and hence matrix

multiplication; thus, the transitive reduction can be found in

O(nlog27) steps using Strassen’s algorithm [19]. (See, e.g.,

[20], [21]).

III. COST MODELS

In the following sections, we will present two different,

related examples of cost functions, and investigate the im-

plications of each choice.

A. Linear Cost Models

As an example, consider a situation in which the alter-

native costs are linear, i.e. Ji = ρT ϕ(Ei) and all feature

vectors ϕ are non-negative. In that case, the min-min problem

becomes

min
i∈P

{

min
ρ∈R

N

ρT ϕ(Ei)

}

,

subject to the constraints







ρT ϕ(Ei) ≤ ρT ϕ(Ej), ∀(Ei, Ej) ∈ R
1

T ρ = 1
ρ ≥ 0,

where 1 = (1, . . . , 1)T , and where we, for simplicity

have assumed that N = q, i.e. the number of parameters

(the dimension of ρ) is equal to the number of features

(the dimension of ϕ). We moreover replaced the pairwise

comparison constraints with non-strict inequalities.

We directly note that since ρ ≥ 0, the notion of dominance

allows us to reduce the number of constraints and possibly

also o(E) in the case when the problem is linear. In particular,

an alternative Ei is said to linearly dominate alternative Ej if

(Ei, Ej) ∈ R and ϕi ≤ ϕj , where the inequality is taken

componentwise. And, ρ ≥ 0 directly implies that if this

is indeed the case then ρT ϕi ≤ ρT ϕj and as such this

constraint can be removed from the problem altogether. That

is, the structure imposed by our choice of linear cost function

allows for additional simplifications beyond those implied by

transitivity alone.

B. Metric Cost Models

Colloquially, when comparing various alternatives, we

often speak of options as being “closer to what we would

like,” or of being “far from perfect.” Motivated by this

everyday use of geometric language, we would now like to

consider metric costs of the form,

Ji = d(ϕ(Ei), ϕ(ā)) (3)

where ā ∈ A is the “ideal” or “most orangelike” apple –

which is unknown to us, the experimenters – and d(· , · ) is

a metric in the inner product space F (We will assume the

usual Euclidean metric and inner product, but what follows

is readily generalizable to other inner products.) In this case,

J is entirely parametrized by ρ = ϕ(ā), so the goal will be

to determine this ideal feature vector from responses.
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What does an individual response y = (E1, E2) tell us

about the location of ϕ(ā)?1 Simply,

ϕ(ā) ∈
{

ϕ | nT ϕ ≥ b
}

⇐⇒ d(ϕ2, ϕ(ā)) ≥ d(ϕ1, ϕ(ā)). (4)

where ϕ1 = ϕ(E1), ϕ2 = ϕ(E2), n = (ϕ1 − ϕ2), and b =
1
2nT (ϕ1 +ϕ2). (This follows immediately from Lemma 3.1,

which is given at the end of this section.) Hence, a sequence

of n outputs y1, y2, . . . , yn (with yk = (Ek
1 , Ek

2 ), ϕk
j =

Ek
j ∀k = 1, 2, . . . , n; j = 1, 2) implies,

ϕ̄ ∈

n
⋂

k=1

{

ϕ | (ϕk
1 − ϕk

2)T ϕ >
1

2
(ϕk

1 − ϕk
2)T (ϕk

1 + ϕk
2)

}

(5)

or equivalently, ϕ̄ is a solution to











(ϕ1
1 − ϕ1

2)
T

(ϕ2
1 − ϕ2

2)
T

...

(ϕn
1 − ϕn

2 )T











ϕ̄ >
1

2











(ϕ1
1 − ϕ1

2)
T (ϕ1

1 + ϕ1
2)

(ϕ2
1 − ϕ2

2)
T (ϕ2

1 + ϕ2
2)

...

(ϕn
1 − ϕn

2 )T (ϕn
1 + ϕn

2 )











(6)

where “>” indicates componentwise inequality.

The geometric interpretation of (4) is that ϕ̄ must lie within

a half-plane in feature space. Likewise, (5) means that ϕ̄
must lie within the intersection of the half-planes; this is a

polytope in F .

Before continuing, we now state the Lemma referred to

earlier in this section; its statement is given more generally

than (4). The geometric interpretation is that comparisons

between distances relative to reference points can be inter-

changed with signed point-plane distance tests.

Lemma 3.1: Let ϕ1, ϕ2, ϕ̄ be any vectors in the inner

product space R
m for some m ∈ N (with the usual inner

product), and let ⋆ be a binary relation from the set, {=, <
, >,≤,≥}. Then,

ϕ̄ ∈
{

ϕ | nT ϕ⋆b
}

⇐⇒ d(ϕ2, ϕ̄)⋆d(ϕ1, ϕ̄)

where n = (ϕ1 − ϕ2), and b = 1
2nT (ϕ1 + ϕ2).

The proof of this is based on the Polarization Identity and

is straightforward.

1) An asymptotic observer for metric cost models: Sup-

pose we have access to a very long (infinite) sequence of

comparisons y0, y1, y2, ... ∈ Y , perhaps as the result of

passive monitoring over an extended period of time, and we

would like to know the features ϕ̄ of the ideal alternative. If

alternatives are presented at random to the comparator, can

we construct an asymptotic observer for ϕ̄ which can avoid

storing all of the very (infinitely) many constraints implied

by this sequence? It turns out that the answer is yes, and

1In this section, the subscript 1 and 2 are used to denote the first and
second elements of y (i.e., the more- and less- ideal alternatives), rather
than the particular elements of E indexed by 1 and 2.

exactly such an observer is given by,

ϕ̃k+1 =

{

P kϕ̃k + αkbk

(nk)T (nk)n
k if (nk)T ϕ̃k < bk

ϕ̃k otherwise
(7)

P k = I − αk (nk)(nk)T

(nk)T (nk)
(8)

nk = (ϕk
1 − ϕk

2) (9)

bk =
1

2
nT (ϕk

1 + ϕk
2) (10)

for any sequence of observer gains αk ∈ (0, 2), regardless of

ϕ̃0. That is, ϕ̃ converges to ϕ̄ in probability as k → ∞, given

a few assumptions; we will prove this shortly in Theorem 3.1.

Moreover, note that, although (7-10) are broken down into

separate expressions for clarity of presentation, they are in

fact all functions of ϕ̃k, so this observer can be implemented

with only dim{F} real memory elements.

Geometrically, the observer (7-10) operates through a

series of projections (or under/over-projections, if α 6= 1),

as illustrated in Figure 3, with each projection bringing the

estimate ϕ̃k of the ideal closer to the true ideal, ϕ̄. A proof

of convergence follows as Theorem 3.1.

ϕ0

2

ϕ0

1 ϕ̄
ϕ1

2

ϕ1

1

ϕ2

2

ϕ2

1

ϕ̃0

ϕ̃1,2

ϕ̃3

Fig. 3. A series of the observer’s estimates, with αk = 1 ∀k. The initial
estimate is ϕ̃0, and the true ideal is given by ϕ̄. In step 0, the observer
projects ϕ̃0 onto the plane (solid line) corresponding to the measured output
y0 = (ϕ0

1
, ϕ0

2
) to produce ϕ̃1. In step 1, the observer makes no changes to

its estimate, because ϕ̃1 is on the correct side of the plane corresponding
to y1; hence ϕ̃2 = ϕ̃1. In step 2, the observer projects ϕ̃2 onto the plane
corresponding to y2 to create the estimate ϕ̃3, which is yet closer to ϕ̄.

Theorem 3.1: Let uk = (ak
a, ak

b ) be a sequence of random

alternatives issued as input to a comparator system with

metric cost function as defined in (3), such that the features

ϕk
a, ϕk

b ∈ F of these alternatives are i.i.d. random variables

drawn according to any probability density function p(ϕ)
which is nonzero in an open ball B(ϕ̄, r) = Br around the

optimal alternative, ϕ̄. Then, the asymptotic observer given

by (7) converges to ϕ̄ in probability.

Proof :

1. If (nk)T ϕ̃k > bk, then d(ϕ̃k+1, ϕ̄) < d(ϕ̃k, ϕ̄). The

distances d(ϕ̃k, ϕ̄) and d(ϕ̃k+1, ϕ̄) are related through the

Polarization Identity by (where ∆k = ϕ̃k+1 − ϕ̃k),

||ϕ̃k+1 − ϕ̄||2 = ||ϕ̃k + ∆k − ϕ̄||2 =

||ϕ̃k − ϕ̄||2 + ||∆k||2 + 2(ϕ̃k − ϕ̄)T ∆k

so, it order to show that ||ϕ̃k+1 − ϕ̄|| < ||ϕ̃k − ϕ̄||, it is

sufficient to demonstrate

||∆k||2 + 2(ϕ̃k − ϕ̄)T ∆k < 0. (11)
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From (7, 8),

∆k =

(

I − ak (nk)(nk)T

(nk)T (nk)

)

ϕ̃k +
αkbk

(nk)T (nk)
nk − ϕ̃k

=
α

(nk)T (nk)

(

bk − (nk)T ϕ̃k
)

nk (12)

so, substituting ∆ into (11) (and dropping the superscript

indices k),

α2

nT n
(b − nT ϕ̃)2 + 2

α

nT n
(b − nT ϕ̃)nT (ϕ̃ − ϕ̄) < 0 (13)

or equivalently, so long as α > 0 (as we require),
(

b − nT ϕ̃
) [

α
(

b − nT ϕ̃
)

+ 2nT (ϕ̃ − ϕ̄)
]

< 0. (14)

Since by assumption nT ϕ̃ < b, this is satisfied iff the second

factor is negative; that is,

α
(

b − nT ϕ̃
)

+ 2nT (ϕ̃ − ϕ̄) =

αb + (2 − α)nT ϕ̃ − 2nT ϕ̄ < 0. (15)

or equivalently

1

2
αb +

(

1 −
1

2
α

)

nT ϕ̃ < nT ϕ̄. (16)

Since nT ϕ̃ < b, and by Lemma 3.1, nT ϕ̄ ≥ b, this is satisfied

so long as α ∈ (0, 2), as we require.

2. The sequence dk = ||ϕ̃k − ϕ̄k||, k = 0, 1, 2, ... is

nonincreasing. In the second case of (7), ϕ̃k+1 = ϕ̃k; this is

nonincreasing. In the first case, (nk)T ϕ̃k > bk, so dk+1 < dk

by point 1 above.

3. g.l.b.(dk) = 0 with unit probability. By positivity of

d(· , · ), zero is a lower bound. To show that this is the

greatest such bound, consider some ǫ > 0 and suppose that,

at iteration m, d(ϕ̃m, ϕ̄) = ǫ. Now, let z = min(r, ǫ/2), and

consider the open balls B1 = B(c1, z/4), B2 = B(c2, z/4),
where the center points c1, c2 are defined,

cj = ϕ̄ +
ϕ̃ − ϕ̄

||ϕ̃ − ϕ̄||

(2j − 1)

4
z;

additionally, let ϕ1 ∈ B1, ϕ2 ∈ B2. Then by Lemma 3.1, we

can confirm that ϕ̄ and ϕ̃ are on opposite sides of the plane

(and hence, that a projection will occur) by verifying that,

||ϕ2 − ϕ̃|| < ||ϕ1 − ϕ̃|| (17)

||ϕ2 − ϕ̄|| > ||ϕ1 − ϕ̄||. (18)

Considering the first of these, we note by the triangle

inequality,

||ϕ2 − ϕ̃|| ≤ ||ϕ2 − c2|| + ||c2 − ϕ̃|| < 1
4z + ||c2 − ϕ̃||

whereas, by the inverse triangle inequality,

||ϕ1 − ϕ̃|| ≥ | ||ϕ1 − c1|| + ||c1 − ϕ̃|| |

≥ ||c1 − ϕ̃|| = 1
2z + ||ϕ2 − c2||

so this is indeed the case. Considering the second inequality

(18), we have likewise,

||ϕ1 − ϕ̄|| ≤ ||ϕ1 − c1|| + ||c1 − ϕ̄|| < 1
4z + 1

4z = 1
2z

and

||ϕ2 − ϕ̄|| ≥| ||ϕ2 − c2|| − ||c2 − ϕ̄|| |≥ 3
4z

so this inequality holds as well. Therefore, any ϕ1, ϕ2 from

B1, B2 are associated with a plane which separates ϕ̃ from

ϕ̄ and hence triggers a projection. Since B1 and B2 have

nonzero measure, and are subsets of Br in which p(· ) is

nonzero, then the probabilities for this iteration P1 = Pr(“a

point is selected in B1”) and P2 = Pr(“a point is selected

in B2”) are both nonzero, and therefore, since the uk are

independent, Pboth = Pr(“one point is selected in B1 and

the other is selected in B2”) = P1P2 is nonzero, and the

probability that this occurs for at least one iteration k > m
is given by 1−

∏∞

k=m

(

1 − P k
both

)

= 1 or in other words, with

probability one, there exists a q > m such that P ((nq)T ϕ̃q >
bq). Then, by point 1, d(ϕ̃q , ϕ̄) < d(ϕ̃m, ϕ̄) = ǫ, and so ǫ,

with unit probability, cannot be a lower bound. Since dk

is a nonincreasing sequence in R and g.l.b.(dk) = 0, dk

converges to 0 and thus ϕ̃ converges to ϕ̄ in probability.

An example of the estimate trajectory in feature space

generated by such an observer is given in Figure 4.For this

example, F = R
2, and features were drawn from a uniform

distribution in the square [−20, 20]× [−20, 20]. The estimate

evolves from its initial condition, ϕ̃0 = (−15, 15)T to near

the ideal ϕ̄ = (17, 0)T .

−20 −15 −10 −5 0 5 10 15 20
−15

−10

−5

0

5

10

15

20

Fig. 4. Example estimate trajectory for observer (7-10) for αk = α = 1,
with F = R

2. The estimate begins at ϕ̃0 = (−15, 15)T , and approaches
the ideal ϕ̄ = (17, 0)T .

IV. APPLES AND ORANGES

To demonstrate the application of these ideas, photos of

nine apples were shown to an audience of thirteen people in

a number of pairwise experiments.

Each apple was described by a 15-dimensional feature

vector, containing (1-3) the average color in HSB (hue,

saturation, brightness) color space, (4-6) the average color

in RGB color space, (7) the color variance, (8-10) width,

height, and the ratio of the two, (11-12) stem length, and
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Fig. 5. An example of a pairwise comparison between two apples, relative
to the orange.

angle relative to apple, (13-14) dimple angle and depth, and

(15) roundness.

The partial order over the apples was thus generated by

having a group of people make a number of randomly

selected, pairwise comparisons (as the one depicted in Figure

5). Represented as a directed alternative graph, the results of

these experiments are given as Figure 6.

E7

E8

E9

E5 E6

E2

E4

E3

E1

Fig. 6. The DAG corresponding to the apple experiments.

This results in the following optimal cost parameter ρ (all

components of ρ not listed below are 0.0000):

ρ1 = 0.0505 (Hue)

ρ3 = 0.1861 (Brightness)

ρ5 = 0.2846 (Green)

ρ8 = 0.2834 (Width)

ρ11 = 0.1953 (Stem Length)

which tells us that the single most important attribute that

distinguishes apples from each other relative to oranges is the

fifth dimension of the parameter space, namely, the amount

of green in RGB colorspace; this is closely followed, perhaps

surprisingly, by the width of the apple.

V. CONCLUSIONS

In this paper, we present a method for inferring the

underlying cost structure that we assume is implicitly com-

puted when people make comparisons between alternatives.

In particular, given a collection of such comparisons, we

produce a partial order over the set of alternatives, which, in

turn, allows to infer the corresponding cost function (given a

parametrized cost model and certain regularity assumptions

on how people act.)

An example application of this is given in terms of

comparing apples and oranges, and we recognize that this

may not be the world’s most compelling application in itself.

Instead, we view this as a first step towards understanding

and solving the very important question of Programming by

Demonstration in robotics, where a robot is asked to act

“similarly” to a human operator.
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